

Imputation of low frequency variants is using the HapMap3 benefits from large, diverse reference sets

Luke Jostins, Katherine Morley, Jeffrey C Barrett

▶ To cite this version:

Luke Jostins, Katherine Morley, Jeffrey C Barrett. Imputation of low frequency variants is using the HapMap3 benefits from large, diverse reference sets. European Journal of Human Genetics, 2011, 10.1038/ejhg.2011.10 . hal-00618484

HAL Id: hal-00618484 https://hal.science/hal-00618484

Submitted on 2 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Imputation of low frequency variants using the HapMap3 benefits from large, diverse reference sets

Short Title: Large, diverse imputation reference sets

Luke Jostins,¹ Katherine I. Morley,^{1,2} Jeffrey C. Barrett^{1*}

1/6/2011

¹ Statistical and Computational Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK

² Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, VIC 4010, Australia

* Corresponding Author: barrett@sanger.ac.uk, Tel: +44 (0)1223 492351, Fax: +44 (0)1223 496826 Keywords: Imputation, Reference Sets, Rare Variants Abstract

3 Imputation allows the inference of unobserved genotypes in low-density 4 datasets, and is often used to test for disease association at variants that are 5 poorly captured by standard genotyping chips (such as low frequency variants). 6 While much effort has gone into developing the best imputation algorithms, 7 less is known about the effects of reference set choice on imputation accuracy. 8 We assess the improvements afforded by increases in reference size and 9 diversity, specifically comparing the HapMap2 dataset that has been used to 10 date for imputation, and the new HapMap3 dataset, which contains more 11 samples from a more diverse range of populations. We find that, for imputation 12 into Western European samples, the HapMap3 reference provides more 13 accurate imputation with better calibrated quality scores than HapMap2, and 14 that increasing the number of HapMap3 populations included in the reference set grants further improvements. Improvements are most pronounced for low 15 16 frequency variants (frequency < 5%), with the largest and most diverse 17 reference sets bringing the accuracy of imputation of low frequency variants 18 close to that of common ones. For low frequency variants, reference set 19 diversity can improve the accuracy of imputation independent of reference 20 sample size. HapMap3 reference sets provide significant increases in 21 imputation accuracy relative to HapMap2, and are of particular use if highly 22 accurate imputation of low frequency variants is required. Our results suggest 23 that although the sample sizes from the 1000 Genomes Pilot Project will not 24 allow reliable imputation of low frequency variants, the larger sample sizes of 25 the main project will.

26

1

27 **1 Introduction**

28 Genome-wide association studies (GWAS) comparing thousands of disease cases and healthy controls at 29 hundreds of thousands of single nucleotide polymorphisms (SNPs) have led to the recent discovery of 30 hundreds of *bona fide* associations between common SNPs and risk for complex human diseases¹². To 31 add further value, a wide variety of statistical refinements have been applied to maximize the power of 32 these studies. Genotype imputation is one such approach which predicts untyped markers in target (i.e. 33 GWAS) samples using a densely typed reference set (e.g. the HapMap³). Imputation allows meta-34 analysis of studies genotyped on different commercial SNP chips, and allows association testing of 35 variants which are not in high LD with any single genotyped SNPs, and are thus not well captured by the 36 chips (such as rare mutations⁴).

37 Many recent papers have investigated various factors that influence imputation performance; these include method used^{5,6,7,8}, SNP density in target sample ⁵⁹, quality of reference haplotype phasing ^{7,8} 38 and settings of method-specific parameters ^{7,9}. Many studies have measured how imputation 39 performance increases with reference sample size 9,8,10. Other studies have investigated the specific 40 composition of the reference set: Huang et al¹⁰ showed that specific mixtures of HapMap 2 populations 41 42 gave better performance than any single population when performing imputation in 29 target populations 43 from around the world. These results were reviewed by Li et al¹¹, who recommended a combination of 44 all HapMap2 samples for imputing into samples from certain populations. Similarly, Marchini and Howie⁷ showed that combining all HapMap 2 samples from all populations increased imputation 45 46 performance for low frequency SNPs. More recently, the HapMap3 dataset was used¹² to show that a 47 mixture of samples from two European populations (CEU and TSI) could give improvements in 48 imputation performance for target samples from Western Europe.

