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Abstract 1 

 2 

Imputation allows the inference of unobserved genotypes in low-density 3 

datasets, and is often used to test for disease association at variants that are 4 

poorly captured by standard genotyping chips (such as low frequency variants). 5 

While much effort has gone into developing the best imputation algorithms, 6 

less is known about the effects of reference set choice on imputation accuracy. 7 

We assess the improvements afforded by increases in reference size and 8 

diversity, specifically comparing the HapMap2 dataset that has been used to 9 

date for imputation, and the new HapMap3 dataset, which contains more 10 

samples from a more diverse range of populations. We find that, for imputation 11 

into Western European samples, the HapMap3 reference provides more 12 

accurate imputation with better calibrated quality scores than HapMap2, and 13 

that increasing the number of HapMap3 populations included in the reference 14 

set grants further improvements. Improvements are most pronounced for low 15 

frequency variants (frequency < 5%), with the largest and most diverse 16 

reference sets bringing the accuracy of imputation of low frequency variants 17 

close to that of common ones. For low frequency variants, reference set 18 

diversity can improve the accuracy of imputation independent of reference 19 

sample size. HapMap3 reference sets provide significant increases in 20 

imputation accuracy relative to HapMap2, and are of particular use if highly 21 

accurate imputation of low frequency variants is required. Our results suggest 22 

that although the sample sizes from the 1000 Genomes Pilot Project will not 23 

allow reliable imputation of low frequency variants, the larger sample sizes of 24 

the main project will. 25 

26 
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1  Introduction 27 

Genome-wide association studies (GWAS) comparing thousands of disease cases and healthy controls at 28 

hundreds of thousands of single nucleotide polymorphisms (SNPs) have led to the recent discovery of 29 

hundreds of bona fide associations between common SNPs and risk for complex human diseases12. To 30 

add further value, a wide variety of statistical refinements have been applied to maximize the power of 31 

these studies. Genotype imputation is one such approach which predicts untyped markers in target (i.e. 32 

GWAS) samples using a densely typed reference set (e.g. the HapMap3). Imputation allows meta-33 

analysis of studies genotyped on different commercial SNP chips, and allows association testing of 34 

variants which are not in high LD with any single genotyped SNPs, and are thus not well captured by the 35 

chips (such as rare mutations4). 36 

Many recent papers have investigated various factors that influence imputation performance; these 37 

include method used5,6,7,8, SNP density in target sample 59, quality of reference haplotype phasing 7,8 38 

and settings of method-specific parameters 7,9. Many studies have measured how imputation 39 

performance increases with reference sample size 9,8,10. Other studies have investigated the specific 40 

composition of the reference set: Huang et al10 showed that specific mixtures of HapMap 2 populations 41 

gave better performance than any single population when performing imputation in 29 target populations 42 

from around the world. These results were reviewed by Li et al11, who recommended a combination of 43 

all HapMap2 samples for imputing into samples from certain populations. Similarly, Marchini and 44 

Howie7 showed that combining all HapMap 2 samples from all populations increased imputation 45 

performance for low frequency SNPs. More recently, the HapMap3 dataset was used12 to show that a 46 

mixture of samples from two European populations (CEU and TSI) could give improvements in 47 

imputation performance for target samples from Western Europe. 48 

Most imputation work to date has used the HapMap2 reference panel3, which comprises 60 unrelated 49 

individuals each of European and African origin, and 90 of East Asian origin, genotyped at over 2 50 

million sites. While this reference set has been shown to provide highly accurate imputation for nearly all 51 

common variation in samples of European origin, an open question remains about how the size (in terms 52 
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of number of samples and number of SNPs) and quality of new and planned reference datasets will affect 53 

imputation. Specifically, the HapMap312 reference set contains more samples (over 1000 individuals 54 

from 11 sample collections with diverse ancestry) genotyped at a restricted set of approximately 1.5 55 

million variants. Conversely, the pilot phase of the 1000 genomes project plans to release genotypes at 56 

many millions of novel sites in the relatively small HapMap2 sample set. The full project will sequence 57 

nearly all of the HapMap3 samples, as well as a number of samples from other populations, to give a 58 

high-density reference set greater in size than the HapMap. 59 

To date, no in-depth analysis has been performed to investigate the effect of reference set size and 60 

diversity in mixed-population reference sets. The release of the large, diverse HapMap3 dataset allows 61 

such an investigation. We perform imputation into European target samples using HapMap 2 and 62 

