
MALLIAVIN CALCULUS FOR FRACTIONAL HEAT EQUATION

A. DEYA AND S. TINDEL

Abstract. In this article, we give some existence and smoothness results for the law
of the solution to a stochastic heat equation driven by a finite dimensional fractional
Brownian motion with Hurst parameter H > 1/2. Our results rely on recent tools of
Young integration for convolutional integrals combined with stochastic analysis meth-
ods for the study of laws of random variables defined on a Wiener space.

Dedicated to David Nualart on occasion of his 60th birthday

1. Introduction

The definition and resolution of evolution type PDEs driven by general Hölder contin-
uous signals have experienced tremendous progresses during the last past years. When
the Hölder regularity of the driving noise is larger than 1/2, this has been achieved
thanks to Young integrals [9] or fractional integration [11] techniques. The more deli-
cate issue of a Hölder exponent smaller than 1/2 has to be handled thanks to rough paths
techniques, either by smart transformations allowing to use limiting arguments [3, 4, 8]
or by an adaptation of the rough paths formalism to evolution equations [5, 7, 10]. Alto-
gether, those contributions yield a reasonable definition of rough parabolic PDEs, driven
at least by a finite dimensional signal.

With those first results in hand, a natural concern is to get a better understanding
of the processes obtained as solutions to stochastic PDEs driven by rough signals. This
important program includes convergence of numerical schemes (see [6] for a result in this
direction), ergodic properties and a thorough study of the law of those processes. The
current article makes a first step towards the last of these items.

Indeed, we shall consider here a simple case of rough evolution PDE and see what
kind of result might be obtained as far as densities of the solution are concerned. More
specifically, we focus on the following mild heat equation on (0, 1)

Yt = Stϕ+

∫ t

0

St−u(Fi(Y )u) dB
i
u , t ∈ [0, T ], (1)

where T > 0 is a finite horizon, St stands for the heat semi-group associated with
Dirichlet boundary conditions, ϕ is a smooth enough initial condition, Fi : L

2(0, 1) →
L2(0, 1) and B : [0, T ] → R

d is a d-dimensional fractional Brownian motion with Hurst
parameter H > 1/2. For this equation, we obtain the following results:
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(1) Existence of a density for the random variable Yt(ξ) for any t ∈ (0, T ] and ξ ∈
(0, 1), when the Fi’s are rather general Nemytskii operators Fi(ϕ)(ξ) := fi(ϕ(ξ)).
See Theorem 3.8 for a precise statement.

(2) When the Fi’s are defined through some regularizing kernel (see Hypothesis 2),
we obtain that the density of Yt(ξ) is smooth. This will be the content of Theo-
rem 4.8.

To the best of our knowledge, these are the first density results for solutions to nonlinear
PDEs driven by fractional Brownian motion. Let us point out that we could have
obtained the same kind of results for a more general class of equations (operator under
divergence form, general domain D ⊂ R

n, drift term, Gaussian process as driving noise).
We prefer however to stick to the simple case of the fBm-driven stochastic heat equation
for the sake of readability and conciseness.

Our main results will obviously be based on a combination of pathwise estimates for
integrals driven by rough signals and Malliavin calculus tools. In particular, a major
part of our effort will be dedicated to the differentiation of the solution to equation (1)
with respect to the driving noise B and to a proper estimate of the derivative. Since
the equations for derivatives are always of linear type they lead to exponential type
estimates, which are always a delicate issue. This is where we shall consider some
regularizing vector fields Fi in (1), and proceed to a careful estimation procedure (see
Section 4.1). It should also be noticed at this point that the basis of our stochastic
analysis tools is contained in the celebrated book [12] by D. Nualart, plus the classical
reference [13] as far as equations driven by fBm are concerned.

Here is how our article is structured: Section 2 is devoted to recall basic facts on
both pathwise noisy evolution equations and Malliavin calculus for fractional Brownian
motion. We differentiate the solution to (1) and obtain the existence of the density at
Section 3. Finally, further estimates on the Malliavin derivative and smoothness of the
density are derived at Section 4.

Notation. Throughout the paper, we will use the generic notation c to refer to the
constants that only depend on non-significant parameters. The constants which are to
play a more specific role in our reasoning will be labelled c1, c2,...

For any k ∈ N, we will denote by Ck,b(R;R) the space of functions on R which are
k-times differentiable with bounded derivatives. For any γ ∈ (0, 1), Cγ = Cγ([0, T ];Rd)
will stand for the set of (d-dimensional) γ-Hölder paths on [0, T ].

2. Setting

One of the technical advantages of dealing with the simple case of a stochastic heat
equation on (0, 1) is a simplification in the functional analysis setting, based on rather
elementary Fourier series considerations (notice in particular that the Lp considerations
of [7] can be avoided). We shall first detail this setting, and then recall some basic facts
on equations driven by noisy signals and fractional Brownian motion. Throughout the
section, we assume that a (finite) horizon T has been fixed for the equation.

2.1. Fractional Sobolev spaces. As mentioned above, we are working here with the
heat equation in the Hilbert space B := L2(0, 1) with Dirichlet boundary conditions.
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The Laplace operator ∆ on B can be diagonalized in the orthonormal basis

en(ξ) :=
√
2 sin(πnξ) (n ∈ N

∗), with eigenvalues λn := π2n2.

We shall denote by (yn)n the (Fourier) decomposition of any function y ∈ B on this
orthonormal basis.

Sobolev spaces based on B are then easily characterized by means of Fourier coeffi-
cients. We label their definition for further use:

Definition 2.1. For any α ≥ 0, we denote by Bα the fractional Sobolev space of order
α based on B, defined by

Bα :=

{

y ∈ L2(0, 1) :

∞
∑

n=1

λ2αn (yn)2 <∞
}

. (2)

This space is equipped with its natural norm ‖y‖2Bα
:= ‖∆αy‖2B =

∑∞
n=1 λ

2α
n (yn)2. We

also set B∞ = C(0, 1).
The above-defined fractional Sobolev spaces enjoy the following classical properties

(see [1, 15]):

Proposition 2.2. Let Bα,B∞ be the Sobolev spaces introduced at Definition 2.1. Then
the following hold true:

• Sobolev inclusions: If α > 1/4, then we have the continuous embedding

Bα ⊂ B∞. (3)

• Algebra: If α > 1/4, then Bα is a Banach algebra with respect to pointwise multipli-
cation, or in other words

‖ϕ · ψ‖Bα
≤ ‖ϕ‖Bα

‖ψ‖Bα
. (4)

• Composition: If 0 ≤ α < 1/2, ϕ ∈ Bα and f : R → R belongs to C1,b, then f(ϕ) ∈ Bα

and

‖f(ϕ)‖Bα
≤ cf {1 + ‖ϕ‖Bα

} . (5)

Here, f(ϕ) is naturally understood as f(ϕ)(ξ) := f(ϕ(ξ)).

Let now St be the heat semigroup associated with ∆, and notice that if an element
y ∈ L2(0, 1) can be decomposed as y =

∑

n≥1 y
nen, then Sty =

∑

n≥1 e
−λntynen. The

general theory of fractional powers of operators provides us with sharp estimates for the
semigroup St (see for instance [14]):

Proposition 2.3. The heat semigroup St satisfies the following properties:

• Contraction: For all t ≥ 0, α ≥ 0, St is a contraction operator on Bα.

