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Abstract 
 

In this paper, the fabrication and characterisation of pentacene-based photoconductors 
using indium tin oxide electrodes obtained by ion beam sputtering are discussed. The 
photoelectric properties of pentacene under red (632 nm) and ultraviolet (365 nm) 
illuminations were investigated. We have shown that the photocurrent was dependent on the 
wavelength, bias voltage and illumination side of the device. Moreover, we have 
demonstrated with transparent electrodes that the top contact configuration yields better 
performance compared to the bottom contact configuration. We obtained a maximum 
photoconductivity gain of approximately 3×103 and a faster dynamic response when the 
photoconductor with top contact geometry was illuminated with ultraviolet light from the 
semiconductor side (top illumination), with a photoconductivity estimated at 10-4 Ω-1 cm-1. 
 
Keywords: Pentacene, UV-visible illumination, Photoconductivity, Photocurrent, 

       Response time. 
 

1. Introduction 

Ultraviolet (UV)-Visible organic photodetectors have been widely studied due to their 

potential applications [1-4]. Pentacene (Pn) is a photoconductor which exhibits a small optical 

band gap and can thus be used for UV and visible photodetection. As a result, the material has 

been investigated for use in optoelectronic devices such as photodetectors, light activated 

memory devices, amplifiers or switches controlled by light excitation and optical transducers 

[5-7]. Organic photoconductors are viable candidates in the area of semiconductor detectors 

because they combine light detection and signal amplification properties in the simple device. 

 We have investigated the photoelectric properties, such as photocurrent gain and response 

time at various bias voltages, of an ITO (Indium Tin Oxide)/Pn/ITO planar structure. The 

device was illuminated at 632 nm and 365 nm from the glass substrate side or the opposite 

side with bottom contact (BC) and top contact (TC) electrode configurations. 
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2. Experimental 

 

Schematics of TC and BC photodetector devices we fabricated and their corresponding 

photoelectric properties are shown in Figure 1 and Figure 2 respectively. The ITO electrodes 

are obtained by ion beam sputtering with high conductivity (103 Ω-1cm-1) and transmittance 

(90 %) [8]. Two ITO contacts (separated by 100 µm and defined as the channel) are used to 

apply a bias voltage to the photoconductor. The pentacene films (50 nm) were obtained by 

vacuum evaporation without heating the substrate with a deposition rate of 1 Å/s. 

 All the devices are fabricated on glass substrates and tested at room temperature in open 

air. The static and dynamic characteristics of the photoconductor were carried out using 

computer-controlled 4200 SMU Keithley equipment. A He-Ne laser (632 nm) and a UV lamp 

(model B 100 AP UVP with emission centred at 365 nm) with a power of approximately 7 

mW/cm2 situated at 25 cm from the photoconductor active layer, were used to irradiate the 

device from either side of the device, "top illumination" or "bottom illumination". An atomic 

force microscope (AFM) was used to characterize the topography. 

 

3. Results and discussion 

 

Photoconductivity corresponds to an increase in the electrical conductivity (σ) of a 

semiconductor under illumination. Two conditions must be fulfilled: (i) the photon energy 

(hν) must be higher than the material gap energy (Eg) so that an electron passes from the 

highest occupied molecular orbital (HOMO) band to the lowest unoccupied molecular orbital 

(LUMO) band; consequently, excess free carriers will contribute to the increase in electrical 

conductivity; and (ii) the absorption coefficient (α) of the material must be sufficiently small 

so that the light can contribute efficiently to the generation of the charge carriers in the bulk of 

the device channel. 

Carrier generation in the allowed bands of pentacene is possible since the energy of the 

emitted light is 1.96 eV (632 nm) and 3.4 eV (365 nm) for red and UV illumination, 

respectively, which are higher than the gap of pentacene (Eg≈1.8 eV) [9]. Moreover, the 

injection of holes from ITO into the HOMO band of pentacene is favored, due to the low 

energy barrier which is approximately 0.2 eV [9] at the ITO/pentacene interface. 

Figure 1 shows the photocurrent-voltage (I-V) characteristics of the fabricated 

photoconductor with BC configuration. We note a quasi-linear photoelectric response with the 

applied voltage, due to the alignment of the ITO Fermi level with the HOMO band of Pn, 

 2 



indicating that the ITO/pentacene contact is ohmic. The dark current is ≈10-10 A at -100 V bias 

voltage. Upon red and UV top illumination, the photocurrent increases to 5×10-10 A (Fig. 1a) 

and 27×10-10 A (Fig. 1b) due to the photogeneration of electron-hole pairs in the 

semiconductor, which results in a photocurrent gain of 5 and 27, respectively. 

For red and UV bottom illumination, the photocurrent gain remains at approximately 9. At 

632 nm, the photocurrent is higher in the case of bottom illumination where light produces 

more free carriers in the bulk of the active layer, and thus a better enhanced photocurrent than 

top illumination, which could be due to charge carrier detrapping processes in the 

semiconductor channel being more effective. However, at 365 nm, the maximum 

photocurrent is obtained for top illumination, which corresponds to an antibatic effect [10,11], 

where the photocurrent is inversely proportional to the absorption coefficient (α) of 

pentacene. A previous study [12] has shown that α (365 nm) = ½ α (632 nm). 

