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Abstract: In this work we investigate the canonical quantization of 2+1 gravity with

cosmological constant Λ > 0 in the canonical framework of loop quantum gravity. The

unconstrained phase space of gravity in 2+1 dimensions is coordinatized by an SU(2)

connection A and the canonically conjugate triad field e. A natural regularization of the

constraints of 2+1 gravity can be defined in terms of the holonomies of A± = A±
√

Λe. As a

first step towards the quantization of these constraints we study the canonical quantization

of the holonomy of the connection Aλ = A + λe (for λ ∈ R) on the kinematical Hilbert

space of loop quantum gravity. The holonomy operator associated to a given path acts non

trivially on spin network links that are transversal to the path (a crossing). We provide an

explicit construction of the quantum holonomy operator. In particular, we exhibit a close

relationship between the action of the quantum holonomy at a crossing and Kauffman’s

q-deformed crossing identity (with q = exp(i~λ/2)). The crucial difference is that (being an

operator acting on the kinematical Hilbert space of LQG) the result is completely described

in terms of standard SU(2) spin network states (in contrast to q-deformed spin networks

in Kauffman’s identity). We discuss the possible implications of our result.
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1 Introduction

The link between the Jones Polynomial, Chern-Simons theory and quantum gravity in 2+1

dimensions with non vanishing cosmological constant has been first shown by Witten in the

seminal papers [1–3]. First, he showed that 2+1 dimensional (first order) gravity can be

reformulated in terms of a Chern-Simons theory whose gauge algebra is the isometry algebra

of the local solutions of Einstein equations. Then, he proposed a path integral quantization

of the Chern-Simons theory with compact gauge Lie groups G. In the case where G =

SU(2), this quantization is closely related to the quantization of Euclidean gravity with

a positive cosmological constant, which is the only situation where the gauge group is

compact. The work of Witten has opened an incredible rich new way of understanding 3-

manifolds and knots invariants because the expectation values of Wilson loops observables

in Chern-Simons theory has lead to a new covariant definition of the Jones polynomials

and its generalizations.

After this result, it was precisely shown by Reshetikhin and Turaev [4] that quantum

groups play a central role in the construction of 3-manifolds invariants and knots poly-

nomials. The construction of the Turaev-Viro invariant is a very nice illustration of this

fact [10]. These invariants can be viewed as a q-deformed version of Ponzano and Regge

amplitudes. Moreover, the asymptotic of the vertex amplitudes (the quantum 6j-symbol)
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has been shown to be related to the action of 2+1 gravity with non vanishing cosmological

constant in the WKB approximation [11, 12].

All this, strongly motivates the idea that it should be possible to recover (in the context

of loop quantum gravity [16–19]) the Turaev-Viro amplitudes as the physical transition

amplitudes of 2+1 gravity with non-vanishing cosmological constant. This has been so

far explicitly shown only in the simpler case for pure gravity with vanishing cosmological

constant [13].

Can we find a clear-cut relationship between the Turaev-Viro amplitudes and the

transition amplitudes computed from the canonical quantization of 2+1 gravity with non

vanishing cosmological constant? Using the so-called combinatorial quantization, devel-

opped in the compact case in [5–7] and then generalized in non-compact situations in [8]

and [9], one shows how quantum groups appear in the canonical quantization and there-

fore one makes a link between covariant and canonical quantizations of gravity. However,

quantum groups do not appear in this framework from a bottom-up approach but they

are putten by hand for purposes of regularization. The kinematical Hilbert space is finite

dimensional and expressed already in terms of quantum groups. Physical states are ob-

tained solving the quantum constraints that reduce, in that case, to requiring invariance

under the quantum group adjoint action. The combinatorial quantization is certainly one

of the most powerful canonical quantization of 2+1 dimensional gravity because it is, to

our knowledge, the only quantization scheme that leads to an explicit construction of the

physical Hilbert space for any topology of the space surface.

Loop quantum gravity in 2+1 dimensions is another framework where it is possible

to address this question. The advantage of working with loop quantum gravity instead of

with the combinatorial quantization is that it could help us understanding quantum grav-

ity in four dimensions. As in the combinatorial quantization, we starts by quantizing the

unreduced phase space of the theory and then imposes the constraints at the quantum level

(Dirac recipe). But, contrary to the combinatorial quantization (where the non-reduced

phase space is finite dimensional), there is an infinite number of degrees of freedom before

imposing the constraints, which in the case of 2 + 1 gravity are encoded in the infinitely

many polymer-like excitations represented by spin network states. In LQG it is natural

to interpret the Turaev-Viro invariant as transition amplitudes between arbitrary pairs of

such graph-based states. Now, if the previous statement makes sense, the Turaev-Viro am-

plitudes would have to be related to the kinematical states of the canonical theory, namely

classical SU(2) spin networks. In contrast the Turaev-Viro amplitudes are constructed

from the combinatorics of q-deformed spin networks [27, 28]. This would imply that the

understanding of the relationship between the Turaev-Viro invariants and quantum grav-

ity requires the understanding of the dynamical interplay between classical spin-network

states and q-deformed amplitudes. We shall find here some indications about how this

relationship can arise.

Let us first briefly recall the canonical structure of (Riemannian) gravity in 2+1 di-

mensions. The action of departure is

S(A, e) =

∫

M

tr [e ∧ F (A)] +
Λ

6
tr [e ∧ e ∧ e] ,

– 2 –
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where Λ ≥ 0, e is a cotriad field, and A is an SU(2) connection.

