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Imputation of low frequency variants is using the HapMap3 benefits from large, diverse reference sets

Introduction

Genome-wide association studies (GWAS) comparing thousands of disease cases and healthy controls at hundreds of thousands of single nucleotide polymorphisms (SNPs) have led to the recent discovery of hundreds of bona fide associations between common SNPs and risk for complex human diseases [START_REF]Integrating common and rare genetic variation in diverse human populations[END_REF] . To add further value, a wide variety of statistical refinements have been applied to maximize the power of these studies. Genotype imputation is one such approach which predicts untyped markers in target (i.e. GWAS) samples using a densely typed reference set (e.g. the HapMap 3 ). Imputation allows metaanalysis of studies genotyped on different commercial SNP chips, and allows association testing of variants which are not in high LD with any single genotyped SNPs, and are thus not well captured by the chips (such as rare mutations [START_REF] Barrett | Evaluating coverage of genome-wide association studies[END_REF] ).

Many recent papers have investigated various factors that influence imputation performance; these include method used [START_REF] Nothnagel | A comprehensive evaluation of SNP genotype imputation[END_REF][START_REF] Howie | A flexible and accurate genotype imputation method for the next generation of genome-wide association studies[END_REF][START_REF] Marchini | Genotype imputation for genome-wide association studies[END_REF][START_REF] Browning | A unified approach to genotype imputation and haplotypephase inference for large data sets of trios and unrelated individuals[END_REF] , SNP density in target sample 59 , quality of reference haplotype phasing [START_REF] Marchini | Genotype imputation for genome-wide association studies[END_REF][START_REF] Browning | A unified approach to genotype imputation and haplotypephase inference for large data sets of trios and unrelated individuals[END_REF] and settings of method-specific parameters [START_REF] Marchini | Genotype imputation for genome-wide association studies[END_REF][START_REF] Browning | Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering[END_REF] . Many studies have measured how imputation performance increases with reference sample size [START_REF] Browning | Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering[END_REF][START_REF] Browning | A unified approach to genotype imputation and haplotypephase inference for large data sets of trios and unrelated individuals[END_REF][START_REF] Huang | Genotype-imputation accuracy across worldwide human populations[END_REF] . Other studies have investigated the specific composition of the reference set: Huang et al [START_REF] Huang | Genotype-imputation accuracy across worldwide human populations[END_REF] showed that specific mixtures of HapMap 2 populations gave better performance than any single population when performing imputation in 29 target populations from around the world. These results were reviewed by Li et al [START_REF] Li | Genotype imputation[END_REF] , who recommended a combination of all HapMap2 samples for imputing into samples from certain populations. Similarly, Marchini and Howie [START_REF] Marchini | Genotype imputation for genome-wide association studies[END_REF] showed that combining all HapMap 2 samples from all populations increased imputation performance for low frequency SNPs. More recently, the HapMap3 dataset was used [START_REF]Integrating common and rare genetic variation in diverse human populations[END_REF] to show that a mixture of samples from two European populations (CEU and TSI) could give improvements in imputation performance for target samples from Western Europe.

Most imputation work to date has used the HapMap2 reference panel 3 , which comprises 60 unrelated individuals each of European and African origin, and 90 of East Asian origin, genotyped at over 2 million sites. While this reference set has been shown to provide highly accurate imputation for nearly all common variation in samples of European origin, an open question remains about how the size (in terms of number of samples and number of SNPs) and quality of new and planned reference datasets will affect imputation. Specifically, the HapMap3 12 reference set contains more samples (over 1000 individuals from 11 sample collections with diverse ancestry) genotyped at a restricted set of approximately 1.5 million variants. Conversely, the pilot phase of the 1000 genomes project plans to release genotypes at many millions of novel sites in the relatively small HapMap2 sample set. The full project will sequence nearly all of the HapMap3 samples, as well as a number of samples from other populations, to give a high-density reference set greater in size than the HapMap.

To date, no in-depth analysis has been performed to investigate the effect of reference set size and diversity in mixed-population reference sets. The release of the large, diverse HapMap3 dataset allows such an investigation. We perform imputation into European target samples using HapMap 2 and HapMap 3 reference sets of various sizes and population diversities, and measure the difference in imputation accuracy, quality score performance, and computational resources required. We also perform experiments to tease out the effect of reference set size, diversity and clossness of genetic match to the target population. Our comparative analysis focuses on three areas: (1) what effect does the higher quality of genotyping from HapMap3 compared to HapMap2 have on imputation? (2) what improvements can the large increase in sample size and diversity of mixed reference sets have on imputation accuracy and predicted quality scores, especially for low frequency SNPs? and (3) what can we infer about the relationship between imputation performance and closeness of match between the ancestry of reference and target samples?

