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Abstract—Recent works have shown that the mutual infor-
mation is a generic side-channel distinguisher, since it detects
any kind of statistical dependency between leakage observations
and hypotheses on the secret. In this study the mutual infor-
mation analysis (MIA) is tested in a noisy real world design. It
indeed appears to be a powerful approach to break unprotected
implementations. However, the MIA fails when applied on a
DES cryptoprocessor with masked substitution boxes (Sboxes)
in ROM. Nevertheless, this masking implementation remains
sensitive to Higher-Order Differential Power Analysis (HO-DPA).
For instance, an attack based on a variance analysis clearly shows
the vulnerabilities of a first order masking countermeasure. We
propose a novel approach to information-theoretic HO attacks,
called the Entropy-based Power Analysis (EPA). This new attack
gives a greatest importance to highly informative partitions and in
the meantime better distinguishes between the key hypotheses. A
thorough empirical evaluation of the proposed attack confirms the
overwhelming advantage of this new approach when compared
with MIA.

Index Terms—Side-channel attack, masking countermeasure,
Mutual Information Analysis (MIA), High-Order Differential
Power Analysis (HO-DPA), Variance-based Power Attack (VPA),
Entropy-based Power Analysis (EPA), FPGA.

I. INTRODUCTION

Side Channel Analysis (SCA) is a cryptanalytic technique

that consists in analyzing the physical leakage produced during

the execution of a cryptographic algorithm embedded on a

physical device.

The most classical distinguishers used in SCA are Kocher’s

original DPA [11] and correlation attacks using Pearson’s

correlation coefficient, introduced by Brier et al [2].

Another important distinguisher is used in the so-called

Template Attacks (TA) [4]. TAs use maximum-likelihood as

similarity measure, that can capture any type of dependency

between its predictions and the leakage measurements (if the

probabilistic model is found to be adequate), whereas, for ex-

ample correlation analysis only captures linear dependencies.

In 2008, another interesting side-channel distinguisher

has been proposed, denoted as Mutual Information Analysis

(MIA) [8]. It is an attractive alternative to the aforementioned

attacks since some assumptions about the adversary can be

relaxed. In particular it does not require a linear dependency

between the leakage and the predicted data, as it is the case

for DPA and CPA, and so it is able to exploit any kind of

dependency but also without needing to profile the leakage as

it is the case for TA.

The MIA has been largely studied and tested on unprotected

implementations [8], [16], [22]. The evaluations performed to

prove the efficiency of MIA in protected implementations are

incomplete as they are based on simulations or on a limited im-

plementation of the algorithm (e.g. only table look-ups in [7]).

This motivates the study of the MIA in the context of protected

implementation based on the masking countermeasure. The

idea of masking is to conceal intermediate values through

arithmetic or Boolean operations with random values, which

makes it extremely chancy to correctly predict the intermediate

sensitive variables [1], [3], [9].

The proposed attack studied here is called the Entropy

Power Analysis (EPA) using a weighted sum of conditional

entropies as a distinguisher. It is designed to promote partitions

of high informative content and to ease the distinguisability

between hypotheses on candidate keys. It is carried out on

a DES coprocessor which is part of a SoC programmed in

an FPGA. This attack is compared with the MIA attack and

another successful attack so-called Variance Power Analysis

(VPA) based on the variance distinguisher proposed in [13],

[20].

The rest of the paper is organized as follows. Sec. II presents

the state-of-the-art of MIA and the existing estimation methods

used to optimize the MIA. The robustness evaluation of the

unprotected DES against the MIA is provided in Sec. III.

This section includes the description of the ROM DES masked

architecture and the results of the MIA attack on it. Sec. IV

presents the proposed entropy test. It provides experimental

results against the masked ROM implementation and deals

with the empirical evaluation of our EPA proposal. Finally,

Sec. V concludes the paper and opens some perspectives.

II. MUTUAL INFORMATION

A. Background

Our EPA is information-theoretic distinguisher. Therefore,

we begin with a brief review of information theory.

The Shannon entropy

Consider a system A with n possible states. That is, a

measurement performed on A will yield one of the possible

values a1,. . . , an, each with its corresponding probability

p(ai). The average amount of information gained from a

measurement that specifies one particular value ai is given

by the entropy H(A) of the system [18]:

H(A)
.
= −

n
∑

i=1

p(ai) · log p(ai) .

As stated by Faser and Swinney [6], the entropy H(A) could

be described as the “quantity of surprise you should feel upon
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reading the result of a measurement”.