Assuming that the space time manifold has topology M = Σ × R, and, upon the

standard 2+1 decomposition, the phase space of the theory is parametrized by the pullback

to Σ of ω and e. In local coordinates we can express them in terms of the 2-dimensional

connection Ai
a and the triad field ei

a where a = 1, 2 are space coordinate indices and

i, j = 1, 2, 3 are su(2) indices. The Poisson bracket among these is given by

{Ai
a (x) , ej

b (y)} = ǫab δi
jδ

(2) (x, y) (1.1)

where ǫab is the 2d Levi-Civita tensor. The phase space variables are subjected to the first

class local constraints

dAe = 0 and F (A) + Λ e ∧ e = 0 (1.2)

The basic kinematical observables are given by the holonomy of the connection and ap-

propriately smeared functionals of the triad field e. Quantization of these (unconstrained)

observables leads to an irreducible representation on a Hilbert space, the so-called kine-

matical Hilbert space Hk, with a diffeomorphism invariant inner product (see [20] and

references therein): states in Hk are given by functionals Ψ[A] of the (generalized) connec-

tion A which are square-integrable with respect to a diff-invariant measure. The holonomy

acts simply by multiplication while e acts as the derivative operator ei
a = −i~ǫab δi

jδ/δA
j
b

(more precisely, the objects that correspond to the field e in loop quantum gravity are the

flux operators associated to curves in Σ, see section 3).

Dynamics is defined by imposing the quantum constraints (defined by the representa-

tion of (1.2) as self adjoint operators in Hk) on the kinematical states. More precisely, the

quantum constraint-equations of 2+1 gravity with cosmological constant can be written as

G [α] ⊲ Ψ =

∫

Σ
Tr[αdAe] ⊲ Ψ = 0 (1.3)

and

CΛ [N ] ⊲ Ψ =

∫

Σ
Tr [N (F (A) + Λ e ∧ e)] ⊲ Ψ = 0 (1.4)

for all α,N ∈ C∞(Σ, su(2)). The previous equations are formal at this stage. The difficulty

resides in the fact that the constraints are non linear functional of the basic fields and their

quantization requires the introduction of a regularization. Therefore, the precise meaning

of the previous equations is a subtle issue which will be at least partially investigated in

this work.

In [13] the quantization and solution of the equations above for the special case Λ = 0

is completely worked out. More precisely, the construction of the physical Hilbert space of

2+1 gravity is achieved by means of a rigorous implementation of the Dirac quantization

program to the theory. A natural result of this work is the definition of the path inte-

gral representation of the theory from the canonical picture. This establishes the precise

relationship between the physical inner product of 2+1 gravity and the spin foam ampli-

tudes of the Ponzano-Regge model.1 In addition to providing a systematic definition of the

1See [14] for a more recent and alternative investigation of the link between the canonical quantization

of the Wheeler-DeWitt equation and the symmetries of the Ponzano-Regge model.
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Figure 1. Cellular decomposition of the space manifold Σ (a square lattice in this example), and

the infinitesimal plaquette holonomy Wp[A].

quantum theory, the canonical treatment has the advantage of automatically avoiding the

infrared divergences that plagued Ponzano-Regges original construction. Another advan-

tage of the formulation is that it sets the bases for the extension of the analysis to the non

vanishing cosmological constant case.2 Indeed, the key observation is that equation (1.4)

can be quantized by first introducing a regulator consisting of a cellular decomposition ∆Σ

of Σ — with plaquettes p ∈ ∆Σ of coordinate area smaller or equal to ǫ2 — so that

C0 (N) =

∫

Σ
Tr [N F (A)] = lim

ǫ→0

∑

p∈∆Σ

Tr [Np Wp (A)] , (1.5)

where Wp(A) = 1+ ǫ2F (A)+ o(ǫ2) ∈ SU(2) is the Wilson loop computed in the fundamen-

tal representation. The quantization of the previous expression is straightforward as the

Wilson loop acts simply by multiplication on the kinematical states of 2+1 gravity. Then,

the Ponzano-Regge amplitudes can be recovered through the definition of a physical scalar

product by means of a projector operator into the kernel of (1.5). A key ingredient for

this construction turns out to be, together with the background independence of the whole

approach, the absence of anomaly in the quantum algebra of the constraints. In the case

of Λ 6= 0, this is no longer the case, as shown in [37] (see [38] for a possible way around

this difficulty).

Here, we propose an alternative approach to the problem of 2+1 gravity with Λ 6= 0 in

the context of LQG. We start from the observation that, if we replace Wp(A) by Wp(A±)

(with A± = A ±
√

Λe) on the previous equation, a simple calculation shows that at the

classical level we get

CΛ [N ] = lim
ǫ→0

∑

p∈∆Σ

Tr [Np Wp (A±)] − G
[

±
√

ΛN
]

. (1.6)

This provides a candidate background independent regularization of the curvature con-

straint CΛ[N ] for arbitrary values of the cosmological constant. Notice that on gauge

invariant states (i.e. the solution space of the Gauss constraint) the second term simply

drops out. The quantization of the previous classical expression requires the quantization

of the holonomy of A±. More generally, as a first step towards the quantization of (1.6), in

2For a pedagogical review on the link between the physical inner product and spin foams see [29]. For

more general basic literature about spin foams see [30–33]. Recent results on the connection between LQG

and spin foams in 4d can be found in [34–36].
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the present work we study the quantization of the holonomy hλ of the general connection

Aλ ≡ A + λe for λ ∈ R. The difficulties in the quantization of hλ arise from the fact

that it is a non-commutative holonomy, since function of a connection (Aλ) becomes itself

non-commutative upon quantization, as clear from the Poisson bracket (1.1).