Most imputation work to date has used the HapMap2 reference panel³, which comprises 60 unrelated individuals each of European and African origin, and 90 of East Asian origin, genotyped at over 2 million sites. While this reference set has been shown to provide highly accurate imputation for nearly all common variation in samples of European origin, an open question remains about how the size (in terms of number of samples and number of SNPs) and quality of new and planned reference datasets will affect imputation. Specifically, the HapMap3¹² reference set contains more samples (over 1000 individuals from 11 sample collections with diverse ancestry) genotyped at a restricted set of approximately 1.5 million variants. Conversely, the pilot phase of the 1000 genomes project plans to release genotypes at many millions of novel sites in the relatively small HapMap2 sample set. The full project will sequence nearly all of the HapMap3 samples, as well as a number of samples from other populations, to give a high-density reference set greater in size than the HapMap.

60 To date, no in-depth analysis has been performed to investigate the effect of reference set size and 61 diversity in mixed-population reference sets. The release of the large, diverse HapMap3 dataset allows 62 such an investigation. We perform imputation into European target samples using HapMap 2 and 63 HapMap 3 reference sets of various sizes and population diversities, and measure the difference in 64 imputation accuracy, quality score performance, and computational resources required. We also perform 65 experiments to tease out the effect of reference set size, diversity and clossness of genetic match to the 66 target population. Our comparative analysis focuses on three areas: (1) what effect does the higher 67 quality of genotyping from HapMap3 compared to HapMap2 have on imputation? (2) what 68 improvements can the large increase in sample size and diversity of mixed reference sets have on 69 imputation accuracy and predicted quality scores, especially for low frequency SNPs? and (3) what can 70 we infer about the relationship between imputation performance and closeness of match between the 71 ancestry of reference and target samples?

73 **2 Materials and Methods**

74 **2.1 Performing and Scoring Imputation**

For the target set, we used 1 374 individuals from the 1958 British Birth Cohort ¹³, genotyped on both the Illumina HumanHap550 BeadChip and Affymetrix GeneChip® Human Mapping 500k chips as our target set. We used the Illumina data to perform imputation, and checked the answers using the Affymetrix data (Illumina chips having been previously shown to be more powerful for imputation¹⁴). For the target reference sets, we used the approximately 2.5M polymorphic SNPs of the HapMap2 CEU samples, and various mixtures of HapMap3 samples, with approximately 1.4M polymorphic SNPs (Table 1).

To perform the imputation we used the imputation program Beagle⁹⁸. We also tested a subset of our results using IMPUTE v1¹⁵ and IMPUTE v2⁶, and compared the computation requirements of all three programs (Supplemental Table 2). For some of our analyses, we removed poorly-imputed SNP by appling a filter that removed SNPs with a predicted dosage r^2 of less than 0.9. For several analyses we compare common (MAF > 5%) and low frequency (MAF \leq 5%) SNPs.

87 To score the imputation results, we measured both the accuracy of imputation and the usefullness of 88 the predicted quality scores that the imputation method provides. Accuracy was measured using dosage r^2 , which measures the correlation between the actual gene dosages and those predicted by imputation. 89 The dosage r^2 is useful as it is not confounded by minor allele frequency, and thus can be used to 90 compare rare and common SNPs, as well as having a simple relationship to power in a GWAS¹⁴. For 91 predicted quality scores, both Beagle and IMPUTE give a predicted dosage r^2 for each SNP (a prediction 92 of what the dosage r^2 would be for that SNP), which was evaluated using four criteria: (1) the 93 calibration, or mean difference between predicted and actual dosage r^2 (2) the quality r^2 , or the 94 correlation between predicted and actual dosage r^2 , (3) the number of overconfident calls, i.e. the number 95 of SNPs that are poorly imputed despite having high predicted dosage r^2 , and, vice versa, (4) the number 96

97 of underconfident calls. We are particularly interested in the number of overconfident SNPs, as when 98 genotypes are incorrectly imputed with high confidence, any differential effect of these errors between 99 cases and controls can yield false positive associations. Following up these errors in replication studies 100 can be a costly waste of time.