HapMap 3 reference sets of various sizes and population diversities, and measure the difference in 63 

imputation accuracy, quality score performance, and computational resources required. We also perform 64 

experiments to tease out the effect of reference set size, diversity and clossness of genetic match to the 65 

target population. Our comparative analysis focuses on three areas: (1) what effect does the higher 66 

quality of genotyping from HapMap3 compared to HapMap2 have on imputation?  (2) what 67 

improvements can the large increase in sample size and diversity of mixed reference sets have on 68 

imputation accuracy and predicted quality scores, especially for low frequency SNPs?  and (3) what can 69 

we infer about the relationship between imputation performance and closeness of match between the 70 

ancestry of reference and target samples?  71 

72 
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2  Materials and Methods 73 

2.1  Performing and Scoring Imputation 74 

For the target set, we used 1 374 individuals from the 1958 British Birth Cohort 13, genotyped on both 75 

the Illumina HumanHap550 BeadChip and Affymetrix GeneChip® Human Mapping 500k chips as our 76 

target set. We used the Illumina data to perform imputation, and checked the answers using the 77 

Affymetrix data (Illumina chips having been previously shown to be more powerful for imputation14). 78 

For the target reference sets, we used the approximately 2.5M polymorphic SNPs of the HapMap2 CEU 79 

samples, and various mixtures of HapMap3 samples, with approximately 1.4M polymorphic SNPs 80 

(Table 1). 81 

To perform the imputation we used the imputation program Beagle98. We also tested a subset of our 82 

results using IMPUTE v115 and IMPUTE v26, and compared the computation requirements of all three 83 

programs (Supplemental Table 2). For some of our analyses,  we removed poorly-imputed SNP by 84 

appling a filter that removed SNPs with a predicted dosage r2 of less than 0.9. For several analyses we 85 

compare common (MAF > 5%) and low frequency (MAF ≤ 5%) SNPs. 86 

To score the imputation results, we measured both the accuracy of imputation and the usefullness of 87 

the predicted quality scores that the imputation method provides. Accuracy was measured using dosage 88 

r2, which measures the correlation between the actual gene dosages and those predicted by imputation. 89 

The dosage r2 is useful as it is not confounded by minor allele frequency, and thus can be used to 90 

compare rare and common SNPs, as well as having a simple relationship to power in a GWAS14. For 91 

predicted quality scores, both Beagle and IMPUTE give a predicted dosage r2 for each SNP (a prediction 92 

of what the dosage r2 would be for that SNP), which was evaluated using four criteria: (1) the 93 

calibration, or mean difference between predicted and actual dosage r2 (2) the quality r2, or the 94 

correlation between predicted and actual dosage r2, (3) the number of overconfident calls, i.e. the number 95 

of SNPs that are poorly imputed despite having high predicted dosage r2, and, vice versa, (4) the number 96 
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of underconfident calls. We are particularly interested in the number of overconfident SNPs, as when 97 

genotypes are incorrectly imputed with high confidence, any differential effect of these errors between 98 

cases and controls can yield false positive associations. Following up these errors in replication studies 99 

can be a costly waste of time. 100 

2.2  Reference Set Quality 101 

While the majority of SNPs in both HapMap2 and HapMap3 are of high quality, HapMap2 data were 102 

generated using a variety of genotyping technologies in the period from 2003-2007, some of which were 103 

not as robust as the GWAS chips used to generate the HapMap3 data in 2008. To investigate whether 104 

this increase in reference set quality had a significant effect on imputation, we performed genome-wide 105 

imputation on the target set using two ‘reduced’ HapMap reference sets, and measured differences in 106 

dosage r2. These reduced sets contained only the 56 CEU samples and 1M SNPs that HapMap2 and 107 