The paper is organized as follows: In sections 2 we give a brief account of our results

avoiding technical details. In section 3 we briefly recall the quantization scheme of the

e-field in the LQG formalism. In section 4 the technical results are exhibit in detail. The

crossing between quantum holonomies is defined in terms of a series expansion in powers of

the cosmological constant. We prove that the series is well defined and can be summed to

produce a simple result. However, the result depends on quantization choices. The choice

of some natural prescription, such as the fully symmetrized ordering, yields unsatisfactory

results, as shown in section 5.1. In section 5.2 we briefly introduce the Duflo isomorphism

which provides a preferred quantization map in a given sense. In section 5.3, we compute

the action of the quantum holonomy defined by a suitable implementation of the Duflo map

in the LQG formalism. The action of an quantum holonomy on a transversal holonomy

(both in the fundamental representation) exactly reproduces Kauffmann’s bracket. In

section 6, we discuss the possible implications of our results in the framework of the question

raised in this introduction. Some technical material is presented in the appendices.

2 The results in a nut-shell

In this work we explore the quantization of the (one parameter family of) classical (kine-

matical) observables

hη [Aλ] = P e−
R

η
A+λe (2.1)

associated with a path η ∈ Σ, as operators on the kinematical Hilbert space of 2+1 loop

quantum gravity.

Due to the tensorial form of the Poisson bracket (1.1) (inherited by the commutator

in the quantum theory) the action of (2.1) on the vacuum simply creates a Wilson line

excitation, i.e. it acts simply by multiplication by the holonomy of A along the path,

namely

hη [Aλ] ⊲ 1 = hη [A] . (2.2)

This is because the e-operator in the argument of the path ordered exponential in (2.1)

acts as a derivative operator with respect to the components of the connection that are

transversal to the curve (notice the presence of the ǫab in the canonical commutation

relations (1.1)). The action of the holonomy of Aλ is therefore expected not to be trivial

when the loop α in (2.1) is self intersecting or when it acts on generic spin-network states

containing vertices on (or edges transversal to) α.

Therefore, the simplest non-trivial example is the action on a transversal Wilson loop

in the fundamental representation. We define the quantization of (2.1) by quantizing each

term in the series expansion of (2.1) in powers of λ. Terms of order n have n powers of

the e operators. The quantization of these products becomes potentially ill-defined due to

– 5 –
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factor ordering ambiguities (operators associated to e are non commuting in the quantum

theory [15]).

The same kind of problem has been recently investigated in [41], where the authors

provided an new derivation of the expectation values of holonomies in Chern-Simons theory.

In the analysis of [41], the same sort of ordering ambiguities arises due to the replacement

of holonomy functionals under the path integral with a complicated functional differential

operator; the authors show that the expected result can be recovered once a mathematically

preferred ordering, dictated by the Duflo isomorphism, is adopted.3 Therefore, following

the example of [41], we will also make use of this mathematical insight, but in our case the

Duflo map will not do the all job. In fact, since the ambiguities in the quantization of (2.1)

arise due to the presence of non-linear terms in the e-field, a second piece of information has

to be taken into account, namely the quantum action of flux operators in LQG. Combining

these two elements leads to a well defined quantization for each term in the perturbative

expansion in λ. Moreover, the series can be summed and the result can be expressed

in a closed form, leading to algebraic structures remarkably equal to those appearing in

Kauffman’s q-deformed spin networks.

More precisely, if we concentrate on a single intersection (a crossing) between the

path defining the holonomy of Aλ and a transversal spin-network edge in the fundamental

representation j = 1/2 we obtain

1/2 = e
io~λ

4 + e−
io~λ

4 , (2.3)

where o is the orientation of the crossing. Therefore, even though the crossing of paths

happens on the two dimensional manifold Σ, a distinction between over and under crossing

on the lhs of the previous expression is still possible according to the relative orientations

of the path on which the quantum holonomy is defined and of the spin network edge it acts

on. The action (2.3) reproduce exactly Kaufmann’s q-deformed crossing identity, where

the deformation parameter reads q = A2 = e
i~λ
2 .

Despite of the strict resemblance of the previous equation and the Kauffman bracket,

there objects appearing in equation (2.3) are quite diffrerent from the ones in Kauff-

man’s identity. Here, the paths involved are elements of Hk of LQG, i.e. classical SU(2)

holonomies. For that reason the famous Reidemeister identity as well as the Yang-Baxter

braid identity that can be derived from the analog of (2.3) in the knot theory context

are not valid here. Equation (2.3) are a different kind of quantum deformation of the

Maldestam relation for SU(2) (the binor spinorial identity) that we find using canonical

quantization of (2.1). This is the a central result of our work.

The fact that our crossing does not satisfy the topological properties of strands in knot

theory deserves more qualification. As it is well known 2+1 gravity is a topological theory

with no local degrees of freedom. In the computation of expectation values of knotted

(spacetime-embeded) Wilson loops, this implies that their value is a knot-invariant as it

is shown in [1–3]. From the viewpoint of the canonical loop quantum gravity canonical

3For another application of the Duflo map in the context of 2 + 1 quantum gravity see also [40].
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approach (where one reduces after quantization) this is expected to hold only on shell, i.e.,

after having imposed the quantum constraint (1.4). Our quantization of (2.1) is constructed

at the level of the kinematical Hilbert space where there are infinitely many local (pure

gauge) degrees of freedom. At that level there is no a priori reason for the crossing to be

topological. We will further discuss this point in section 6.