101 **2.2 Reference Set Quality**

While the majority of SNPs in both HapMap2 and HapMap3 are of high quality, HapMap2 data were generated using a variety of genotyping technologies in the period from 2003-2007, some of which were not as robust as the GWAS chips used to generate the HapMap3 data in 2008. To investigate whether this increase in reference set quality had a significant effect on imputation, we performed genome-wide imputation on the target set using two 'reduced' HapMap reference sets, and measured differences in dosage r^2 . These reduced sets contained only the 56 CEU samples and 1M SNPs that HapMap2 and HapMap3 have in common.

109 2.3 Reference Set Size

110 To assess the effect of larger HapMap sample sizes, we performed genome-wide imputation on the target 111 set, using five reference sets of increasing size and diversity. We used the HapMap2 and HapMap3 CEU 112 samples (HM2CEU and HM3CEU), which should be the best match to the UK target set, as well as a 113 mixed reference set of HapMap3 European samples (CEU+TSI). To give a large, but still partially 114 matched reference set, we used the HapMap3 European samples mixed with the Indian and Mexican 115 samples (CEU+TSI+GIH+MEX), as these populations cluster together on the first two principal components (see Supplemental Figure 2 from 12). Finally, we examined all HapMap3 individuals 116 117 (WORLD), in order to assess a very large and very diverse reference set. Sample sizes are shown in 118 Table 2.

119 2.4 Reference Set Diversity

120 We investigated the importance of population matching, independent of sample size, in two ways. 121 Firstly, we compared genome-wide imputation using the HapMap3 CEU+TSI reference set to a 122 CEU+JPT+CHB reference set of the same size and non-CEU proportion. This allows us to investigate 123 the effect of adding poorly matched samples on imputation. Second, we created a number of equally-124 sized reference sets for chromosome 17 by combining a range of mixture proportions of either CEU and 125 TSI, or CEU and CHB+JPT. We measured the accuracy of imputation using these reference sets for low 126 frequency variants. We denote these constant-sized mixed reference sets as CEU/TSI and 127 CEU/CHB+JPT, in order to destinguish between reference sets in which sample size is not held constant 128 (e.g. CEU+TSI).

130 **3 Results**

131 **3.1 Reference Set Quality**

We found a small but significant difference due to genotyping quality (unfiiltered mean dosage r^2 0.841 vs 0.84, Supplemental Figure 1), but not enough to explain a meaningful difference in imputation quality between HapMap2 and HapMap3.

135 **3.2 Reference Set Size**

136 We found that HapMap3 yields a substantial increase in imputation accuracy compared to HapMap2, 137 with the number of SNPs in the highest score category (>95%) increasing, and the number in all lower-138 scoring categories decreasing (Figure 1). A further increase in imputation accuracy is seen when adding the HapMap3 TSI samples. The number of SNPs that pass the filter (have a predicted r^2 greater than 0.9) 139 140 rises as imputation accuracy increases, although this falls as samples from many populations are added due to a decrease in the imputation software's predicted confidence (see below). The dosage r^2 of filtered 141 142 SNPs shows a trend of improved imputation with increasing sample sizes. This increase is statistically significant ($p < 10^{16}$) for all increases in sample size, with the exception of the WORLD set (Table 2). A 143 144 corresponding increase is seen in computational time, especially for the WORLD set; however, the 145 CEU+TSI+GIH+MEX reference set only takes 55% longer to process than just CEU, despite being 146 nearly 3 times larger.