HapMap3 have in common.  108 

2.3  Reference Set Size 109 

To assess the effect of larger HapMap sample sizes, we performed genome-wide imputation on the target 110 

set, using five reference sets of increasing size and diversity. We used the HapMap2 and HapMap3 CEU 111 

samples (HM2CEU and HM3CEU), which should be the best match to the UK target set, as well as a 112 

mixed reference set of HapMap3 European samples (CEU+TSI). To give a large, but still partially 113 

matched reference set, we used the HapMap3 European samples mixed with the Indian and Mexican 114 

samples (CEU+TSI+GIH+MEX), as these populations cluster together on the first two principal 115 

components (see Supplemental Figure 2 from 12). Finally, we examined all HapMap3 individuals 116 

(WORLD), in order to assess a very large and very diverse reference set. Sample sizes are shown in 117 

Table 2. 118 
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2.4  Reference Set Diversity 119 

We investigated the importance of population matching, independent of sample size, in two ways. 120 

Firstly, we compared genome-wide imputation using the HapMap3 CEU+TSI reference set to a 121 

CEU+JPT+CHB reference set of the same size and non-CEU proportion. This allows us to investigate 122 

the effect of adding poorly matched samples on imputation. Second, we created a number of equally-123 

sized reference sets for chromosome 17 by combining a range of mixture proportions of either CEU and 124 

TSI , or CEU and CHB+JPT. We measured the accuracy of imputation using these reference sets for low 125 

frequency variants. We denote these constant-sized mixed reference sets as CEU/TSI and 126 

CEU/CHB+JPT, in order to destinguish between reference sets in which sample size is not held constant 127 

(e.g. CEU+TSI). 128 

129 
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3  Results 130 

3.1  Reference Set Quality 131 

We found a small but significant difference due to genotyping quality (unfiiltered mean dosage r2 0.841 132 

vs 0.84, Supplemental Figure 1), but not enough to explain a meaningful difference in imputation quality 133 

between HapMap2 and HapMap3. 134 

3.2  Reference Set Size 135 

We found that HapMap3 yields a substantial increase in imputation accuracy compared to HapMap2, 136 

with the number of SNPs in the highest score category (>95%) increasing, and the number in all lower-137 

scoring categories decreasing (Figure 1). A further increase in imputation accuracy is seen when adding 138 

the HapMap3 TSI samples. The number of SNPs that pass the filter (have a predicted r2 greater than 0.9) 139 

rises as imputation accuracy increases, although this falls as samples from many populations are added 140 

due to a decrease in the imputation software’s predicted confidence (see below). The dosage r2 of filtered 141 

SNPs shows a trend of improved imputation with increasing sample sizes. This increase is statistically 142 

significant (p<1016) for all increases in sample size, with the exception of the WORLD set (Table 2). A 143 

corresponding increase is seen in computational time, especially for the WORLD set; however, the 144 

CEU+TSI+GIH+MEX reference set only takes 55% longer to process than just CEU, despite being 145 

nearly 3 times larger. 146 

The improvement for low frequency SNPs is the most striking. The HM2CEU mean dosage r2 score 147 

for unfiltered low frequency SNPs is low, especially compared to common SNPs (0.89 vs 0.96). If all 148 

samples from all HapMap3 populations are included, this gap nearly disappears (0.96 vs 0.98). In 149 

general, fewer low frequency SNPs pass the imputation quality filter (63% at most), but the accuracy of 150 

these imputed low frequency SNPs can become very high. The improvement in dosage r2 is inversely 151 
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proportion to the frequency of the SNP, with the greatest improvement observed for the very rarest SNPs 152 

(Figure 2).  153 

For small reference sets, the calibration of predicted quality scores tends towards overconfidence. As 154 

the reference set increases in size, the calibration improves, though very diverse reference sets lead the 155 

confidence scores towards underconfidence (Supplemental Table 1). The correlation between predicted 156 

and actual dosage r2 improves, though with a slight decrease for the most diverse sets. These trends are 157 

stronger in low frequency variants than in common ones; low frequency variants tend to have less well 158 

calibrated and correlated predicted quality scores. Larger reference sets decrease the number of 159 

overconfident mistakes and the number of underconfident mistakes (with the exception of the WORLD 160 

set, which causes a slight inflation in underconfident calls, Figure 3). 161 

3.3  Reference Set Diversity 162 

We found that, while the mismatched CEU+JPT+CHB reference set gives a lower imputation accuracy 163 

than CEU+TSI, it still yielded a substantial improvement over the CEU reference set alone. Half of the 164 

improvement in imputation accuracy from CEU to CEU+TSI was also gained with the CEU+JPT+CHB 165 

reference. This implies that while matching the reference set to the target set is important, even the 166 

addition of unrelated samples yields increases in imputation accuracy. 167 

Increased diversity initially correlates with increased imputation accuracy for both CEU/TSI and 168 