3 Quantization of e-field

In LQG there is a well-defined quantization of the e-field based on the smearing of e along

one dimensional paths. More precisely, given a path ηa(t) ∈ Σ one considers the quantity

E(η) ≡
∫

ei
aτi

dηa

dt
dt =

∫

Eaiτinadt, (3.1)

where in the second equation we have replaced e in terms of the connection conjugate

momentum Ea
i and na ≡ ǫab

dηa

dt
is the normal to the path. Therefore, the previous quantity

represents the flux of E across the curve η. The quantum operator associated to E(η) acts

non trivially only on holonomies hγ along a path γ ∈ Σ that are transversal to η. It sufices

to give its action on trasnversal holonomies that either end or start on η. The result is:

Ê(η) ⊲ hγ =
1

2
~

{

o(p)τ i ⊗ τihγ if γ ends at η

o(p)hγτ i ⊗ τi if γ starts at η
, (3.2)

where o(p) is the orientation of the intersection p ∈ Σ (denoted p for puncture), namely

o(p) =
ǫabη̇

aγ̇b

|ǫabη̇aγ̇b|

∣

∣

∣

∣

p

(3.3)

at the intersection p ∈ Σ. In other words the operator E(η) acts at a puncture as an

SU(2) left-invariant-vector-field (LIV) if the puncture is the source of hγ , and it acts as a

right-invariant-vector-field (RIV) if the puncture is the target of hγ . This observation will

lead to a natural regularization of the quantum holonomy operator (2.1) is what follows.

4 Quantization of h (Aλ)

Let Σ× R be a global decomposition of the 2 + 1 dimensional spacetime, γ, η : (0, 1) → Σ

two curves that cross each other transversally in γ (s∗) = η (t∗). Let A = Ai
adxa ⊗ τi be a

connection on a principal SU (2)-bundle over Σ × R, for which we choose a trivialization

around γ (s∗) = η (t∗). Let hγ (A) denote the holonomy of γ in this trivialization. Let

(Aλ)i
a = Ai

a + λ ei
a = Ai

a + λ ǫabE
b
i , Eb

i being the momentum canonically conjugate to Ai
a.

Let us show that the action of hη [Aλ] on the vacuum is trivial, namely

hη [Aλ]|0〉 = hη[A]|0〉, (4.1)

which is simply equivalent to equation (2.2) were we use Dirac’s bracket-notation for the

vacuum whose wave functional 〈A|0〉 = 1. The momenta Eb
i are formally quantized as

– 7 –
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Figure 2. Graphical representation of the action of two quantum holonomies hη(Aλ) and hγ(Aλ).

The three dimensional structure depicted as over-crossing or under crossing encodes operator or-

dering. In this way the picture on the left denotes the operator action hη(Aλ) ⊲ hγ(Aλ) while the

one on the right denotes hγ(Aλ) ⊲ hη(Aλ).

Eb
i (x) 7→ −i~δ/δAb

i (x). In order to give a meaning to the quantum operator hη (Aλ) we

first develop its classical expression in powers of λ and obtain, for the generic pth order,

λp
∑

n≥p

∑

m≥p

(−1)m+n
∑

1≤k1<···<kp≤n

∫ 1

0
dt1 · · ·

∫ tn−1

0
dtn

∫ 1

0
ds1 · · ·

∫ sm−1

0
dsm

[

A (η (t1)) · · ·A (η (tk1−1)) E(η(tk1)) · · ·E(η(tkp
))A

(

η
(

tkp+1

))

· · ·A (η (tn))
]

|0〉 .

As the commutator

[E (η (tk)) , A (η (tp))] = 0, (4.2)

due to the fact that both fields in the commutator are pulled-back on the same curve, only

the p = 0 term of the previous series survives when acting on the vacuum. Thus (4.1)

follows. The previous argument is formal: choosing a system of coordinates (s, t) around

η (which we suppose sufficiently small) in which η be represented by η (t) = (0, t) we see

that δ (η (tp) − η (tk)) = δ ((0, tp) − (0, tk)) = δ (0) δ (tp − tk) is singular. Nevertheless, a

more careful treatment based on a suitable regularization where the flux line is replaced by

a flux tube (defined by a smooth thickening of the path η) leads to the same conclusion [26]

as our formal shortcut.

Let us move on now and study of the action of η on γ. Denoting this action by “⊲”

and using the previous results, we have:

hη (Aλ) ⊲ hγ (Aλ) |0〉 = hη (Aλ) ⊲ hγ (A) |0〉 =


1 +
∑

1≤n

(−1)n
∫ 1

0
dt1 · ·

∫ tn−1

0
dtn Aλ (η (t1)) · ·Aλ (η (tn))



 ⊲



1 +
∑

1≤m

(−1)m
∫ 1

0
ds1 · ·

∫ sm−1

0
dsm A (γ (s1)) · ·A (γ (sm))



 |0〉 .

Developing in powers of λ the coefficient at order p is:

λp
∑

n≥p

∑

m≥p

(−1)m+n
∑

1≤k1<···<kp≤n

∫ 1

0
dt1 · · ·

∫ tn−1

0
dtn

∫ 1

0
ds1 · · ·

∫ sm−1

0
dsm

[

A (η (t1)) · · ·E(η(tk1)) · · ·E(η(tkp
)) · · ·A (η (tn))

]

⊲ A (γ (s1)) · · ·A (γ (sm)) .