The joint entropy H(A,B) of two discrete systems A and

B is defined analogously:

H(A,B) = −
n

∑

i=0

m
∑

j=0

p(ai, bj) · log p(ai, bj).

Here p(ai, bj) denotes the joint probability that A is in

state ai and B is in state bj . The number of possible states

n and m may be different. If the systems A and B are

statistically independent the joint probabilities factorize and

the joint entropy H(A,B) becomes:

H(A,B) = H(A|B) + H(B), (1)

with H(A|B) being called the conditional entropy, defined as:

H(A|B) = −
n

∑

i=0

m
∑

j=0

p(ai, bj) · log p(ai|bj),

instead of Equation (1). The mutual information I(A;B)
between the systems A and B is then defined as [12], [18]:

I(A;B) = H(A) + H(B) − H(A,B) ≥ 0.

The differential entropy

We now introduce the concept of differential entropy, which

is the entropy of a continuous random variable [15]. Differen-

tial entropy is similar in many ways to the entropy of a discrete

random variable (The Shannon entropy). But there are some

important differences, and there is need for some care in using

the concept.

The differential entropy H(X) of a continuous random

variable X with a density f(x) is defined as:

H(X) = −
∫

S

f(x) · log f(x) dx,

where S is the support set of the random variable. Unlike

discrete entropy, differential entropy can be negative.

We now extend the definition of the mutual information

I(X,Y ), to probability densities.

The mutual information I(X;Y ) between two random

variables with joint density f(x, y) is defined as:

I(X;Y ) =

∫∫

f(x, y) · log
f(x, y)

f(x)f(y)
dxdy .

The properties of I(X;Y ) are the same as in the discrete

case.

B. Probability density function estimation

In parametric density estimations, we choose some

distribution (such as the normal distribution or the extreme

value distribution) and estimate the values of the parameters

appearing in these functions from the observed data. However,

often the functional form of the true density function is not

known. In this case, the probability density function can be

estimated non-parametrically, by using histogram or kernel

density estimation, or parametrically by using the Expectation

Maximization (EM) algorithm.

TABLE I
SOME KERNEL FUNCTIONS FOR PDF ESTIMATION.

Kernel name Function k(t) Optimal bandwidth h

Uniform 1

2
i(t) σ( 12

√
π

n
)1/5

Triangle (1 − |t|)i(t) σ( 64
√

π
n

)1/5

Epanechnikov 3

4
(1 − t2)i(t) σ( 40

√
π

n
)1/5

Triweight 35

32
(1 − t2)3i(t) σ( 25200

√
143π

n
)1/5

Gaussian 1√
2π

exp(− 1

2
t2) σ( 4

3n
)1/5

Histogram method

Histograms are commonly used to represent a statistical

distribution. To calculate a histogram, we divide the data into

bins of size h, and count the number of data in each bin.

For relatively simple distribution, reasonable choices of h

are Scott’s rule (h = 3.49 × σ̂(x) × n−1/3, where σ̂ is the

empirical standard deviation and n is the number of bins) and

Freedman-Diaconis’ rule [23]. More generally, by varying x

we can estimate the probability density function f(x) as a

function of x.

Kernel density estimation

The probability is estimated as:

f(x) =
1

nh

n
∑

i=0

k

(

x − xi

h

)

,

where the function k is the kernel function and h is called the

bandwidth or smoothing parameter.

Some commonly used kernel functions are listed in the

table I (all refer to [19]), where i is a step function defined as

i(t) = 1 if |t| ≤ 1, 0 otherwise.

Parametric estimation

If we considered the observations xi to be a mixture

of Gaussians, the parametric method models the probability

density function as:

f(x) =

n−1
∑

i=0

wiN(x, µi, σi) ,

where the wi, µi and σi are respectively the weight, the mean

and the standard deviations of each component. An efficient

algorithm called the Expectation Maximization algorithm [5]

allows one to give good approximation of a probability density

function in the form of a finite mixture.

III. PRACTICAL MIA ATTACK

To test the MIA in a real-life context, we performed it

against two DES hardware implementations. The first one

is an unprotected DES and the second one is a full-fledged

masked DES using a ROM in an Altera Stratix II FPGA on

the SASEBO-B evaluation board provided by the RCIS [17].

A. Attack on unprotected DES

We expressed the Hamming weight (HW) as

HW (∆(x, k)) = HW (x ⊕ S(x ⊕ k)), where k is the

key, x is the initial data and S(x ⊕ k) is the final register

value. Considering 4-bit registers, there are five possible

distributions depending on the HW (∆(x, k)) values.
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Fig. 1. Histogram method used to distinguish two key hypotheses.