CEU/CHB+JPT (Figure 4), though the former is far less marked than the latter. Beyond a certain 169 

proportion of non-CEU samples accuracy starts to fall off as the effect of diversity is outweighed by the 170 

effect of mismatching. The optimum population mix is 22% for CEU/TSI, and 17% for CEU/CHB+JPT. 171 

It is only above 43% TSI do we see a decrease in imputation accuracy for adding TSI over pure CEU; for 172 

CHB+JPT this figure is 33%. This relationship is specific to low frequency variants. 173 

174 
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4  Discussion 175 

Higher quality reference data and larger sample sizes yield improved imputation accuracy. Using 176 

HapMap3 as a reference set compared to using HapMap2 demonstrates this improvement, especially at 177 

sites with a low minor allele frequency. While this result was expected we did not anticipate the 178 

substantial improvement achieved with large and genetically diverse reference sets. Including samples 179 

from such diverse populations as MEX and GIH can provide significant improvement in imputation into 180 

UK samples of alleles with a minor allele frequency of less than 5%. Larger reference sets also improve 181 

predicted quality scores, with a decrease in overconfident mistakes without inflating underconfident 182 

calls.  183 

Overall, an imputation reference set consisting of CEU, TSI, MEX and GIH improves the quality of 184 

imputation in all frequency ranges, and greater improvement for very rare SNPs was achieved with very 185 

large and highly mixed reference sets. The latter came at the cost of computational power, as well as 186 

overly conservative predicted quality scores. Imputation is robust to the precise mix of samples of 187 

closely related ancestry (such as CEU/TSI), and small amounts of divergent ancestry can actually 188 

improve accuracy (such as CEU/CHB+JPT). However, crude population matching is important, as 189 

demonstrated by the reduced accuracy of the CEU+JPT reference compared to CEU+TSI.  190 

These results imply a set of relatively simple rules for picking imputation reference sets: for the best 191 

trade-off between accuracy and computation time, the most diverse mixture of populations that still 192 

approximately cluster with the target samples of interest on a world-wide PCA plot should be used. 193 

However, if imputing genotypes for low frequency variants with high accuracy is required, all samples 194 

available should be used, with the understanding that this will increase computational time, and cause 195 

quality scores to be somewhat conservative. 196 

Of the programs we tested, Beagle takes greatest advantage of the highly divergent sample mixes, 197 

possibly because IMPUTE v2’s only uses haplotypes with small Hamming distance from the target 198 

sample during phasing, and thus is less likely to take full advantage of the more divergent haplotypes. 199 

However, this is a function of the parameter values chosen: increasing the value of k in IMPUTE v2 will 200 

increases the number of haplotypes considered, thus increasing accuracy at the expense of resource use. 201 
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As IMPUTE v1 always uses all reference haplotypes, it seems likely that it would also be able to take 202 

advantage of divergent populations, but its prohibitive resource usage makes it a poor choice for large 203 

reference sets.  204 

That badly matched reference sets lead to increasingly conservative quality scores is an interesting 205 

observation. This effect is observed in Beagle and IMPUTE V1, but not in IMPUTE v2 (Table S2) is 206 

more puzzling. This lowering of predicted quality is likely to be due to the poor match of haplotype 207 

frequencies in the reference and target sets. As the true haplotypes in the target are likely to be rarer in 208 

the reference, this will effectively lower the prior on correctly guessed haplotypes, leading a deflation of 209 

the posterior. IMPUTE v2, by only examining haplotypes close to the target sample, will not suffer from 210 

this problem. 211 

It should be noted that these results were obtained by imputation into European individuals, and 212 

further studies will be needed to assess how these conclusions generalize to other populations, notably 213 