– 8 –
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In what follows we shall omit the sums
∑

n≥p,
∑

m≥p and the coefficient (−1)m+n, and we

shall only restore them at the end of the calculations. Let us concentrate on the action of

the derivation operators on the connection along γ. The relevant quantity is

∫ 1

0
ds1 · · ·

∫ sm−1

0
dsm E(η(tk1)) · · ·E(η(tkp

)) ⊲ A (γ (s1)) · · ·A (γ (sm)) . (4.3)

One now uses

E(η(t)) ⊲ A (γ (s)) =
(

ǫabγ̇
a (s∗) η̇b (t∗)

)

δ (γ (s) − η (t))

= δ (s − s∗) δ (t − t∗)
ǫabγ̇

a (s∗) η̇b (t∗)

|ǫabγ̇a (s∗) η̇b (t∗)|
= o δ (s − s∗) δ (t − t∗), (4.4)

where o is the orientation of the intersection defined by taking γ and η in this order.4 It is

easy to see that only the terms containing p consecutive graspings E(η(tq)), E(η(tq+1)) up

to E(η(qq+p)) which themselves act on p consecutive A(γ(sk)), A(γ(sk+1)) up to A(γ(sk+p))

survive. Any other possible term will vanish as a consequence of the previous equation (the

domain of integration of the integrals of A’s evaluated on intermediate parameters will be

constrained to a single point by the delta functions (4.4)). The Leibnitz rule now produces a

sum over all possible orderings for the action of the E on the sequence A(γ(sk)), A(γ(sk+1))

up to A(γ(sk+p)). Finally, a factor (1/p!)2 is produced by the ordered integral of p two

dimensional delta distributions.5 One can arrange the integration variables and get

(−io~λ)p

p!

∑

k1≥1

(−1)k1−1
∫ 1

t∗

dt1 · · ·
∫ tk1−2

t∗

dtk1−1 A (η (t1)) · · ·A (η (tk1−1))

τ ik1 · · · τ ikp

∑

v≥0

(−1)v

∫ t∗

0
dt̃1 · · ·

∫ tv−1

0
dt̃v A

(

η
(

t̃1
))

· · ·A
(

η
(

t̃v
))

⊗

∑

αk1
≥1

(−1)αk1
−1
∫ 1

s∗

ds1 · · ·
∫ sαk1

−2

s∗

dsαk1
−1 A (γ (s1)) · · ·A

(

γ
(

sαk1
−1

))

τ(ik1
· · · τikp)

∑

u≥0

(−1)u

∫ s∗

0
ds̃1 · · ·

∫ su−1

0
ds̃u A (γ (s̃1)) · · ·A (γ (s̃u)) , (4.5)

where in the last line the brackets on the subindexes denote symmetrization, namely

τ(i1 · · · τip) =
1

p!

∑

π∈S(p)

τiπ(1)
· · · τiπ(p)

, (4.6)

4There is an additional relative minus sign between under and over crossing. This can entirely encoded

in o if we choose the paths ordered according to the operator action (see figure 2) and its caption.
5Here we are using that

Z

K

δ(t1) · · · δ(tn) F (t1, · · · , tn) =
1

p!
F (0, · · · , 0),

where K = {t = (t1, · · · , tp) ∈ R
p |−∞ < tp ≤ · · · ≤ t1 < ∞}.
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for S(p) denoting the group of permutations of p. The insertion of the symmetrized product

of generators can be thought of as the action of a quantization prescription defined by the

map

QS : Ei1Ei2 · · ·Eip → 1

p!

∑

π∈S(p)

τiπ(1)
τiπ(2)

· · · τiπ(p)
. (4.7)

As we have shown in the manipulations of this section, the previous quantization map

arises naturally from the Leibnitz rule in our context. There are however factor ordering

ambiguities due to the non-commutativity of the grasping operators that allow in principle

for other prescriptions (that we will call Q in the following section). We will see in what

follows that the advertised relationship with the Kauffman bracket is found if one uses the

so-called Duflo map instead.

For further use it will be convenient to use the following graphical notation for the

previous series

= + z +
z2

2
+

z3

3!
+ · · · (4.8)

where z = −io~λ, and the boxes denote symmetrization (4.6) according to the quantization

prescription QS defined in (4.7).

5 Summing up the perturbative series

In this section we show that the perturbative expansion above can be exactly summed once

a definition of the symbol Q is provided. The completely symmetrized ordering Q → QS

— which seems natural from the point of view of the Leibnitz rule (see remark above) —

leads to a complicated result. A different crossing evaluation follows from the action (3.2)

of the flux operator in LQG and the use of the Duflo isomorphism as a quantization map.

This possibility, which doesn’t seem to contain any physical input but is mathematically

preferred, as explained in more detail in the following, leads to the main result (2.3) of

this paper.

5.1 Symmetric orderings

The symmetric ordering, which we denote QS, arises naturally from the above treatment

of the path ordered exponentials and the Leibnitz rule. As shown in appendix B, this

prescription leads to a closed formula for the crossing, but it doesn’t reproduce Kaufmann’s

bracket algebraic structure; namely, the fully symmetrized ordering yields

= B + C , (5.1)

where

B(λ) = sin[~λ/4]

(

2i

3
− ~λ/4

)

+ cos[~λ/4]

(

1 +
i~λ/4

3

)
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and

C(λ) = − sin[~λ/4]

(

2i

3
+ ~λ/4

)

+ cos[~λ/4]

(

1 − i~λ/4

3

)

.

One can devise another natural quantization prescription by taking the flux quanti-

zation of fluxes of section 3 as a guiding principle. Accordingly, there is no quantization

ambiguity for the zeroth and first order. At second order the symmetric ordering studied

above can be used. As shown appendix B, the result is proportional to the Casimir E2.