The improvement for low frequency SNPs is the most striking. The HM2CEU mean dosage r^2 score for unfiltered low frequency SNPs is low, especially compared to common SNPs (0.89 vs 0.96). If all samples from all HapMap3 populations are included, this gap nearly disappears (0.96 vs 0.98). In general, fewer low frequency SNPs pass the imputation quality filter (63% at most), but the accuracy of these imputed low frequency SNPs can become very high. The improvement in dosage r^2 is inversely proportion to the frequency of the SNP, with the greatest improvement observed for the very rarest SNPs(Figure 2).

154 For small reference sets, the calibration of predicted quality scores tends towards overconfidence. As 155 the reference set increases in size, the calibration improves, though very diverse reference sets lead the 156 confidence scores towards underconfidence (Supplemental Table 1). The correlation between predicted and actual dosage r^2 improves, though with a slight decrease for the most diverse sets. These trends are 157 158 stronger in low frequency variants than in common ones; low frequency variants tend to have less well 159 calibrated and correlated predicted quality scores. Larger reference sets decrease the number of 160 overconfident mistakes and the number of underconfident mistakes (with the exception of the WORLD 161 set, which causes a slight inflation in underconfident calls, Figure 3).

162 **3.3 Reference Set Diversity**

We found that, while the mismatched CEU+JPT+CHB reference set gives a lower imputation accuracy than CEU+TSI, it still yielded a substantial improvement over the CEU reference set alone. Half of the improvement in imputation accuracy from CEU to CEU+TSI was also gained with the CEU+JPT+CHB reference. This implies that while matching the reference set to the target set is important, even the addition of unrelated samples yields increases in imputation accuracy.

Increased diversity initially correlates with increased imputation accuracy for both CEU/TSI and CEU/CHB+JPT (Figure 4), though the former is far less marked than the latter. Beyond a certain proportion of non-CEU samples accuracy starts to fall off as the effect of diversity is outweighed by the effect of mismatching. The optimum population mix is 22% for CEU/TSI, and 17% for CEU/CHB+JPT. It is only above 43% TSI do we see a decrease in imputation accuracy for adding TSI over pure CEU; for CHB+JPT this figure is 33%. This relationship is specific to low frequency variants.

175 **4 Discussion**

176 Higher quality reference data and larger sample sizes yield improved imputation accuracy. Using 177 HapMap3 as a reference set compared to using HapMap2 demonstrates this improvement, especially at 178 sites with a low minor allele frequency. While this result was expected we did not anticipate the 179 substantial improvement achieved with large and genetically diverse reference sets. Including samples 180 from such diverse populations as MEX and GIH can provide significant improvement in imputation into 181 UK samples of alleles with a minor allele frequency of less than 5%. Larger reference sets also improve 182 predicted quality scores, with a decrease in overconfident mistakes without inflating underconfident 183 calls.

Overall, an imputation reference set consisting of CEU, TSI, MEX and GIH improves the quality of imputation in all frequency ranges, and greater improvement for very rare SNPs was achieved with very large and highly mixed reference sets. The latter came at the cost of computational power, as well as overly conservative predicted quality scores. Imputation is robust to the precise mix of samples of closely related ancestry (such as CEU/TSI), and small amounts of divergent ancestry can actually improve accuracy (such as CEU/CHB+JPT). However, crude population matching is important, as demonstrated by the reduced accuracy of the CEU+JPT reference compared to CEU+TSI.

These results imply a set of relatively simple rules for picking imputation reference sets: for the best trade-off between accuracy and computation time, the most diverse mixture of populations that still approximately cluster with the target samples of interest on a world-wide PCA plot should be used. However, if imputing genotypes for low frequency variants with high accuracy is required, all samples available should be used, with the understanding that this will increase computational time, and cause quality scores to be somewhat conservative.