TABLE II
CONDITIONAL ENTROPY ESTIMATION.

Conditional entropy Good key Bad key

Histogram method −9.16542 ± 2 × 10−5 −9.16367 ± 2 × 10−5

Before performing the MIA attack, we tried to estimate

the probability density function (PDF) of the first DES S-box

when HW (∆(x, k)) = 0. We use two hypothesis of the key,

the first is right and the second is bad. We carried out the

PDF estimation for both cases, using real power consumption

measurements of our circuit.

Fig. 1 plots the estimations of the PDF using the good and

wrong key prediction when applying the histogram method.

One Gaussian PDF seems to be estimated when using the

good key prediction, whereas a mixture of two Gaussian

distributions seems to be estimated when using the wrong

key prediction. Moreover, we summarize the estimation of

the conditional entropy in each case in the table II and we

validated that the estimated conditional entropy is minimum for

the good key, so the MIA attack can be carried out on the un-

protected DES. We have estimated the accuracy of 2×10−5 bit

as the quadratic error with respect to the theoretical value

log2(σ̂
√

2πe), where σ̂ is the empirical standard deviation.

We performed the MIA attack with the histogram estimation

method with the following procedure:
1) Apply n plaintext messages (xi, i ∈ [1, n]) and collect n observations

of power consumption (traces Oi).
2) Compute the entropy of the observations H(O).
3) For each S-Box, make assumptions about the key k ∈ [0, 63]:

• Sort the traces Oi to get five activity partitions setl, l ∈ [0, 4],
corresponding to the five HW (∆(x, k)) = l possible values.

• Compute the conditional entropy H(O|HW (∆(x, k)) = l) for
each setl.

• Compute the mutual information MIAk , as the difference be-
tween the observations entropy and the sum of the conditional
entropy weighted with the probability pl: MIAk = H(O) −
P

4

l=0
pl × H(O|HW (∆(x, k)) = l).

4) The correct guess of the key k corresponds to argmax
k

MIAk .

The MIA is tested on 50,000 traces of an unprotected DES

implementation. Fig. 2 shows the mutual information values

according to each key predicted for the first DES S-Box.

Consequently, the round subkey guessed by the MIA attack

is the key corresponding to the highest mutual information.

The eight DES S-Boxes subkeys used during the first round

of our DES implementation have been guessed by the MIA
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Fig. 2. MIA results on 50,000 power consumption traces of an unprotected
DES implementation. The correct key is k = 56.

TABLE III
NUMBER OF MEASUREMENTS TO DISCLOSE (MTD) THE SUB-KEY FOR

EACH S-BOX OF THE UNPROTECTED DES MODULE ON THE FIRST ROUND.

Sbox # 1 2 3 4 5 6 7 8

MTD 12,133 10,827 12,974 12,317 11,034 13,578 10,651 11,635

attack. The number of traces to break the key is given in

Tab. III. In the next subsections we try to answer the question:

Is the masked DES sensitive to the MIA attack?

B. First order masking

The masking technique relies upon the concealment of

internal sensitive variables x by a mask m which takes

random values, in order to avoid the correlation between the

cryptographic device’s power consumption and the data being

processed [3], [9]. The internal variable x does not exist as a

net in the cryptosystem but can be reconstructed by a pair of

signals (m, xm = x θ m) where xm is the masked variable

and θ is an operation which can be Boolean or arithmetic. In

the sequel, we consider the masked DES studied at UCL [21];

our variable x represents the right half of the LR register.

At each round an intermediate mask MLi, MRi is cal-

culated in parallel with the intermediate cipher word Li, Ri

  MLi

initial permutation

MRi RiLi

ML0 MR0

RL RiLi

E

E

inverse initial permutation

plaintext

ciphertext

P

P

S’

S

k

m

S(x ⊕ k) ⊕ m′

m′

xm ⊕ k

xm

Fig. 3. Masked DES with S-boxes S and S′ in ROM.
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as shown in Fig. 3. If we ignore the expansion E and the

permutation P , the DES round function f is implemented in a

masked way by using a set of functions S and a set of functions

S′:

S(xm ⊕ k) = S(x ⊕ m ⊕ k) = S(x ⊕ k) ⊕ m′ ,

m′ = S′(xm ⊕ k,m)) = S′(x ⊕ m ⊕ k,m) . (2)

The variable m′ is a new mask reusable for the next round.