Therefore, the second order term is proportional to the zeroth order. We can define the

third order as the result of the (unambiguous) action of a single flux E on the second order.

This gives an iterative definition of all orders and produces a quantization prescription that

coincides with QS up to second order. However, as the previous case also at second order

one departures from the Kauffman bracket expected result. We compute for completeness

all orders in appendix B, the result is

B(λ) = cos[
√

3~λ/4] − 4i√
3

sin[
√

3~λ/4]

and

C(λ) = cos[
√

3~λ/4] +
4i√
3

sin[
√

3~λ/4].

This latter quantization prescription, has however, the advantage that all the ambiguities

are now confined to the quantization of the Casimir E2. The key ingredient in the resolution

of this remaining ambiguity is the existence of a preferred quantization prescription for

Casimirs: the Duflo map.

5.2 The Duflo map

The Duflo map [39] is a generalization of the universal quantization map proposed by

Harish-Chandra for semi-simple Lie algebras. The latter provides a prescription to quantize

polynomials of commuting variables (the classical triad fields e) which after quantization

acquire Lie algebra commutation relations (the flux operators Ê). More precisely, given

a set of commuting variables Ei on the dual space g
∗ of the algebra g, they generate the

commutative algebra of polynomials, called the symmetric algebra over g and denoted

Sym(g). If now we want to map this algebra into the one generated by non-commutative

variables τi which satisfy the commutation relations [τi, τj ] = fij
kτk, we run into ordering

problem since the commutative algebra Sym(g) must be mapped to the non-commutative

universal enveloping algebra U(g). A natural quantization map introduced by Harish-

Chandra [42] is the so-called symmetric quantization, defined by its action on monomials,

namely

QS : Ei1Ei2 · · ·Ein → 1

n!

∑

π∈Sn

τiπ(1)
τiπ(2)

· · · τiπ(n)
. (5.2)

A generalization of the previous map was provided by Duflo by composing it with a differ-

ential operator j
1
2 (∂) on Sym(g), where ∂i ≡ ∂/∂Ei represents derivatives with respect to

the generators of Sym(g). In the case of the Lie algebra su(2), the Duflo map QD reads

QD = QS ◦ j
1
2 (∂) = QS ◦

(

1 +
1

12
∂i∂i + · · ·

)

, (5.3)
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where the dots stand for terms containing higher derivatives.

The main property of QD is that given two Casimir elements A and B, the product

of quantizations QD(A)QD(B) coincides with the quantization of the product, QD(AB).

Therefore, the Duflo map is an isomorphism between the invariant (under the action of G)

sub-algebras Sym(g)g and U(g)g.

The Duflo map provides a mathematically preferred quantization for products of E;

however, such choice is not always physically acceptable. For instance if one would use

it for the quantization of angular momentum in the hydrogen atom one would get an

energy spectrum incompatible with observations. In LQG this map has also been proposed

to provide an alternative quantization of the area operators [42]. Such choice leads to a

simpler area spectrum; however, it has drawback of violating cylindrical consistency [43].

5.3 Quantization in terms of flux operators

In order to get the general form of the series (4.8) in the case where we use the quantization

of the flux operators given in section 3 it suffices to write the first few terms. In the first

order term, E acts as a LIV on the portion of the holonomy which has the crossing as its

source and as a RIV on the other one. The full result is, just as in (4.8):

(5.4)

In the second order diagram we have the action of two flux operators at the same point

and therefore ordering ambiguities arise. In order to deal with them, we now use the

prescription induced by the Duflo map, namely we write (τjτk) as

QD[EjEk] = QS ◦
(

1 +
1

12
∂i∂i + · · ·

)

[EjEk]

=
1

2
(τjτk + τkτj) +

1

6
δjk. (5.5)

Diagrammatically, for the second order term we have

=
1

2
+

1

2
+

1

6
=

1

16
, (5.6)

where in the second equality we used the fact that {τ i, τ j} = −1/2 δij and the value of the

Casimir in the fundamental representation. Therefore, the second order diagram is propor-

tional to the order zero diagram. The third order term is consequently proportional to the

first order one and so on.6 We get in this way the general expression for arbitrary order.

6Notice that, if we haven’t used the quantization scheme of the flux operators proper of the LQG

formalism, in order to compute the terms beyond the second order, we should have applied the Duflo map

at all orders (i.e. compute the action of QD on all the other products of Es). This alternative prescription

(besides being much more involved) would lead to a result differing from the reproduction of the Kaufmann

bracket, thus showing the central role played by the LQG representation of the fundamental variables.
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Finally, choosing an orientation and using equations (A.1) and (A.2) in the appendix A,

we can express the ordered version of Equation (4.5) as

hη (Aλ) ⊲ hγ (Aλ) |0〉 = =
∑

n≥0

(−z)n

4n(n)!
−
∑

n≥0

(z)n

4n(n)!
.

(5.7)

Therefore, the series expansion in powers of λ converges and leads to a simple expression

for the crossing. Using Penrose convention ǫAB → iǫAB and ǫAB → iǫAB to take care of

the different relative signs, the result is

= A + A−1 , (5.8)

where A = e
io~λ

4 , with o the relative orientation between η and γ. Equations (5.8) has the

same form as Kauffman’s q-deformed binor identity for q = exp iλ/2.

6 Discussion

We have shown that the holonomy of Aλ in the fundamental representation can be quan-

tized in different ways due to ordering ambiguities. However, there exists a simple and

natural quantization based on the Duflo map leading to the Kauffman-like algebraic struc-

ture for the action of the quantum holonomy defining a crossing. This result is promissing

in the road to finding a relationship between Turaev-Viro amplitudes and physical ampli-

tudes in canonical LQG.