• Regularization: For all t ∈ (0, T ], α ≥ 0, St sends B on Bα and

‖Stϕ‖Bα
≤ cα,T t

−α‖ϕ‖B. (6)

• Hölder regularity. For all t ∈ (0, T ], ϕ ∈ Bα,

‖Stϕ− ϕ‖B ≤ cα,T t
α‖ϕ‖Bα

. (7)
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2.2. Young convolutional integrals. The stochastic integrals involved in equation (1)
will all be understood in the Young sense. In order to define them properly, let us first
introduce some notation concerning Hölder type spaces in time. To begin with, for any
α ≥ 0 and any subinterval I ⊂ [0, T ], set C0(I;Bα) for the space of continuous Bα-valued
functions on I, equipped with the supremum norm. Then Hölder spaces of Bα-valued
functions can be defined as follows: for κ ∈ (0, 1), set

Cκ(I;Bα) :=

{

y ∈ C0(I;Bα) : sup
s<t∈I

‖yt − ys‖Bα

|t− s|κ <∞
}

.

Observe now that the definition of our stochastic integrals weighted by the heat semi-
group will require the introduction of a small variant of those Hölder spaces (see [10, 7]

for further details): we define Ĉκ(I;Bα) as

Ĉκ(I;Bα) :=

{

y ∈ C0(I;Bα) : sup
s<t∈I

‖yt − St−s ys‖Bα

|t− s|κ <∞
}

.

In order to avoid confusion, the natural norms on the spaces Cκ(I;Bα), Ĉκ(I;Bα) are

respectively denoted by N [·; Cκ(I;Bα)], N [·; Ĉκ(I;Bα)], etc. For the sake of conciseness,

we shall often write Cκ(Bα) (resp. Ĉκ(Bα)) instead of Cκ([0, T ];Bα) (resp. Ĉκ([0, T ];Bα)).

We also need to introduce a family of spaces Ĉ0,κ(I;Bκ) in the following way:

Lemma 2.4. For any κ ∈ (0, 1) and any subinterval I ⊂ [0, T ], let Ĉ0,κ(I;Bκ) be the
space associated with the norm

N [·; Ĉ0,κ(I;Bκ)] := N [·; C0(I;Bκ)] +N [·; Ĉκ(I;Bκ)].

Then the following continuous embedding holds true:

Ĉ0,κ(I;Bκ) ⊂ Cκ(I;B). (8)

More generally, for every λ ≥ κ,

N [y; Cκ(I;B)] ≤ N [y; Ĉκ(I;Bλ)] + cλ |I|λ−κN [y; C0(I;Bλ)]. (9)

Proof. Indeed, owing to (7), one has, for every s < t ∈ I,

‖yt − ys‖B ≤ ‖yt − St−sys‖B + ‖(St−s − Id)ys‖B ≤ ‖yt − St−sys‖Bλ
+ cλ |t− s|λ ‖ys‖Bλ

.

�

With those definitions in hand, the following proposition (borrowed from [7]) will be
invoked in the sequel in order to give a meaning to our stochastic integrals weighted by
the heat semigroup:

Proposition 2.5. Consider a γ-Hölder real-valued function x defined on [0, T ]. Let
I = [ℓ1, ℓ2] be a subinterval of [0, T ] and fix κ ∈ [0, γ] such that γ + κ > 1. Suppose that
z ∈ C0(I;Bλ) ∩ Cκ(I;Bλ−α) for some parameters λ ≥ 0, 0 ≤ α ≤ min(κ, λ). Then, for
every s < t ∈ I, the convolutional Riemann sum

∑

tk∈Π

St−tk+1
ztk+1

[

xtk+1
− xtk

]

converges in Bλ as the mesh of the partition Π := {s = t0 < t1 < . . . < tn = t} tends to

0, and we denote the limit by
∫ t

s
St−uzu dxu.
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Moreover, for every ϕ ∈ Bλ, there exists a unique path y ∈ Ĉγ(I;Bλ) such that yℓ1 = ϕ

and yt − St−sys =
∫ t

s
St−u(zu) dxu if s < t ∈ I. For this function, the following estimate

holds:

N [y; Ĉγ(I;Bλ)] ≤ c‖x‖γ
{

N [z; C0(I;Bλ)] + |I|κ−αN [z; Cκ(I;Bλ−α)]
}

, (10)

for some constant c that only depends on (γ, κ, λ, α).

2.3. Malliavin calculus techniques. This subsection is devoted to present the Malli-
avin calculus setting which we shall work in, having in mind the differentiability prop-
erties of the solution to (1).

2.3.1. Wiener space associated to fBm. Let us first be more specific about the probabilis-
tic setting in which we will work. For some fixed H ∈ (1/2, 1), we consider (Ω,F ,P) the
canonical probability space associated with the fractional Brownian motion with Hurst
parameter H . That is, Ω = C0([0, T ];Rd) is the Banach space of continuous functions
vanishing at 0 equipped with the supremum norm, F is the Borel sigma-algebra and P is
the unique probability measure on Ω such that the canonical process B = {Bt, t ∈ [0, T ]}
is a d-dimensional fractional Brownian motion with Hurst parameter H , with covariance
function

E
[

Bi
t B

j
s

]

=
1

2

(

t2H + s2H − |t− s|2H
)

1(i=j), s, t ∈ [0, T ]. (11)

In particular, the paths of B are almost surely γ-Hölder continuous for all γ ∈ (0, H).

Consider then a fixed parameter H > 1/2, and let us start by briefly describing the
abstract Wiener space introduced for Malliavin calculus purposes (for a more general
and complete description, we refer the reader to [13, Section 3]).

Let (e1, . . . , ed) be the canonical basis of Rd, E be the set of Rd-valued step functions
on [0, T ] and H the completion of E with respect to the semi-inner product

〈1[0,t] ei, 1[0,s] ej〉H := RH(s, t) 1(i=j), s, t ∈ [0, T ].

Then, one constructs an isometry K∗
H : H → L2([0, T ];Rd) such that K∗

H(1[0,t] ei) = 1[0,t]

KH(t, ·) ei, where the kernel K = KH is given by

K(t, s) = cHs
1

2
−H

∫ t

s

(u− s)H− 3

2uH− 1

2 du

and verifies that E[Bi
sB

i
t] =

∫ s∧t

0
K(t, r)K(s, r) dr, for some constant cH . Moreover, let

us observe that K∗
H can be represented in the following form:

[K∗
Hϕ]t =

∫ T

t

ϕr∂rK(r, t) dr = dHt
H−1/2

[

I
H−1/2
T−

(

uH−1/2ϕ
)

]

t
, (12)

where IαT−
stands for the fractional integral of order α. The fractional Cameron-Martin

space can be introduced in the following way: let KH : L2([0, T ];Rd) → HH :=
KH(L

2([0, T ];Rd)) be the operator defined by

[KHh](t) :=

∫ t

0

K(t, s) h(s) ds, h ∈ L2([0, T ];Rd).

Then, HH is the Reproducing Kernel Hilbert space associated with the fractional Brow-
nian motion B. Observe that, in the case of the classical Brownian motion, one has
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that K(t, s) = 1[0,t](s), K
∗ is the identity operator in L2([0, T ];Rd) and HH is the usual

Cameron-Martin space.