2 Materials and Methods

Performing and Scoring Imputation

For the target set, we used 1 374 individuals from the 1958 British Birth Cohort [START_REF] Power | Cohort profile: 1958 British birth cohort (National Child Development Study)[END_REF] , genotyped on both the Illumina HumanHap550 BeadChip and Affymetrix GeneChip® Human Mapping 500k chips as our target set. We used the Illumina data to perform imputation, and checked the answers using the Affymetrix data (Illumina chips having been previously shown to be more powerful for imputation [START_REF] Anderson | Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms[END_REF] ).

For the target reference sets, we used the approximately 2.5M polymorphic SNPs of the HapMap2 CEU samples, and various mixtures of HapMap3 samples, with approximately 1.4M polymorphic SNPs (Table 1).

To perform the imputation we used the imputation program Beagle 98 . We also tested a subset of our results using IMPUTE v1 [START_REF] Marchini | A new multipoint method for genome-wide association studies by imputation of genotypes[END_REF] and IMPUTE v2 [START_REF] Howie | A flexible and accurate genotype imputation method for the next generation of genome-wide association studies[END_REF] , and compared the computation requirements of all three programs (Supplemental Table 2). For some of our analyses, we removed poorly-imputed SNP by appling a filter that removed SNPs with a predicted dosage r 2 of less than 0.9. For several analyses we compare common (MAF > 5%) and low frequency (MAF ≤ 5%) SNPs.

To score the imputation results, we measured both the accuracy of imputation and the usefullness of the predicted quality scores that the imputation method provides. Accuracy was measured using dosage r 2 , which measures the correlation between the actual gene dosages and those predicted by imputation.

The dosage r 2 is useful as it is not confounded by minor allele frequency, and thus can be used to compare rare and common SNPs, as well as having a simple relationship to power in a GWAS [START_REF] Anderson | Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms[END_REF] . For predicted quality scores, both Beagle and IMPUTE give a predicted dosage r 2 for each SNP (a prediction of what the dosage r 2 would be for that SNP), which was evaluated using four criteria: (1) the calibration, or mean difference between predicted and actual dosage r 2 (2) the quality r 2 , or the correlation between predicted and actual dosage r 2 , (3) the number of overconfident calls, i.e. the number of SNPs that are poorly imputed despite having high predicted dosage r 2 , and, vice versa, (4) the number of underconfident calls. We are particularly interested in the number of overconfident SNPs, as when genotypes are incorrectly imputed with high confidence, any differential effect of these errors between cases and controls can yield false positive associations. Following up these errors in replication studies can be a costly waste of time.

Reference Set Quality

While the majority of SNPs in both HapMap2 and HapMap3 are of high quality, HapMap2 data were generated using a variety of genotyping technologies in the period from 2003-2007, some of which were not as robust as the GWAS chips used to generate the HapMap3 data in 2008. To investigate whether this increase in reference set quality had a significant effect on imputation, we performed genome-wide imputation on the target set using two 'reduced' HapMap reference sets, and measured differences in dosage r 2 . These reduced sets contained only the 56 CEU samples and 1M SNPs that HapMap2 and HapMap3 have in common.

Reference Set Size

To assess the effect of larger HapMap sample sizes, we performed genome-wide imputation on the target set, using five reference sets of increasing size and diversity. We used the HapMap2 and HapMap3 CEU samples (HM2CEU and HM3CEU), which should be the best match to the UK target set, as well as a mixed reference set of HapMap3 European samples (CEU+TSI). To give a large, but still partially matched reference set, we used the HapMap3 European samples mixed with the Indian and Mexican samples (CEU+TSI+GIH+MEX), as these populations cluster together on the first two principal components (see Supplemental Figure 2 from [START_REF]Integrating common and rare genetic variation in diverse human populations[END_REF] ). Finally, we examined all HapMap3 individuals (WORLD), in order to assess a very large and very diverse reference set. Sample sizes are shown in Table 2.

Reference Set Diversity

We investigated the importance of population matching, independent of sample size, in two ways.

Firstly, we compared genome-wide imputation using the HapMap3 CEU+TSI reference set to a CEU+JPT+CHB reference set of the same size and non-CEU proportion. This allows us to investigate the effect of adding poorly matched samples on imputation. Second, we created a number of equallysized reference sets for chromosome 17 by combining a range of mixture proportions of either CEU and TSI , or CEU and CHB+JPT. We measured the accuracy of imputation using these reference sets for low frequency variants. We denote these constant-sized mixed reference sets as CEU/TSI and CEU/CHB+JPT, in order to destinguish between reference sets in which sample size is not held constant (e.g. CEU+TSI).

Results

Reference Set Quality

We found a small but significant difference due to genotyping quality (unfiiltered mean dosage r 2 0.841 vs 0.84, Supplemental Figure 1), but not enough to explain a meaningful difference in imputation quality between HapMap2 and HapMap3.