197 Of the programs we tested, Beagle takes greatest advantage of the highly divergent sample mixes, 198 possibly because IMPUTE v2's only uses haplotypes with small Hamming distance from the target 199 sample during phasing, and thus is less likely to take full advantage of the more divergent haplotypes. 200 However, this is a function of the parameter values chosen: increasing the value of k in IMPUTE v2 will 201 increases the number of haplotypes considered, thus increasing accuracy at the expense of resource use. As IMPUTE v1 always uses all reference haplotypes, it seems likely that it would also be able to take advantage of divergent populations, but its prohibitive resource usage makes it a poor choice for large reference sets.

That badly matched reference sets lead to increasingly conservative quality scores is an interesting observation. This effect is observed in Beagle and IMPUTE V1, but not in IMPUTE v2 (Table S2) is more puzzling. This lowering of predicted quality is likely to be due to the poor match of haplotype frequencies in the reference and target sets. As the true haplotypes in the target are likely to be rarer in the reference, this will effectively lower the prior on correctly guessed haplotypes, leading a deflation of the posterior. IMPUTE v2, by only examining haplotypes close to the target sample, will not suffer from this problem.

It should be noted that these results were obtained by imputation into European individuals, and further studies will be needed to assess how these conclusions generalize to other populations, notably African populations.

215 Accurate imputation of low frequency SNPs using HapMap3 samples could allow new associations 216 to be mined from existing GWAS datasets. HapMap3 contains nearly 150 000 SNPs with a frequency of 217 less than 5%, a large fraction of which can be accurately imputed. This approach will be even more 218 powerful when applied to the millions of new low frequency variants catalogued by the 1000 Genomes 219 Project. The promise of such analyses must be tempered, however, by the observation that high quality 220 genotypes in hundreds of samples will be required to provide accurate imputation. The HapMap2-like 221 sample sizes of the 1000 Genomes pilot, coupled with less accurate genotypes derived from low 222 coverage sequence may well not be sufficient to allow powerful imputation. However, the diverse and 223 extensive set of samples being sequenced for the final project (including TSI, UK and Finnish samples), 224 coupled with improvement on genotype calls from sequence offer the exciting prospect of imputing 225 millions of low frequency variants into existing GWAS datasets.

226 Acknowledgements

The authors would like to thank Carl Anderson, Richard Durbin and Eleftheria Zeggini for helpful
comments on this manuscript. JCB is funded by Wellcome Trust grant WT089120/Z/09/Z.

229 Conflict of Interest

230 The authors declare no conflict of interest.

231 Supplemental Data

232 Supplementary information is available at the European Journal of Human Genetics' website.

References

- Hindorff, L., Sethupathy, P., Junkins, H., *et al* (2009). Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. U.S.A. *106*, 9362–9367.
- [2] Zhernakova, A., van Diemen, C., and Wijmenga, C. (2009). Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet. 10, 43–55.
- [3] Frazer, K., Ballinger, D., Cox, D., *et al.* (2007). A second generation human haplotype map of over
 3.1 million SNPs. Nature 449, 851–861.
- [4] Barrett, J. and Cardon, L. (2006). Evaluating coverage of genome-wide association studies. Nat. Genet. 38, 659–662.
- [5] Nothnagel, M., Ellinghaus, D., Schreiber, S., Krawczak, M., and Franke, A. (2009). A comprehensive evaluation of SNP genotype imputation. Hum. Genet. *125*, 163–171.
- [6] Howie, B., Donnelly, P., and Marchini, J. (2009). A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529.
- [7] Marchini, J. and Howie, B. (2010). Genotype imputation for genome-wide association studies. Nat. Rev. Genet. pp. 499–511.
- [8] Browning, B. and Browning, S. (2009). A unified approach to genotype imputation and haplotypephase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210– 223.
- Browning, S. and Browning, B. (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. *81*, 1084–1097.
- [10] Huang, L., Li, Y., Singleton, A., Hardy, J., Abecasis, G., Rosenberg, N., and Scheet, P. (2009).
 Genotype-imputation accuracy across worldwide human populations. Am. J. Hum. Genet. 84, 235–250.
- [11] Li, Y., Willer, C., Sanna, S., and Abecasis, G. (2009). Genotype imputation. Annu Rev Genomics Hum Genet 10, 387–406.