In order to deduce that (Ω,H,P) defines an abstract Wiener space, we remark that
H is continuously and densely embedded in Ω. In fact, one proves that the operator
RH : H → HH given by

RHψ :=

∫ ·

0

K(·, s)[K∗ψ](s) ds

defines a dense and continuous embedding from H into Ω; this is due to the fact that
RHψ is H-Hölder continuous (for details, see [13, p. 400]).

Let us also recall that there exists a d-dimensional Wiener process W defined on
(Ω,H,P) such that B can be expressed as

Bt =

∫ t

0

K(t, r) dWr, t ∈ [0, T ]. (13)

This formula will be referred to as Volterra’s representation of fBm.

2.3.2. Malliavin calculus for B. Let us introduce now the Malliavin derivative operator
on the Wiener space (Ω,H,P). Namely, we first let S be the family of smooth functionals
F of the form

F = f(B(h1), . . . , B(hn)),

where h1, . . . , hn ∈ H, n ≥ 1, and f is a smooth function having polynomial growth to-
gether with all its partial derivatives. Then, the Malliavin derivative of such a functional
F is the H-valued random variable defined by

DF =

n
∑

i=1

∂f

∂xi
(B(h1), . . . , B(hn))hi.

For all p > 1, it is known that the operator D is closable from Lp(Ω) into Lp(Ω;H)
(see e.g. [12, Chapter 1]). We will still denote by D the closure of this operator, whose
domain is usually denoted by D

1,p and is defined as the completion of S with respect to
the norm

‖F‖1,p := (E(|F |p) + E(‖DF‖pH))
1

p .

Sobolev spaces D
k,p for any k ∈ N and p ≥ 1 can be defined in the same way, and

we denote by D
k,p
loc the set of random variables F for which there exists a sequence

(Ωn, Fn)n≥1 ⊂ F × D
k,p such that Ωn ↑ Ω a.s. and F = Fn a.s. on Ωn. We also set

D
∞ = ∩k,pD

k,p.

Remark 2.6. For F ∈ D
1,2, one can write DF =

∑d
j=1DjF ej , where DjF denotes the

Malliavin derivative with respect to the jth component of B.

Since we deal with pathwise equations, we shall also be able to differentiate them in a
pathwise manner. The relation between almost sure and Malliavin derivatives has been
established by Kusuoka, and we quote it according to [12, Proposition 4.1.3].

Proposition 2.7. A random variable F is said to be H-differentiable if for almost all
ω ∈ Ω and for any h ∈ H, the map ν 7→ F (ω + νRHh) is differentiable. Those random
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variables belong to the space D
1,p
loc, for any p > 1. Moreover, the following relation holds

true:
〈DF, h〉H = DF (B)(RHh), h ∈ H, (14)

where we recall that D stands for the Malliavin derivative and D for the pathwise differ-
entiation operator.

Stochastic analysis techniques are widely used in order study laws of random variables
defined on a Wiener space. Let us recall the main criterions we shall use in this direction:

Proposition 2.8. Let F be a real-valued random variable defined on (Ω,F ,P). Then

(i) If F ∈ D
1,p
loc for p > 1 and ‖DF‖H > 0 almost surely, then the law of F admits a

density p with respect to Lebesgue measure.

(ii) If F ∈ D
∞ and E[‖DF‖−p

H ] is finite for all p ≥ 1, then the density p of F is infinitely
differentiable.

3. Existence of the density in the case of Nemytskii-type vector fields

In this section, we first consider a general equation of the form

yt = Stϕ+

∫ t

0

St−u(Fi(y)u) dx
i
u , ϕ ∈ L2(0, 1) , t ∈ [0, T ], (15)

driven by a d-dimensional noise x = (x1, . . . , xd) considered as a Cγ function with
γ ∈ (1/2, 1). We shall be able to handle the general case of a perturbation involv-
ing Nemytskii operators, that is

Fi(ϕ)(ξ) := fi(ϕ(ξ)) , ϕ ∈ B , ξ ∈ (0, 1).

for smooth enough functions fi : R → R, i = 1, . . . , d.

Thus, Equation (15) can here be written as

yt = Stϕ+

∫ t

0

St−u(fi(yu)) dx
i
u , ϕ ∈ B , t ∈ [0, T ], (16)

or equivalently, in a multiparameter setting,

y(t, ξ) =

∫ 1

0

Gt(ξ, η)ϕ(η) dη+

∫ 1

0

∫ t

0

Gt−u(ξ, η)fi(y(u, η)) dx
i
udη , t ∈ [0, T ], ξ ∈ (0, 1),

where Gt stands for the heat kernel on (0, 1) associated with Dirichlet boundary condi-
tions.

It is readily checked that if each fi belongs to C1,b(R;R) and y ∈ Ĉ0,κ(Bκ) for some
κ ∈ (max(1 − γ, 1/4), 1/2), then the integral in the right-hand-side of (16) can be
interpreted with Proposition 2.5. Indeed, owing to (5), we know that f(y) ∈ C0(Bκ),
while, due to the embedding (8),

N [f(y); Cκ(B)] ≤ ‖f ′‖∞N [y; Cκ(B)] ≤ c‖f ′‖∞N [y; Ĉ0,κ(Bκ)] <∞.

For the remainder of the section, we shall rely on the following regularity assumptions.

Hypothesis 1. We consider κ ∈ (max(1 − γ, 1/4), 1/2) and an initial condition ϕ ∈
Bκ. The family of functions {f1, . . . , fd} is such that fi is an element of C3,b(R;R) for
i = 1, . . . , d.
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In this context, the following existence and uniqueness result has been proven in [7,
Theorem 3.10]:

Proposition 3.1. Under Hypothesis 1, Equation (16) interpreted with Proposition 2.5

admits a unique solution y ∈ Ĉ0,κ(Bκ), where we recall that the space Ĉ0,κ(Bκ) has been
defined at Lemma 2.4.

As a preliminary step towards Malliavin differentiability of the solution to (1), we shall
study the dependence on x of the deterministic equation (16).

3.1. Differentiability with respect to driving noise. For equation (16), consider
the application

Φ : Cγ → Ĉ0,κ(Bκ), x 7→ y, (17)

for a given initial condition ϕ. We shall elaborate on the strategy designed in [13] in
order to differentiate Φ. Let us start with a lemma on linear equations:

Lemma 3.2. Suppose that (x, y) ∈ Cγ × Ĉ0,κ(Bκ) and fix t0 ∈ [0, T ]. Then for every

w ∈ Ĉ0,κ([t0, T ];Bκ), the equation

vt = wt +

∫ t

t0

St−u(f
′
i(yu) · vu) dxiu , t ∈ [t0, T ], (18)

admits a unique solution v ∈ Ĉ0,κ([t0, T ];Bκ), and one has

N [v; Ĉ0,κ([t0, T ];Bκ)] ≤ Cx,y,T · N [w; Ĉ0,κ([t0, T ];Bκ)], (19)

where Cx,y,T := C(‖x‖γ,N [y; Ĉ0,κ(Bκ)], T ) for some function C : (R+)3 → R
+ growing

with its arguments.

Proof. The existence and uniqueness of the solution stem from the same fixed-point
argument as in the proof of Proposition 3.1 (see [7, Theorem 3.10]), and we only focus
on the proof of (19).