Figure 2 shows the I-V characteristics of the photoconductor with TC electrodes. A linear 

behaviour of both dark current and photocurrent is once more observed. The dark current 

remains around 10-10 A at -100 V, and upon red and UV top illumination, the photocurrent 

increases up to 8.5×10-9 A (Fig. 3a) and 1.2×10-7 A (Fig. 2b), resulting in a gain of 85 and 

1.2×103 respectively. For bottom illumination however, the photoccurent gain remains around 

26 at 632 nm and 120 at 365 nm. We note that the photocurrent gain is much higher than in 

the previous case (BC configuration) for the same side of illumination. This could be due to 

the high trap density at the BC electrode interface. In fact, the pentacene film grown on ITO 

(Fig. 3b) is characterized by a small grain morphology with many grain boundaries which 

form trapping sites compared to pentacene deposited on glass (Fig. 3a), and consequently 

affect the charge carrier transport in BC electrode configuration. Another possible explanation 

for the very high photocurrent gain in TC configuration and top illumination is that the 

transparent ITO electrode is used as an optical window [13] for the photons, which allows for 

higher photogenerated carrier density, and consequently enhanced photocurrent. 

Furthermore, we note that the UV radiation is more effective for carrier photogeneration 

than the red excitation due to the lower absorption coefficient of pentacene at 365 nm than at 

632 nm [12], which leads to a light penetration depth increase and consequently an increase of 

the photocurrent. 

In the case of one-carrier transport, photoconductivity (∆σ) is given by [14]: 

0 p pqp q pσ µ µ∆ = ∆ + ∆ , 
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where q is the elementary charge, 0p and pµ are the values of the hole concentration and 

mobility in the dark respectively,  and p∆ pµ∆ represent the changes due to photoconductivity 

in hole density and mobility respectively. 

Thus, assuming that there is no significant change in the carrier mobility under UV 

excitation, as shown in our previous work [12], the above equation becomes: 
pq pσ µ∆ = ∆  

According to Ohms law, the photocurrent gain can thus be expressed by: 
illum

dark

I
I

G σ
σ
∆

= ≈ , 

where Iillum is the total current under illumination and Idark  is the dark current. 

With conductivity of pentacene being approximately 10−7 Ω−1cm−1, the last equation yields 

a ∆σ of approximately 10-4 Ω-1cm-1 under UV top illumination. 

As the best results in term of photocurrent gain are obtained with a TC configuration and 

top illumination, we measured the photocurrent transient profiles for both UV and red 

wavelengths. 

Figure 4a shows the photocurrent transient profiles at 632 nm from -50 V to -200 V. The 

equilibrium regime is attained rapidly when the majority carrier transit time is high (V=-50 

V). The transit time is inversely proportional to V because charge carrier recombination is 

favored. When the light is switched OFF (after 60 seconds of illumination), current relaxation 

is consistent with an exponential decay, and a persistent photocurrent beyond 60 seconds, 

which indicates slow recombination of the charge carriers. This remanent photocurrent is also 

associated with the lifetime of minority carriers (electrons for pentacene), which leads to 

relaxation to the initial state. 

Figure 4b shows the photocurrent versus time data during UV top illumination from -50 V 

to -200 V. A sharp increase in photocurrent is reached with response times that are shorter at 

high bias voltages (i.e., 140 s - 200 s at -200 V). After the light is switched OFF, the current 

decays exponentially with time, then attains a steady state after few tens of seconds. 

Photocurrent decay to its initial state is reached faster for the UV wavelength than for the red 

one. This indicates that at 365 nm, the recombination processes which occur during the 

current decay are fast enough so that no photocurrent persists during relaxation. Furthermore, 

as observed above, the current gain is maximized at high voltages (3×103 at -200 V). 
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4. Conclusion 

 

We have investigated the photoconductivity phenomenon in the pentacene semiconductor 

under red (632nm) and ultraviolet (365nm) illumination in a simple pentacene based 

photoconductor (using ion beam sputtered ITO electrodes). We have shown that the static and 

dynamic photocurrent characteristics were dependent on wavelength, bias voltage and 

illumination side of the device. We obtained a photoconductivity of 10-4 Ω-1cm-1, a maximum 

photoconductivity gain of approximately 103 and a faster dynamic response when the 

photoconductor with top contact geometry was illuminated with UV from the semiconductor 

side “Top illumination”. These promising results indicate that the materials could find use in 

transparent organic phototransistor applications. 
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Figure Captions 

 

Figure 1: Photocurrent-voltage characteristics of pentacene with BC electrodes tested in the 
dark and under (a) red illumination (632 nm) and (b) UV illumination (365 nm) 

 
Figure 2: Photocurrent-voltage characteristics of pentacene with TC electrodes tested in the 

dark and under (a) red illumination (632 nm) and (b) UV illumination (365 nm) 
 
Figure 3: (2 µm x 2 µm) AFM patterns of a pentacene film (50 nm) deposited on glass (a) 

and ITO (b) 
 
Figure 4: Dynamic photocurrent response of pentacene versus time with TC electrodes at 

bias voltages of -50 to -200V at (a) 632 nm and (b) 365 nm. 
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