The recovering of the Kauffman bracket related to the q-deformed crossing identity

is a remarkable result since it was obtained starting from the standard SU(2) kinematical

Hilbert space of LQG and combining the flux operators representation of the theory to-

gether with a mathematical input coming from the Duflo isomorphism. The fact that the

crossing of our quantum holonomies have this structure is an encouraging result in finding

a link between the role of quantum groups in 3d gravity with non vanishing cosmological

constant and its canonical quantization. However, the full link can only be established if the

dynamical input from the implementation of the constraints (1.4) is brought in. Quantum

holonomies defined here might be the right tool for regularizing the quantum constraints

as proposed in (1.6).

As pointed out in the previous paragraph and at the end of section II, the topologi-

cal features of knots (Reidermeister moves) as well as the related quantum evaluation of

Wilson loops is only to be found through dynamical considerations. Since in the present

analysis no quantum group structure has been introduced by hand at any stage, at the

present kinematical level, loops still evaluate according to the classical SU(2) recoupling

theory. Nevertheless, an intriguing indication that the implementation of dynamics could

lead to the emergence of the quantum dimension for loops evaluation is available already at
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this stage. More precisely, if one takes seriously the expression (1.6) as a proposal for the

regularized version of the curvature constraint (1.4) — notice that, in the naive continuum

limit, the expression (1.4) is recovered — then one could compute it’s algebra by studying

the action of the commutator on some states. The classical constraint algebra dictates

that this should be proportional to the Gauss constraint. If one performs this analysis, it

is immediate to see that there are two types of anomalous contributions: one of the same

kind of the anomaly found in [37] (which could be called mild as the terms produced vanish

when acting on gauge invariant states), and another anomalous contribution (a stronger

one) that does not annihilate gauge invariant states. The latter anomalous terms happen

to be proportional (A2 +A−2 + ), where represents the loop with no area in the fun-

damental representation j = 1/2. Thus the condition that an infinitesimal loop evaluates

to the quantum dimension −A2 − A−2 emerges from the constraint algebra: the anomaly

is proportional to the difference of the quantum and classical evaluation of the loop.

All this indicates that, even when we do not introduce a quantum group at any stage,

and no dynamical constraint has been imposed yet, amplitudes such as the value of the

quantum dimension (or self linking number of a Wilson loop in the language of [1–3])

dq = −q − q−1 and q = A2 = exp i~λ/4 naturally appear from our treatment. Recall

that the value of dq together with the deformed binor identity are the two ingredients

for the combinatorial definition of the Turaev-Viro invariant according to the formulation

of [27, 28]. This is encouraging as it indicates that perhaps a strict correspondence between

LQG and the Tuarev-Viro invariant can be established if one appropriately implements the

next step: quantizing and imposing the curvature constraint (1.4). This will be investigated

in the future.

An interesting correspondence between operator ordering and time was found in [13]

(see also [29]). This relationship is expected to be more explicit here. Notice that even

though the canonical quantization is defined on the 2-dimensional manifold Σ, the non

commutativity of the quantum holonomy, can be encoded in terms of the knotting of paths

as if they would be embedded in a 3-dimensional manifold of topology Σ × R. If the

quantum constraints can be imposed as in the zero cosmological constant case, we expect

the expectation value of these knots in the physical Hilbert space to coincide with the ones

computed using the covariant methods of [1–3]. This would be an explicit example where

operators defined in the ‘frozen’ timeless formalism of Dirac can be directly interpreted as

space-time processes. Such an example would be of great conceptual importance showing

that the notion of time and causality can be encoded in the quantum theory defined on a

single space slice.
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A Diagrammatic algebra

Many results connected to the theory of representation of SU(2) can be more easily stated

in a graphical notation introduced by Penrose. The association of an algebraic meaning to

the various diagrams is subject to many conventions; therefore, here we present ours.

To every single arrow

B

A

or

A

B

going from index A to index B associate the

symbol δA
B (note that it does not matter whether the arrow is up- or down-going).

To every symbol
A B

or A B (ingoing arrows) associate the object ǫAB and

to every symbol
A B

or
A B

(outgoing arrows) the object ǫAB , where (ǫAB) =

(

ǫAB
)

=

(

1 0

0 −1

)

(note that it does not matter whether the arc is convex or concave).

Note also that since ǫ is antisymmetric,
A B

is −
AB

.

It is also important to note that it does not matter whether the strands are vertical

or horizontal, the only important thing being the direction of the arrows and the reading

order of the indices.

With these conventions, it is easy to check that (Penrose’s “binor identity” for SU(2))

= − (A.1)

and that

= −1

4
− 1

4
. (A.2)

It is enough to rotate these diagrams in order to get the identities corresponding to

the other three possible choices of arrows.

We also have that

A B = ǫABǫAB = 2 = δA
BδB

A = A B

and that

B
A

C
= ǫACǫCB = −δB

A = −
B

A
.
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B Symmetric ordering

Here we explore the quantization of the quantum holonomy based on the symmetrized

‘factor ordering’ at the level of (4.8). This amounts to replacing the term τ(ik1
· · · τikp) in

Equation (4.5) by QS(Eik1
· · ·Eikp

) = 1
p!

∑

π∈S(p) τiπ(1)
τiπ(2)

· · · τiπ(p)
.