Let I = [ℓ1, ℓ2] be a subinterval of [t0, T ]. One has, according to Proposition 2.5,

N [v; Ĉκ(I;Bκ)]

≤ N [w; Ĉκ(Bκ)] + c |I|γ−κ ‖x‖γ
{

N [f ′
i(y) · v; C0(I;Bκ)] +N [f ′

i(y) · v; Cκ(I;B)]
}

. (20)

Now, by using successively (4) and (5), we get

N [f ′
i(y) · v; C0(I;Bκ)] ≤ cN [f ′

i(y); C0(Bκ)]N [v; C0(I;Bκ)]

≤ c
{

1 +N [y; C0(Bκ)]
}

N [v; C0(I;Bκ)],

while, owing to (8) and (3),

N [f ′
i(y) · v; Cκ(I;B)]

≤ N [f ′
i(y); Cκ(I;B)]N [v; C0(I;B∞)] +N [f ′

i(y); C0(I;B∞)]N [v; Cκ(I;B)]
≤ c

{

1 +N [y; Ĉ0,κ(Bκ)]
}

N [v; Ĉ0,κ(I;Bκ)].

Going back to (20), these estimates lead to

N [v; Ĉκ(I;Bκ)] ≤ N [w; Ĉκ(Bκ)] + cx,y |I|γ−κ N [v; Ĉ0,κ(I;Bκ)],
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and hence

N [v; Ĉ0,κ(I;Bκ)] ≤ ‖vℓ1‖Bκ
+ cN [w; Ĉκ(Bκ)] + cx,y |I|γ−κ N [v; Ĉ0,κ(I;Bκ)].

Control (19) is now easily deduced with a standard patching argument.
�

The following lemma on flow-type linear equations will also be technically important
for our computations below.

Lemma 3.3. Fix (x, y) ∈ Cγ × Ĉ0,κ(Bκ) and for every u ∈ [0, T ], consider the system of
equations

Ψi
t,u = St−u(fi(yu)) +

∫ t

u

St−w(f
′
j(yw) ·Ψi

w,u) dx
j
w , t ∈ [u, T ] , i ∈ {1, . . . , m}. (21)

Then, for every i ∈ {1, . . . , m} and t ∈ [0, T ], the mapping u 7→ Ψi
t,u is continuous from

[0, t] to Bκ. In particular, for every ξ ∈ (0, 1), u 7→ Ψi
t,u(ξ) is a continuous function on

[0, t].

Proof. Let us fix i ∈ {1, . . . , m}, t ∈ [0, T ]. For any 0 ≤ u < v ≤ t, set

Γi
v,u(s) := Ψi

s,v −Ψi
s,u , s ∈ [v, T ].

It is easy to check that Γi
v,u is solution of the equation on [v, T ]

Γi
v,u(s) = Ss−v(Ψ

i
v,v −Ψi

v,u) +

∫ s

v

Ss−w(f
′
j(yw) · Γi

v,u(w)) dx
j
w.

Therefore, according to the estimate (19),

‖Ψi
t,v −Ψi

t,u‖Bκ
= ‖Γi

v,u(t)‖Bκ
≤ N [Γi

v,u; C0(|v, T ];Bκ)] ≤ cx,y,T‖Ψi
v,v −Ψi

v,u‖Bκ
.

Now, observe that

Ψi
v,v −Ψi

v,u = fi(yv)− Sv−u(fi(yu)) +

∫ v

u

Sv−w(f
′
j(yw) ·Ψi

w,u) dx
j
w,

and since y ∈ Ĉ0,κ(Bκ), it becomes clear that ‖Ψi
v,v −Ψi

v,u‖Bκ

v→u−→ 0.
�

We now show how to differentiate a function which is closely related to equation (16).

Lemma 3.4. The application F : Cγ × Ĉ0,κ(Bκ) → Ĉ0,κ(Bκ) defined by

F (x, y)t := yt − Stϕ−
∫ t

0

St−u(fi(yu)) dx
i
u,

is differentiable in the Fréchet sense and denoting by D1F (resp. D2F ) the derivative
of F with respect to x (resp. y), we obtain

D1F (x, y)(h)t = −
∫ t

0

St−u(fi(yu)) dh
i
u, (22)

D2F (x, y)(v)t = vt −
∫ t

0

St−u(f
′
i(yu) · vu) dxiu. (23)

Besides, for any x ∈ Cγ, the mapping D2F (x,Φ(x)) is a homeomorphism of Ĉ0,κ(Bκ).
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Proof. One has, for every h ∈ Cγ, v ∈ Ĉ0,κ(Bκ),

F (x+ h, y + v)t − F (x, y)t =

vt −
∫ t

0

St−u(f
′
i(yu) · vu) dxiu −

∫ t

0

St−u(fi(yu)) dh
i
u −

[

R1
t (v) +R2

t (h, v)
]

, (24)

with

R1
t (v) :=

∫ t

0

St−sz
i
s dx

i
s , zis :=

∫ 1

0

dr

∫ 1

0

dr′ r f ′′
i (ys + rr′vs) · v2s ,

R2
t (v, h) :=

∫ t

0

St−sz̃
i
s dh

i
s , z̃is :=

∫ 1

0

dr f ′
i(ys + rvs) · vs,

and we now have to show that

N [R1
. (v) +R2

. (h, v); Ĉ0,κ(Bκ)] = o

(

[

‖h‖2γ +N [v; Ĉ0,κ(Bκ)]
2
]1/2

)

.

Observe first that N [R1
. (v); Ĉ0,κ(Bκ)] ≤ cN [R1

. (v); Ĉκ(Bκ)]. Thanks to (4) and (5), we
get

‖zs‖Bκ
≤ c

∫∫

[0,1]2
drdr′ ‖f ′′

i (ys + rr′vs)‖Bκ
‖vs‖2Bκ

≤ c {1 + ‖ys‖Bκ
+ ‖vs‖Bκ

} ‖vs‖2Bκ
.

Besides, owing to (3) and (8) and setting Mts(r, r
′) = f ′′

i (yt + rr′vt)− f ′′
i (ys + rr′vs) we

end up with

‖zt − zs‖B ≤
∫∫

[0,1]2
drdr′ ‖Mts(r, r

′)‖B ‖vs‖2B∞

+ c‖vt − vs‖B {‖vt‖B∞
+ ‖vs‖B∞

}

≤ c {‖yt − ys‖B + ‖vt − vs‖B} ‖vs‖2Bκ
+ c‖vt − vs‖B {‖vt‖Bκ

+ ‖vs‖Bκ
} .

≤ c |t− s|κ
{

(

N [y; Ĉ0,κ(Bκ)] +N [v; Ĉ0,κ(Bκ)]
)

N [v; C0(Bκ)]
2

+N [v; Ĉ0,κ(Bκ)]N [v; C0(Bκ)]

}

.

The estimate (10) for the Young convolutional integral now provides us with the expected

control N [R1
. (v); Ĉ0,κ(Bκ)] = O(N [v; Ĉ0,κ(Bκ)]

2). In the same way, one can show that

N [R2
. (h, v); Ĉ0,κ(Bκ)] = O(‖h‖γ · N [v; Ĉ0,κ(Bκ)]), and the differentiability of F is thus

proved.