Reference Set Size

We found that HapMap3 yields a substantial increase in imputation accuracy compared to HapMap2, with the number of SNPs in the highest score category (>95%) increasing, and the number in all lowerscoring categories decreasing (Figure 1). A further increase in imputation accuracy is seen when adding the HapMap3 TSI samples. The number of SNPs that pass the filter (have a predicted r 2 greater than 0.9) rises as imputation accuracy increases, although this falls as samples from many populations are added due to a decrease in the imputation software's predicted confidence (see below). The dosage r 2 of filtered SNPs shows a trend of improved imputation with increasing sample sizes. This increase is statistically significant (p<10 16 ) for all increases in sample size, with the exception of the WORLD set (Table 2). A corresponding increase is seen in computational time, especially for the WORLD set; however, the CEU+TSI+GIH+MEX reference set only takes 55% longer to process than just CEU, despite being nearly 3 times larger.

The improvement for low frequency SNPs is the most striking. The HM2CEU mean dosage r 2 score for unfiltered low frequency SNPs is low, especially compared to common SNPs (0.89 vs 0.96). If all samples from all HapMap3 populations are included, this gap nearly disappears (0.96 vs 0.98). In general, fewer low frequency SNPs pass the imputation quality filter (63% at most), but the accuracy of these imputed low frequency SNPs can become very high. The improvement in dosage r 2 is inversely proportion to the frequency of the SNP, with the greatest improvement observed for the very rarest SNPs (Figure 2).

For small reference sets, the calibration of predicted quality scores tends towards overconfidence. As the reference set increases in size, the calibration improves, though very diverse reference sets lead the confidence scores towards underconfidence (Supplemental Table 1). The correlation between predicted and actual dosage r 2 improves, though with a slight decrease for the most diverse sets. These trends are stronger in low frequency variants than in common ones; low frequency variants tend to have less well calibrated and correlated predicted quality scores. Larger reference sets decrease the number of overconfident mistakes and the number of underconfident mistakes (with the exception of the WORLD set, which causes a slight inflation in underconfident calls, Figure 3).

Reference Set Diversity

We found that, while the mismatched CEU+JPT+CHB reference set gives a lower imputation accuracy than CEU+TSI, it still yielded a substantial improvement over the CEU reference set alone. Half of the improvement in imputation accuracy from CEU to CEU+TSI was also gained with the CEU+JPT+CHB reference. This implies that while matching the reference set to the target set is important, even the addition of unrelated samples yields increases in imputation accuracy.

Increased diversity initially correlates with increased imputation accuracy for both CEU/TSI and CEU/CHB+JPT (Figure 4), though the former is far less marked than the latter. Beyond a certain proportion of non-CEU samples accuracy starts to fall off as the effect of diversity is outweighed by the effect of mismatching. The optimum population mix is 22% for CEU/TSI, and 17% for CEU/CHB+JPT.

It is only above 43% TSI do we see a decrease in imputation accuracy for adding TSI over pure CEU; for CHB+JPT this figure is 33%. This relationship is specific to low frequency variants.

Discussion

Higher quality reference data and larger sample sizes yield improved imputation accuracy. Using HapMap3 as a reference set compared to using HapMap2 demonstrates this improvement, especially at sites with a low minor allele frequency. While this result was expected we did not anticipate the substantial improvement achieved with large and genetically diverse reference sets. Including samples from such diverse populations as MEX and GIH can provide significant improvement in imputation into UK samples of alleles with a minor allele frequency of less than 5%. Larger reference sets also improve predicted quality scores, with a decrease in overconfident mistakes without inflating underconfident calls.

Overall, an imputation reference set consisting of CEU, TSI, MEX and GIH improves the quality of imputation in all frequency ranges, and greater improvement for very rare SNPs was achieved with very large and highly mixed reference sets. The latter came at the cost of computational power, as well as overly conservative predicted quality scores. Imputation is robust to the precise mix of samples of closely related ancestry (such as CEU/TSI), and small amounts of divergent ancestry can actually improve accuracy (such as CEU/CHB+JPT). However, crude population matching is important, as demonstrated by the reduced accuracy of the CEU+JPT reference compared to CEU+TSI.

These results imply a set of relatively simple rules for picking imputation reference sets: for the best trade-off between accuracy and computation time, the most diverse mixture of populations that still approximately cluster with the target samples of interest on a world-wide PCA plot should be used.

However, if imputing genotypes for low frequency variants with high accuracy is required, all samples available should be used, with the understanding that this will increase computational time, and cause quality scores to be somewhat conservative.

Of the programs we tested, Beagle takes greatest advantage of the highly divergent sample mixes, possibly because IMPUTE v2's only uses haplotypes with small Hamming distance from the target sample during phasing, and thus is less likely to take full advantage of the more divergent haplotypes.