- [12] The International HapMap3 Consortium. (2010). Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58.
- [13] Power, C. and Elliott, J. (2006). Cohort profile: 1958 British birth cohort (National Child Development Study). Int J Epidemiol 35, 34–41.
- [14] Anderson, C., Pettersson, F., Barrett, J., *et al* (2008). Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms. Am. J. Hum. Genet. *83*, 112–119.
- [15] Marchini, J., Howie, B., Myers, S., McVean, G., and Donnelly, P. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913.

Figure Titles and Legends

Figure 1: Effects Of Reference Set On Imputation Accuracy

A histogram of dosage r^2 scores across unfiltered SNPs genome-wide for samples imputed with HapMap2 and HapMap3 CEU, as well as HapMap3 CEU+TSI, and a reference set consisting of HapMap3 CEU+JPT+CHB of the same size as the CEU+TSI set.

Figure 2: Imputation Improvement Is Most Striking At Low Allele Frequency

The genome-wide increase in dosage r^2 for unfiltered imputed SNPs relative to HapMap2 CEU, plotted against minor allele frequency, for the four HapMap3 sample mixtures.

Figure 3: Overconfident And Underconfident Imputation

The rates of overconfident and underconfident mistakes in imputation, using various reference sets. An overconfident mistake is any SNP that is imputed with a predicted dosage $r^2 > 0.9$, but an actual dosage $r^2 \le 0.8$, and an underconfident mistake has a predicted dosage $r^2 \le 0.8$ and an actual dosage $r^2 > 0.9$.

Figure 4: Ancestry Mixtures Can Improve Rare Imputation

The relationship between the mean dosage r^2 across unfiltered SNPs and the proportion of non-CEU samples in a 100-sample reference set. The trend lines are quadratic least squared regression curves, and both explain the data significantly better than a linear relationship (N = 207, p < 10^{-4} and N = 159, p < 10^{-16} for TSI and CHB+JPT respectively). The insert shows an expansion of the trend lines between 0 and 50%.

Tables

Table 1: HapMap Samples

A summary of the HapMap sample sets and their sizes in the HapMap2 and HapMap3 datasets. We used release 21 of the phased HapMap2 data, and release 2 of the phased HapMap3 data.

Population	Code	HapMap2	НарМар3
African Americans	ASW	0	63
North Europeans	CEU	60	117
Chinese Americans	CHD	0	85
Gujarati	GIH	0	88
Japanese and Chinese	JPT+CHB	90	170
Luhya	LWK	0	90
Mexicans	MEX	0	52
Maasai	MKK	0	143
Toscani	TSI	0	88
Yoruba	YRI	60	155

Table 2: Effect Of Reference Set On Imputation

Information on Genome-Wide imputation using various reference sets. The CPU columns shows the number of CPU hours used in the imputation, which increases with the size and SNP density of the reference set. The proportion of SNPs that passed the ffil (predicted dosage $r^2 \ge 0.9$), and the mean dosage r^2 of those that passed, are shown for common (MAF > 0.05) and rare (MAF ≤ 0.05) SNPs.

Reference Set	Size	CPU	Passed Filter		Filtered Dosage r^2	
			Common	Rare	Common	Rare
HM2CEU	60	514h ^a	83.7% ^b	52.5% ^b	0.957	0.889
CEU	117	296h	85.1%	59.7%	0.968	0.921
CEU+TSI	205	350h	86.1%	63.1%	0.974	0.934
CEU+TSI+GIH+MEX	345	458h	85.3%	60.3%	0.978	0.957
WORLD	1010	1207h	83.8%	55.5%	0.979	0.968

^{*a*} HM2 has a large SNP set, hence the longer imputation time

^b HM2 has a larger number of SNPs in total

MAF

% Non-CEU in Reference