Of course, the two expressions (22) and (23) for the partial derivatives are now easy to
derive from (24). As for the bijectivity ofD2F (x,Φ(x)), it is a consequence of Lemma 3.2.

�

We are now ready to differentiate the application Φ defined by (17):

Proposition 3.5. The map Φ : Cγ → Ĉ0,κ(Bκ) is differentiable in the Fréchet sense.
Moreover, for every x ∈ Cγ and h ∈ C∞, the following representation holds: if t ∈
[0, T ], ξ ∈ (0, 1),

DΦ(x)(h)t(ξ) =

∫ t

0

Ψi
t,u(ξ) dh

i
u, (25)



MALLIAVIN CALCULUS FOR FRACTIONAL HEAT EQUATION 11

where Ψi
t,. ∈ C([0, t];Bκ) is defined through the equation

Ψi
t,u = St−u(fi(Φ(x)u)) +

∫ t

u

St−w(f
′
j(Φ(x)w) ·Ψi

w,u) dx
j
w. (26)

Proof. Thanks to Lemma 3.4, the differentiability of Φ is a consequence of the implicit
function theorem, which gives in addition

DΦ(x) = −D2F (x,Φ(x))
−1 ◦D1F (x,Φ(x)), x ∈ Cγ.

In particular, for every x, h ∈ Cγ , z := DΦ(x)(h) is the (unique) solution of the equation

zt =

∫ t

0

St−u(fi(Φ(x)u)) dh
i
u +

∫ t

0

St−u(f
′
i(Φ(x)u) · zu) dxiu, t ∈ [0, T ]. (27)

If x ∈ Cγ and h ∈ C∞, an application of the Fubini theorem shows (as in the proof of [13,

Proposition 4]) that the path z̃t :=
∫ t

0
Ψi

t,u dh
i
u (which is well-defined thanks to Lemma

3.3) is also solution of (27), and this provides us with the identification (25).
�

As the reader might expect, one can obtain derivatives of any order for the solution
when the coefficients of equation (16) are smooth:

Proposition 3.6. Suppose that fi ∈ C∞,b(R;R) for every i ∈ {1, . . . , m}. Then the

function Φ : Cγ → Ĉ0,κ(Bκ) defined by (17) is infinitely differentiable in the Fréchet
sense. Moreover, for every n ∈ N

∗ and every x, h1, . . . , hn ∈ Cγ, the path zt :=
DnΦ(x)(h1, . . . , hn) satisfies a linear equation of the form

zt = wt +

∫ t

0

St−u(f
′
i(Φ(x)u) · zu) dxiu , t ∈ [0, T ], (28)

where w ∈ Ĉ0,κ(Bκ) only depends on x, h1, . . . , hn.

Proof. The details of this proof are omitted for the sake of conciseness, since they simply
mimic the formulae contained in the proof of [13, Proposition 5]. As an example, let us
just observe that for x, h, k ∈ Cγ , the path zt := D2Φ(x)(h, k)t is the unique solution
of (28) with

wt :=

∫ t

0

St−u(f
′
i(Φ(x)u) ·DΦ(x)(h)u) dk

i
u +

∫ t

0

St−u(f
′
i(Φ(x)u) ·DΦ(x)(k)u) dh

i
u

+

∫ t

0

St−u(f
′′
i (Φ(x)u) ·DΦ(x)(h)u ·DΦ(x)(k)u) dx

i
u.

�

3.2. Existence of the density. We will now apply the results of the previous section
to an evolution equation driven by a fractional Brownian motion B = (B1, . . . , Bd) with
Hurst parameter H > 1/2. Namely, we fix κ ∈ (max(1/4, 1 − γ), 1/2) and an initial
condition ϕ ∈ Bκ. We also assume that fi ∈ C3,b(R;R) for i = 1, . . . , m. We denote by
Y = Φ(B) the solution of

Yt = Stϕ+

∫ t

0

St−u(fi(Yu)) dB
i
u , t ∈ [0, T ]. (29)
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Notice that since H > 1/2 the paths of B are almost surely γ-Hölder continuous with
Hölder exponent greater than 1/2. Thus, equation (29) can be solved by a direct appli-
cation of Proposition 3.1. Moreover, one can invoke Proposition 3.5 in order to obtain
the Malliavin differentiability of Yt(ξ):

Lemma 3.7. For every t ∈ [0, T ], ξ ∈ (0, 1), Yt(ξ) ∈ D
1,2
loc and one has, for any h ∈ H,

〈D(Yt(ξ)), h〉H = DΦ(B)(RHh)t(ξ). (30)

Proof. According to (14), we have that

〈D(Yt(ξ)), h〉H = D(Yt(ξ))(RHh) =
d

dε |ε=0
Φ(B + εRHh)t(ξ).

Furthermore, Proposition 3.5 asserts that Φ : Cγ → Ĉ0,κ(Bκ) is differentiable. Therefore

1

ε
[Φ(x+ εRHh)t(ξ)− Φ(x)t(ξ)] = DΦ(x)(RHh)t(ξ) +

1

ε
R(εRHh)t(ξ),

with

|R(εRHh)t(ξ)| ≤ N [R(εRHh); C0(B∞)] ≤ cN [R(εRHh); C0(Bκ)] = o(ε),

and hence d
dε |ε=0

Φ(B + εRHh)t(ξ) = DΦ(x)(RHh)t(ξ), which trivially yields both the

inclusion Yt(ξ) ∈ D
1,2
loc and expression (30).

�

With this differentiation result in hand plus some non degeneracy assumptions, we
now obtain the existence of a density for the random variable Yt(ξ):

Theorem 3.8. Suppose that for all λ ∈ R, there exists i ∈ {1, . . . , d} such that fi(λ) 6= 0.
Then for all t ∈ (0, 1] and ξ ∈ (0, 1), the law of Yt(ξ) is absolutely continuous with respect
to Lebesgue measure.

Proof. We apply Proposition 2.8 part (i), and we will thus prove that ‖D(Yt(ξ))‖H >
0 almost surely. Assume then that ‖D(Yt(ξ))‖H = 0. In this case, owing to (30),
we have DΦ(B)(RHh)t(ξ) = 0 for every h ∈ H. In particular, due to (25), one has
∫ t

0
Ψi

t,u(ξ) dh
i
u = 0 for every h ∈ C∞. As u 7→ Ψi

t,u(ξ) is known to be continuous, it

is easily deduced that Ψi
t,u(ξ) = 0 for every u ∈ [0, t] and every i ∈ {1, . . . , d}, and

so 0 = Ψi
t,t(ξ) = fi(Yt(ξ)) for every i ∈ {1, . . . d}, which contradicts our non-vanishing

hypothesis.
�

4. Smoothness of the density in the case of regularizing vector fields

Up to now, we have been able to differentiate the solution to (16) when the coefficients
are fairly general Nemytskii operators. However, we have only obtained the inclusion
Yt(ξ) ∈ D

1,2
loc. Additional problems arise when one tries to prove Yt(ξ) ∈ D

1,2, due to bad
behavior of linear equations driven by rough signals in terms of moment estimates. This
is why we shall change our setting here, and consider an equation of the following type

yt = Stϕ +

∫ t

0

St−u(L(fi(yu))) dx
i
u , t ∈ [0, T ] , ϕ ∈ B, (31)
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where x ∈ Cγ([0, T ];Rd) with γ > 1/2, each fi : R → R (i ∈ {1, . . . , d}) is seen as
a Nemytskii operator (see the beginning of Section 3), and L stands for a regularizing
linear operator of B. Let us be more specific about the assumptions in this section:

Hypothesis 2. We assume that for every i ∈ {1, . . . , d}, fi is infinitely differentiable
with bounded derivatives. Moreover, the operator L : B → B is taken of the form

L(φ)(ξ) :=

∫ 1

0

dη U(ξ, η)φ(η),

for some positive kernel U such that: (i) U is regularizing, i.e., L is continuous from B
to Bλ for every λ ≥ 0, and (ii) one has cU := minξ∈(0,1)

∫ 1

0
dη U(ξ, η) > 0.