However, this is a function of the parameter values chosen: increasing the value of k in IMPUTE v2 will increases the number of haplotypes considered, thus increasing accuracy at the expense of resource use.

As IMPUTE v1 always uses all reference haplotypes, it seems likely that it would also be able to take advantage of divergent populations, but its prohibitive resource usage makes it a poor choice for large reference sets.

That badly matched reference sets lead to increasingly conservative quality scores is an interesting observation. This effect is observed in Beagle and IMPUTE V1, but not in IMPUTE v2 (Table S2) is more puzzling. This lowering of predicted quality is likely to be due to the poor match of haplotype frequencies in the reference and target sets. As the true haplotypes in the target are likely to be rarer in the reference, this will effectively lower the prior on correctly guessed haplotypes, leading a deflation of the posterior. IMPUTE v2, by only examining haplotypes close to the target sample, will not suffer from this problem.

It should be noted that these results were obtained by imputation into European individuals, and further studies will be needed to assess how these conclusions generalize to other populations, notably African populations.

Accurate imputation of low frequency SNPs using HapMap3 samples could allow new associations to be mined from existing GWAS datasets. HapMap3 contains nearly 150 000 SNPs with a frequency of less than 5%, a large fraction of which can be accurately imputed. This approach will be even more powerful when applied to the millions of new low frequency variants catalogued by the 1000 Genomes Project. The promise of such analyses must be tempered, however, by the observation that high quality genotypes in hundreds of samples will be required to provide accurate imputation. The HapMap2-like sample sizes of the 1000 Genomes pilot, coupled with less accurate genotypes derived from low coverage sequence may well not be sufficient to allow powerful imputation. However, the diverse and extensive set of samples being sequenced for the final project (including TSI, UK and Finnish samples), coupled with improvement on genotype calls from sequence offer the exciting prospect of imputing millions of low frequency variants into existing GWAS datasets. 

Figure Titles and Legends

Allele Frequency

The genome-wide increase in dosage r 2 for unfiltered imputed SNPs relative to HapMap2 CEU, plotted against minor allele frequency, for the four HapMap3 sample mixtures.

Figure 3: Overconfident And Underconfident Imputation

The rates of overconfident and underconfident mistakes in imputation, using various reference sets. An overconfident mistake is any SNP that is imputed with a predicted dosage r 2 > 0.9, but an actual dosage r 2 ≤ 0.8, and an underconfident mistake has a predicted dosage r 2 ≤ 0.8 and an actual dosage r 2 > 0.9.

Figure 4: Ancestry Mixtures Can Improve Rare Imputation

The relationship between the mean dosage r 2 across unfiltered SNPs and the proportion of non-CEU samples in a 100-sample reference set. The trend lines are quadratic least squared regression curves, and both explain the data significantly better than a linear relationship (N = 207, p < 10 -4 and N = 159, p < 10 -16 for TSI and CHB+JPT respectively). The insert shows an expansion of the trend lines between 0 and 50%. 

Tables

Figure 1 :

 1 Figure 1: Effects Of Reference Set On Imputation Accuracy

Figure 2 :

 2 Figure 2: Imputation Improvement Is Most Striking At Low

Table 1 :

 1 HapMap SamplesA summary of the HapMap sample sets and their sizes in the HapMap2 and HapMap3 datasets. We used release 21 of the phased HapMap2 data, and release 2 of the phased HapMap3 data.

	Population	Code	HapMap2 HapMap3
	African Americans	ASW	0
	North Europeans	CEU	60
	Chinese Americans	CHD	0
	Gujarati	GIH	0
	Japanese and Chinese	JPT+CHB 90
	Luhya	LWK	0
	Mexicans	MEX	0
	Maasai	MKK	0
	Toscani	TSI	0
	Yoruba	YRI	60

Table 2 : Effect Of Reference Set On Imputation Information

 2 on Genome-Wide imputation using various reference sets. The CPU columns shows the number of CPU hours used in the imputation, which increases with the size and SNP density of the reference set. The proportion of SNPs that passed the ffil (predicted dosage r 2 ≥ 0.9), and the mean dosage r 2 of those that passed, are shown for common (MAF > 0.05) and rare (MAF ≤ 0.05) SNPs.

	Reference Set	Size CPU	Passed Filter	Filtered Dosage r 2
			Common Rare	Common Rare
	HM2CEU	60 514h a 83.7% b	52.5% b 0.957	0.889
	CEU	117 296h	85.1%	59.7% 0.968	0.921
	CEU+TSI	205 350h	86.1%	63.1% 0.974	0.934
	CEU+TSI+GIH+MEX	345 458h	85.3%	60.3% 0.978	0.957
	WORLD	1010 1207h 83.8%	55.5% 0.979	0.968
	b HM2 has a larger number of SNPs in total			

a HM2 has a large SNP set, hence the longer imputation time
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