We introduce the Penrose graphical notation

τ i1 · · · τ ip ⊗ τ(i1 · · · τip) =

...

p ,

where the vertical lines represent the contraction of the i-indices, the 3-valent nodes denote

the τ -matrices, the horizontal lines represent the contraction of the spinor indices, i.e.,

matrix product, and the box in the middle denotes the symmetrization of the i-indices.

Using the fact that {τ i, τ j} = −2δij it is immediate to proove the following identities:

...

=

...

=

...

(B.1)

which imply

n2

...

= n2n2
...

= A2n , (B.2)

where in the last equality we have introduced the definition of the coefficient A2n, and

n2

...

n2

...

+1 = n2n2 +1
...

= B2n+1 , (B.3)

where in the last equality we use the fact the the diagram between the horizontal lines is

proportional to the identity in order to introduce the definition of the coefficient B2n+1.

Indeed the previous equations can be written in the standard tensorial notation as:

τ i1 · · · τ i2n ⊗ τ(i1 · · · τi2n) = A2n(1 ⊗ 1), (B.4)

and

τ i1 · · · τ i2n+1 ⊗ τ(i1 · · · τi2n+1) = B2n+1 (τ i ⊗ τi) (B.5)

In order to compute the coefficients A2n and B2n+1 we observe that

2
...

(n+ 1) =

1

2n + 2

(

n2n2 +1
...

+ n2n2 +1
...

+ cyclic permutations

)

, (B.6)
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which is a simple property of symmetric tensors. But each term on the righthand side is

equal to B2n+1 times the trace of the identity (see equation B.3) Therefore, we have proven

that

3B2n = A2(n+1). (B.7)

The is also a simple recursion relation relating the unknown coefficients which diagram-

matically takes the following form:

n2n2 +1
...

=

N0

2n + 1

...

n2
+

N1

(2n + 1)(2n)(2n − 1)

...

2 (n− )1
+ · · · + Nn ,

where the factors Nj for 0 ≤ j ≤ n correspond to the number of ways one can start at the

top vertical line go around the symmetrization box and exit along the bottom vertical line

by ‘walking’ along j upper and j bottom arcs respectively. It is easy to see that N0 = 1,

N1 = (2n)2 (after entering the box we have 2n choices to enter one of the arcs in the

bottom times 2n choices on the top) the general term being

Nj = [(2n)(2(n − 1)) · · · (2(n − j))]2 = 22j

[

n!

(n − j)!

]2

The other explicit coefficients in front of each term just come from the readjustment of

the number of permutations. For instance in the first term 1/(2n + 1) times the 1/(2n)!

gives corresponding to the symmetrization factor on the left 1/(2n + 1)!. Similarly for the

second term we have 1/((2n + 1)(2n)(2n − 1)) times 1/(2(n − 1))! gives again 1/(2n + 1)!.

The general term being (2(n − j))!/(2n + 1)!. Putting all this together we get

B2n+1 =

n
∑

j=0

22j [2(n − j)]!

(2n + 1)!

[

n!

(n − j)!

]2

A2(n−j) (B.8)

combining the two equations the solution is:

A2n = 2n + 1 B2n+1 =
2

3
n + 1 (B.9)

With this result the symmetrized version of Equation (4.5) yields

∑

n≥0

(−io~λ/4)p

p!
τ ik1 · · · τ ikp ⊗ τ(ik1

· · · τikp) =

=
∑

n≥0

(−io~λ/4)2n

(2n)!
(2n + 1) +

∑

n≥0

(−io~λ/4)2n+1

(2n + 1)!

(

2

3
n + 1

)

Finally, choosing an orientation and using eq. (A.1)–(A.2) we arrive at the result

= B − C , (B.10)
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where

B(λ) = sin[~λ/4]

(

2i

3
− ~λ/4

)

+ cos[~λ/4]

(

1 +
i~λ/4

3

)

and

C(λ) = − sin[~λ/4]

(

2i

3
+ ~λ/4

)

+ cos[~λ/4]

(

1 − i~λ/4

3

)

.

Therefore, considering the totally symmetric map QS leads to the wrong result. Another

possibility consists of trying to improve this map taking into account the action of the flux

operators. More precisely, along the lines of section 5.3, the unambiguous first order term

is again given by

. (B.11)

Then, the second order diagram can be viewed as the result on an action of the flux operator

on the first order diagram. We now apply the symmetrization map QS to compute this

action, namely

=
1

2
+

1

2
= −1

4
=

3

16
, (B.12)

where in the first equation we get two terms coming from on LIV action and a RIV action,

while in the second equality we use the fact that {τ i, τ j} = −1/2 δij . Therefore, the second

order diagram is proportional to the order zero diagram. The proportionality constant is

just 1/4 of the value of the Casimir in the fundamental representation. The third order

term is consequently proportional to the first order one and so on. We get in this way the

general expression for arbitrary order. With this prescription the result of the quantum

holonomy action now becomes

=
∑

n≥0

(−io~λ)2n

(2n)!

(

3

16

)n

+
∑

n≥0

(−io~λ)2n+1

(2n + 1)!

(

3

16

)n

,

which again, through eq. (A.1)–(A.2), can be written as

= B − C , (B.13)

where

B(λ) = cos[
√

3~λ/4] − 4i√
3

sin[
√

3~λ/4]

and

C(λ) = cos[
√

3~λ/4] +
4i√
3

sin[
√

3~λ/4].

The results (B.10)–(B.13) show how, using some ‘first guess’ ordering to solve the multiple

flux operators action ambiguity, one can obtain a series expansion in powers of λ which

converges and leads to a simple expression for the crossing, but doesn’t reproduce the

expected result.
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