In other words, we are now concerned with the following equation on [0, T ]× (0, 1):

y(t, ξ) =

∫ 1

0

Gt(ξ, η)ϕ(η) dη +

∫ 1

0

∫ 1

0

∫ t

0

Gt−u(ξ, η)U(η, µ)fi(y(u, µ)) dx
i
udµdη,

with U satisfying the above conditions (i)-(ii).

This setting covers for instance the case of an (additional) heat kernel U = Gε on
(0, 1) for any fixed ε > 0. The following existence and uniqueness result then holds true:

Proposition 4.1. Under Hypothesis 2, for any λ ≥ γ and any initial condition ϕ ∈ Bλ,
Equation (31) interpreted with Proposition 2.5 admits a unique solution in Ĉγ(Bλ).

Proof. As in the proof of Proposition 3.1, the result can be obtained with a fixed-point
argument. Observe indeed that if y ∈ Ĉγ(I;Bλ) (I := [ℓ1, ℓ2] ⊂ [0, 1]) and z is the path

defined by zℓ1 = yℓ1, zt − St−szs =
∫ t

s
St−u(L(fi(yu))) dx

i
u (s < t ∈ I), then, according to

Proposition 2.5, z ∈ Ĉγ(I;Bλ) and one has

N [z; Ĉγ(I;Bλ)] ≤ c‖x‖γ
{

N [L(f(y)); C0(I;Bm
λ )] + |I|γ N [L(f(y)); Cγ(I;Bm

λ )]
}

. (32)

Now, owing to the regularizing effect of L, it follows that N [L(f(y)); C0(I;Bm
λ )] ≤

‖L‖L(B,Bλ)‖f‖∞ and

N [L(f(y)); Cγ(I;Bm
λ )] ≤ ‖L‖L(B,Bλ)‖f ′‖∞N [y; Cγ(I;B)] ≤ cN [y; Ĉ0,γ(I;Bλ)],

which, together with (32), allows to settle the fixed-point argument. �

For the sake of clarity, we henceforth assume that T = 1. The generalization to any
(fixed) horizon T > 0 easily follows from slight modifications of our estimates.

Moreover, for some technical reasons that will arise in the proofs of Propositions 4.2
and 4.3, we will focus on the case λ = 2 + γ in the statement of Proposition 4.1. In
other words, from now on, we fix the initial condition ϕ in the space B2+γ .

4.1. Estimates on the solution. Under our new setting, let us find an appropriate
polynomial control on the solution to (31) in terms of x.

Proposition 4.2. Suppose that y is the solution of (31) in Ĉγ(B2+γ) with initial condi-
tion ϕ. Then there exists a constant Cγ,f,L such that

N [y; Ĉγ([0, 1];B2+γ)] ≤ Cγ,f,L (1 + ‖x‖γ)
(

max
(

‖x‖1/γγ , ‖ϕ‖1/2B2+γ

))1−γ

. (33)
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Proof. For any N ∈ N
∗, let us introduce the two sequences

εk = εN,k :=
1

N + k
, ℓ0 := 0 , ℓk+1 = ℓNk+1 := ℓNk + εN,k.

The first step of the proof consists in showing that we can pick N such that for every k,

ε2k‖yℓk‖B2+γ
≤ 1. (34)

For the latter control to hold at time 0 (i.e., for k = 0), we must first assume that

N ≥ ‖ϕ‖1/2B2+γ
. Now, observe that for any k, one has, owing to (10),

N [y; Ĉγ([ℓk, ℓk+1];B2+γ)]

≤ c‖x‖γ
{

N [L(f(y)); C0([ℓk, ℓk+1];Bm
2+γ)] + εγkN [L(f(y)); Cγ([ℓk, ℓk+1];Bm

2+γ)]
}

(35)

≤ c‖x‖γ‖L‖L(B,B2+γ) {1 + εγkN [y; Cγ([ℓk, ℓk+1];B)]}
≤ c‖x‖γ

{

1 + εγkN [y; Ĉγ([ℓk, ℓk+1];B2+γ)] + εγ+2
k N [y; C0([ℓk, ℓk+1];B2+γ)]

}

≤ c1‖x‖γ
{

1 + εγkN [y; Ĉγ([ℓk, ℓk+1];B2+γ)] + εγ+2
k ‖yℓk‖B2+γ

}

,

where we have used (9) to get the third inequality. Consequently, if we take N such that
2c1N

−γ‖x‖γ ≤ 1 (i.e. N ≥ (2c1‖x‖γ)1/γ), we retrieve

N [y; Ĉγ([ℓk, ℓk+1];B2+γ)] ≤ 2c1‖x‖γ + ε2k‖yℓk‖B2+γ
(36)

and hence
‖yℓk+1

‖B2+γ
≤ 1 + (1 + ε2+γ

k )‖yℓk‖B2+γ
.

From this estimate, if we assume that ε2k‖yℓk‖B2+γ
≤ 1, then

ε2k+1‖yℓk+1
‖B2+γ

≤ ε2k+1 + ε2k+1

{

‖yℓk‖B2+γ
+ εγk

}

≤ 2ε2k+1 +
ε2k+1

ε2k
=

2 + (N + k)2

(N + k + 1)2
≤ 1

and (34) is thus proved by induction. Going back to (36), we get, for every k,

N [y; Ĉγ([ℓk, ℓk+1];B2+γ)] ≤ 2c1‖x‖γ + 1. (37)

By a standard patching argument, this estimate yields

N [y; Ĉγ([0, 1];B2+γ)] ≤ {2c1‖x‖γ + 1}K1−γ,

where K stands for the smallest integer such that
∑K

k=0 εk ≥ 1.

Finally, observe that 2 ≥ ∑K
k=0 εk =

∑N+K
k=N

1
k
, and thus one can check that K ≤

(e2 − 1)N ≤ 7N . To achieve the proof of (33), it now suffices to notice that N can be

picked proportional to max(‖x‖1/γγ , ‖ϕ‖1/2B2+γ
). �

We now consider a linear equation, which is equivalent to (18) in our regularized
context:

zt = wt +

∫ t

0

St−u(L(f
′
i(yu) · zu)) dxiu , t ∈ [0, 1], (38)

where w ∈ Ĉγ(B2+γ) and y stands for the solution of (31) with initial condition ϕ ∈ B2+γ .