African populations. 214 

Accurate imputation of low frequency SNPs using HapMap3 samples could allow new associations 215 

to be mined from existing GWAS datasets. HapMap3 contains nearly 150 000 SNPs with a frequency of 216 

less than 5%, a large fraction of which can be accurately imputed. This approach will be even more 217 

powerful when applied to the millions of new low frequency variants catalogued by the 1000 Genomes 218 

Project. The promise of such analyses must be tempered, however, by the observation that high quality 219 

genotypes in hundreds of samples will be required to provide accurate imputation. The HapMap2-like 220 

sample sizes of the 1000 Genomes pilot, coupled with less accurate genotypes derived from low 221 

coverage sequence may well not be sufficient to allow powerful imputation. However, the diverse and 222 

extensive set of samples being sequenced for the final project (including TSI, UK and Finnish samples), 223 

coupled with improvement on genotype calls from sequence offer the exciting prospect of imputing 224 

millions of low frequency variants into existing GWAS datasets. 225 
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Figure Titles and Legends 

Figure 1: Effects Of Reference Set On Imputation Accuracy 

A histogram of dosage r2 scores across unfiltered SNPs genome-wide for samples imputed with 

HapMap2 and HapMap3 CEU, as well as HapMap3 CEU+TSI, and a reference set consisting of 

HapMap3 CEU+JPT+CHB of the same size as the CEU+TSI set. 

 

Figure 2: Imputation Improvement Is Most Striking At Low 

Allele Frequency 

The genome-wide increase in dosage r2 for unfiltered imputed SNPs relative to HapMap2 CEU, plotted 

against minor allele frequency, for the four HapMap3 sample mixtures. 

 

Figure 3: Overconfident And Underconfident Imputation 

The rates of overconfident and underconfident mistakes in imputation, using various reference sets. An 

overconfident mistake is any SNP that is imputed with a predicted dosage r2 > 0.9, but an actual dosage 

r2 ≤ 0.8, and an underconfident mistake has a predicted dosage r2 ≤ 0.8 and an actual dosage r2 > 0.9. 

 

Figure 4: Ancestry Mixtures Can Improve Rare Imputation 

The relationship between the mean dosage r2 across unfiltered SNPs and the proportion of non-CEU 

samples in a 100-sample reference set. The trend lines are quadratic least squared regression curves, and 

both explain the data significantly better than a linear relationship (N = 207, p < 10−4 and N = 159, p < 

10−16 for TSI and CHB+JPT respectively). The insert shows an expansion of the trend lines between 0 

and 50%. 
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Tables 

Table 1: HapMap Samples 

A summary of the HapMap sample sets and their sizes in the HapMap2 and HapMap3 datasets. We used 

release 21 of the phased HapMap2 data, and release 2 of the phased HapMap3 data. 

 

Population Code HapMap2 HapMap3 
African Americans ASW 0 63 
North Europeans CEU 60 117 
Chinese Americans CHD 0 85 
Gujarati GIH 0 88 
Japanese and Chinese JPT+CHB 90 170 
Luhya LWK 0 90 
Mexicans MEX 0 52 
Maasai MKK 0 143 
Toscani TSI 0 88 
Yoruba YRI 60 155 
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Table 2: Effect Of Reference Set On Imputation 

Information on Genome-Wide imputation using various reference sets. The CPU columns shows the 

number of CPU hours used in the imputation, which increases with the size and SNP density of the 

reference set. The proportion of SNPs that passed the ffil (predicted dosage r2 ≥ 0.9), and the mean 

dosage r2 of those that passed, are shown for common (MAF > 0.05) and rare (MAF ≤ 0.05) SNPs. 

 

Reference Set Size CPU Passed Filter Filtered Dosage r2 
   Common Rare Common Rare 
HM2CEU 60 514ha 83.7%b 52.5%b 0.957 0.889 
CEU 117 296h 85.1% 59.7% 0.968 0.921 
CEU+TSI 205 350h 86.1% 63.1% 0.974 0.934 
CEU+TSI+GIH+MEX 345 458h 85.3% 60.3% 0.978 0.957 
WORLD 1010 1207h 83.8% 55.5% 0.979 0.968 
  

a HM2 has a large SNP set, hence the longer imputation time  

b HM2 has a larger number of SNPs in total 
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