The existence and uniqueness of a solution for (38) can be proved along the same lines
as Proposition 4.1, that is to say via a fixed-point argument. We shall get a suitable
exponential control for this solution.
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Proposition 4.3. There exists constants C1, C2 which only depend on f , L and γ such
that

N [z; C0([0, 1];B2+γ)] ≤ C1N [w; Ĉ0,γ(B2+γ)] exp
(

C2max
(

‖ϕ‖1/2B2+γ
, ‖x‖1/γγ

))

. (39)

Moreover, if wt = Stψ for some function ψ ∈ B2+γ, there exists an additional constant
C3 which only depend on f , L and γ such that

N [z; Ĉγ([0, 1];B2+γ)]

≤ C3‖ψ‖B2+γ
max

(

‖ϕ‖1/2B2+γ
, ‖x‖1/γγ

)

exp
(

C2max
(

‖ϕ‖1/2B2+γ
, ‖x‖1/γγ

))

(40)

Proof. We go back to the notation εN,k, ℓ
N
k of the proof of Proposition 4.2, and set, for

every c ≥ 0,

N(c) := max
(

‖ϕ‖1/2B2+γ
, (2c‖x‖γ)1/γ

)

.

We have seen in the proof of Proposition 4.2 that there exists a constant c1 such that
for every N ≥ N(c1) and every k, one has simultaneously

ε2N,k‖ylNk ‖B2+γ
≤ 1 , N [y; Ĉγ([ℓNk , ℓ

N
k+1];B2+γ)] ≤ 2c1‖x‖γ + 1. (41)

Suppose that N ≥ N(c1) and set Nw := N [w; Ĉγ(B2+γ)]. One has, similarly to (35),

N [z; Ĉγ([ℓNk , ℓ
N
k+1];B2+γ)]

≤ Nw + c‖x‖γ
{

N [f ′(y) · z; C0([ℓNk , ℓ
N
k+1];Bm)] + εγN,kN [f ′(y) · z; Cγ([ℓNk , ℓ

N
k+1];Bm)]

}

≤ Nw + c‖x‖γ
{

N [z; C0([ℓNk , ℓ
N
k+1];B)] + εγN,kN [z; Cγ([ℓNk , ℓ

N
k+1];B)]

+εγN,kN [y; Cγ([ℓNk , ℓ
N
k+1];B)]N [z; C0([ℓNk , ℓ

N
k+1];B∞)]

}

≤ Nw + c2‖x‖γN [z; C0([ℓNk , ℓ
N
k+1];B2+γ)]

{

1 + εγN,kN [y; Cγ([ℓNk , ℓ
N
k+1];B)]

}

+c2‖x‖γεγN,kN [z; Ĉγ([ℓNk , ℓ
N
k+1];B2+γ)],

where we have used (3) and (9) to derive the last inequality. Therefore, if we choose
N2 ≥ max

(

N(c1), (2c2‖x‖γ)1/γ
)

, one has, for any N ≥ N2 and any k,

N [z; Ĉγ([ℓNk , ℓ
N
k+1];B2+γ)]

≤ 2Nw + 2c2‖x‖γN [z; C0([ℓNk , ℓ
N
k+1];B2+γ)]

{

1 + εγN,kN [y; Cγ([ℓNk , ℓ
N
k+1];B)]

}

.

Thanks to (9) and (41), we know that

N [y; Cγ([ℓNk , ℓ
N
k+1];B)] ≤ c

{

N [y; Ĉγ([ℓNk , ℓ
N
k+1];B2+γ)] + ε2N,k‖yℓNn ‖B2+γ

}

≤ c {2c1‖x‖γ + 2} .
As a consequence, there exists c3 such that for any N ≥ N2,

N [z; Ĉγ([ℓNk , ℓ
N
k+1];B2+γ)] ≤ 2Nw + c3‖x‖γN [z; C0([ℓNk , ℓ

N
k+1];B2+γ)]

{

1 + εγN,k‖x‖γ
}

.
(42)

Then, for any N ≥ N2,

N [z; C0([ℓNk , ℓ
N
k+1];B2+γ)]

≤ 2Nw + ‖zℓN
k
‖B2+γ

+ c3‖x‖γεγN,kN [z; C0([ℓNk , ℓ
N
k+1];B2+γ)]

{

1 + εγN,k‖x‖γ
}

.
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Pick now an integer N3 ≥ N2 such that

c3N
−γ
3 ‖x‖γ

{

1 +N−γ
3 ‖x‖γ

}

≤ 1

2
,

and we get, for any k,

N [z; C0([ℓN3

k , ℓN3

k+1];B2+γ)] ≤ 2‖z
ℓ
N3
k

‖B2+γ
+ 4Nw,

so N [z; C0([0, 1];B2+γ)] ≤ 2K(N3)‖w0‖B2+γ
+ 2K(N3)+2Nw, where K(N3) stands for the

smallest integer such that
∑K(N3)

k=0 εN3,k ≥ 1. As in the proof of Proposition 4.2, one
can check that K(N3) ≤ cN3. In order to get (39), it suffices to observe that there

exists a constant c4 such that any integer N3 ≥ c4max(‖ϕ‖1/2B2+γ
, ‖x‖1/γγ ) meets the above

requirements.

Suppose now that wt = Stψ. In particular, Nw = 0. Then we go back to (42) to
obtain, thanks to (39),

N [z; Ĉγ([ℓN3

k , ℓN3

k+1];B2+γ)] ≤ C1‖ψ‖B2+γ
Nγ

3 exp
(

C2max
(

‖ϕ‖1/2B2+γ
, ‖x‖1/γγ

))

,

which entails

N [z; Ĉγ([0, 1];B2+γ)] ≤ C1‖ψ‖B2+γ
Nγ

3K(N3)
1−γ exp

(

C2max
(

‖ϕ‖1/2B2+γ
, ‖x‖1/γγ

))

≤ C3‖ψ‖B2+γ
N3 exp

(

C2max
(

‖ϕ‖1/2B2+γ
, ‖x‖1/γγ

))

,

and (40) is thus proved.
�

Remark 4.4. For any t0 ∈ [0, 1], the proof of Proposition 4.3 can be easily adapted to
the equation starting at time t0

zt = wt,t0 +

∫ t

t0

St−u(L(f
′
i(yu) · zu)) dxiu , w.,t0 ∈ Ĉγ([t0, 1];B2+γ) , t ∈ [t0, 1],

and both estimates (39) and (40) remain of course true in this situation.

4.2. Smoothness of the density. Let us now go back to the fractional Brownian
situation

Yt = Stϕ+

∫ t

0

St−u(L(fi(Yu))) dB
i
u , t ∈ [0, 1] , ϕ ∈ B2+γ , (43)

where γ ∈ (1
2
, H) is a fixed parameter. We suppose, for the rest of the section, that the

initial condition ϕ is fixed in B2+γ and that Hypothesis 2 is satisfied. We denote by Y

the solution of (43) in Ĉγ(B2+γ) given by Proposition 4.1.

As in Subsection 3.2, we wish to study the law of Yt(ξ) for t ∈ [0, 1] and ξ ∈ (0, 1).
Without loss of generality, we focus more exactly on the law of Y1(ξ), for ξ ∈ (0, 1).

The first thing to notice here is that the whole reasoning of Section 3 can be trans-
posed without any difficulty to Equation (43), which is more easy to handle due to the
regularizing effect of L. Together with the estimates (33) and (39), this observation
leads us to the following statement:

Proposition 4.5. For every ξ ∈ (0, 1), Y1(ξ) ∈ D
∞ and the law of Y1(ξ) is absolutely

continuous with respect to the Lebesgue measure.
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Proof. The absolute continuity of the law of Y1(ξ) can be obtained by following the lines
of Section 3, which gives Y1(ξ) ∈ D

∞
loc as well. Then, like in Proposition 3.6, observe that

n-th (Fréchet) derivatives Zn of the flow associated with (43) satisfy a linear equation
of the form

Zn
t = W n

t +

∫ t

0

St−u (L(f
′
i(Yu) · Zn

u )) dB
i
u, t ∈ [0, 1].

The explicit expression for W n (n ≥ 1) can be derived from the formulae contained in

[13, Proposition 5], and it is easy to realize that due to (33), one has N [W n; Ĉ0,γ(B2+γ)] ∈
Lp(Ω) for any n and any p. Then, thanks to (39), we deduce that N [Zn; C0(B2+γ)] is
a square-integrable random variable, which allows us to conclude that Y1(ξ) ∈ D

∞ (see
[12, Lemma 4.1.2]). �

The following proposition, which can be seen as an improvement of Lemma 3.3 (in
this regularized situation), provides us with the key-estimate to prove the smoothness
of the density:

Proposition 4.6. For every s ∈ [0, 1], consider the system of equations

Ψi
t,s = St−s(L(fi(Ys))) +

∫ t

s

St−u(L(f
′
j(Yu) ·Ψi

u,s)) dB
j
u , t ∈ [s, 1] , i ∈ {1, . . . , m}.

(44)
Then, for every i ∈ {1, . . . , m} and every t ∈ [0, 1], Ψi

t,. ∈ Cγ([0, t];B2+γ). In particular,

for any ξ ∈ (0, 1), Ψi
t,.(ξ) ∈ Cγ([0, t]).

Moreover, one has the following estimate

N [Ψi
t,.; Cγ([0, t];B2+γ)] ≤ Q(‖ϕ‖B2+γ

, ‖B‖γ) · exp
(

cmax
(

‖ϕ‖1/2B2+γ
, ‖B‖1/γγ

))

, (45)

for some polynomial expression Q.

Proof. As in the proof of Lemma 3.3, we introduce the path

Γi
v,u(s) := Ψi

s,v −Ψi
s,u , s ∈ [v, 1] , 0 ≤ u < v ≤ t,

and it is readily checked that Γi
v,u solves the equation on [v, 1]

Γi
v,u(s) = Ss−v(Ψ

i
v,v −Ψi

v,u) +

∫ s

v

Ss−w(L(f
′
j(Yw) · Γi

v,u(w))) dB
j
w.

Therefore, thanks to the estimate (39), we get

‖Ψi
t,v −Ψi

t,u‖B2+γ
= ‖Γi

v,u(t)‖B2+γ
≤ N [Γi

v,u; C0([v, 1];B2+γ)]

≤ c‖Ψi
v,v −Ψi

v,u‖B2+γ
exp

(

cmax
(

‖ϕ‖1/2B2+γ
, ‖B‖1/γγ

))

. (46)

Then, by writing

Ψi
v,v−Ψi

v,u = L(fi(Yv)−fi(Yu))−[Sv−u − Id] (L(fi(Yu)))−
∫ v

u

Sv−w(L(f
′
j(Yw)·Ψi

w,u)) dB
j
w,
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we deduce that

‖Ψi
v,v −Ψi

v,u‖B2+γ
≤ c |v − u|γ

{

‖L‖L(B,B2+γ)N [Y ; Cγ(B)] + ‖L‖L(B,B2+2γ)

+ ‖L‖L(B,B2+γ)‖B‖γ
(

N [f ′(Y ) ·Ψi
.,u; C0(Bm)] +N [f ′(Y ) ·Ψi

.,u; Cγ(Bm)]
)}

≤ c |v − u|γ {1 + ‖B‖γ} {1 +N [Y ; Cγ(B)]}
{

1 +N [Ψi
.,u; C0(B2+γ)] +N [Ψi

.,u; Cγ(B)]
}

.

Going back to (46), the result now easily follows from the embedding Ĉ0,γ(B2+γ) ⊂ Cγ(B)
and the three controls (33), (39) and (40).

�

Proposition 4.6 implies in particular that the Young integral
∫ t

0
Ψi

t,u(ξ) dh
i
u is well-

defined for every h ∈ Cγ , t ∈ [0, 1] and ξ ∈ (0, 1). We are thus in a position to apply
the Fubini-type argument of [13, Propositions 4 and 7] so as to retrieve the following
convenient expression for the Malliavin derivative:

Corollary 4.7. For every ξ ∈ (0, 1), the Malliavin derivative of Y1(ξ) is given by

Di
s(Y1(ξ)) = Ψi

1,s(ξ) , s ∈ [0, 1] , i ∈ {1, . . . , m}, (47)

where Ψi
.,s stands for the solution of (44) on [s, 1].

Theorem 4.8. Suppose that there exists λ0 > 0 such that for every i ∈ {1, . . . , m} and
every η ∈ R, fi(η) ≥ λ0. Then, for every ξ ∈ (0, 1), the density of Y1(ξ) with respect to
the Lebesgue measure is infinitely differentiable.

Proof. We shall apply here the criterion stated at Proposition 2.8 item (ii). Notice that
we already know that Y1(ξ) ∈ D

∞, so it remains to show that for every p ≥ 2, there
exists ε0(p) > 0 such that if ε < ε0(p), then P (‖D.(Y1(ξ))‖H < ε) ≤ εp.

To this end, we resort to the following practical estimate, borrowed from [2, Corollary
4.5]: for every β > H − 1/2, there exist α > 0 such that

P (‖D.(Y1(ξ))‖H < ε) ≤ P (‖D.(Y1(ξ))‖∞ < εα) +P
(

‖D.(Y1(ξ))‖β > ε−α
)

. (48)

The first term in the right-hand-side of (48) is easy to handle. Indeed, owing to the
expression (47) for the Malliavin derivative of Y1(ξ), one has

‖D.(Y1(ξ))‖∞ ≥ inf
i=1,...,m

|Ψi
1,1(ξ)| = inf

i=1,...,m
|L(fi(Y1))(ξ)|

= inf
i=1,...,m

∣

∣

∣

∣

∫ 1

0

dη U(ξ, η)fi(Y1(η))

∣

∣

∣

∣

≥ cUλ0 > 0

(remember that U and cU have been defined in Hypothesis 2), so that P(‖D.(Y1(ξ))‖∞ <
εα) = 0 for ε small enough.

Then, in order to cope with P (‖D.(Y1(ξ))‖β > ε−α), one can simply rely on the
Markov inequality, since, according to (45),

‖D.(Y1(ξ))‖β = ‖Ψ1,.(ξ)‖β ≤ c sup
i∈{1,...,m}

N [Ψi
1,.; Cγ([0, 1];B2+γ)]

≤ cQ
(

‖ϕ‖B2+γ
, ‖B‖γ

)

· exp
(

cmax
(

‖ϕ‖B2+γ
, ‖B‖1/γγ

))

,

which proves that ‖D.(Y1(ξ))‖β ∈ Lq(Ω) for every q ≥ 1.
�
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