The set of functions S contains the traditional S-boxes

applied on masked intermediate words. The size of each S

is 64 words of 4 bits when implemented with a ROM. S′ is a

new table which has a much greater ROM size of 4K words

of 4 bits, as there are two input words of 6 bits. The classical

Correlation Power Analysis as well as the Differential Power

Analysis, did not allow us to extract a single S-Box subkey

used by the cryptoprocessor using up to 100,000 traces. This is

because the transient demasking observed in [14] occurs only

in combinational logic, as opposed to ROM. Do we have the

same results when performing the MIA attack on this ROM

masked DES?

C. Attack on masked DES

In software implementations, the masked data xm = x⊕m

and the mask m are manipulated sequentially. Therefore,

combined attacks can be carried out. Of special interest is

the multivariate MIA (MMIA) introduced recently in [7]. It

uses I(O;∆(x, k) ⊕ ∆(m),∆(m)) as a distinguisher, where

O denotes each observation, ∆ expresses the distance of a

register output, i.e. ∆(x, k)
.
= x⊕S(x⊕k), ∆(m)

.
= m⊕m′.

However, in a hardware implementation (our study), xm and m

are used simultaneously. The countermeasure is thus referred

to as “zero-offset”. In this case, the MMIA cannot be applied.

So, we considered the PMF (Probability Mass Function)

of the activity corresponding to those of the combined X and

M registers of Fig. 4. The activity of these two registers is

expressed by:

A = HW (∆(x, k) ⊕ ∆(m)) + HW (∆(m)) . (3)

Considering 4-bit registers, there are five possible PMFs

depending on the HW (∆(x, k)) values, when the key is

correct, as shown in the top of Fig. 5.
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Fig. 5. PMFs corresponding to the five possible values of HW (∆(x, k)).

TABLE IV
THEORETICAL CONDITIONAL ENTROPY OF THE ROM MASKED DES.

Theoretical entropies The correct key Any wrong key

H(O|HW (∆(x, k)) = 0) 2.0306 bit 2.5442 bit

H(O|HW (∆(x, k)) = 1) 1.8113 bit 2.5442 bit

H(O|HW (∆(x, k)) = 2) 1.5000 bit 2.5442 bit

H(O|HW (∆(x, k)) = 3) 1.0000 bit 2.5442 bit

H(O|HW (∆(x, k)) = 4) 0.0000 bit 2.5442 bit

H(O|HW (∆(x, k))) 1.3992 bit 2.5442 bit

When the key is incorrect, the leakage corresponds to that

of the function A described in Equation (3) where:

• x is uniformly distributed in [0x0,0xf], because the

guessed key is wrong,

• m is uniformly distributed in [0x0,0xf], because the

mask is random and unknown by the attacker.

Table IV summarizes the theoretical values of the conditional

entropy of each values of HW (∆(x, k)) in the two cases.

Therefore, the entropy, in the case of the bad key, is equal

to: 2.5442 bit. Hence a contrast in mutual information of

I(O;HW (∆(x, kcorrect)) − I(O;HW (∆(x, kincorrect))) =

✟
✟

✟H(O) − H(O|HW (∆(x, kcorrect))) −
✟

✟
✟H(O) +

H(O|HW (∆(x, kcorrect))) = −1.3922 + 2.5442 = 1.1520
bit. So, theoretically, with ideal S-Boxes, the MIA attack can

succeed on a zero-offset implementation: it does distinguish

the correct key guess from the wrong ones. However, it

clearly appears that the partitions do not contribute equally to

disambiguating the correct key from the incorrect ones: the

smaller the value H(O|HW (∆(x, k))) the better the entropy

difference. This noting is the first motivation to devise an

improved version of the MIA.

Additionally, we simulated the computation of the condi-

tional entropy H(O|HW (∆(x, k))) for all key hypotheses.

Figure 6 describes the result for the 4th S-Box using good

key equal to 38. We observe that the conditional entropy

H(O|HW (∆(x, k))) for some keys is under the theoretic

value 2.5442 bit. We explain this result by the fact that the

activity of the S-box itself leaks the information and decreases
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TABLE V
CONDITIONAL ENTROPY ESTIMATION OF THE MASKED DES.

Conditional entropy Good key

HW (∆(x, k)) = 0 23.2842549755

HW (∆(x, k)) = 1 23.2460651542

HW (∆(x, k)) = 2 23.2185655678

HW (∆(x, k)) = 3 23.189564065

HW (∆(x, k)) = 4 23.1286079923

the entropy. This phenomenon had already been observed in [2]

and referred to as “ghost peaks”, characterized in [10]. It is a

second compelling reason to define an upgraded version of the

MIA. So, in practice, it is harder than expected to discriminate

the right key used by the MIA attack on the context of zero-

offset implementation.

In a real application, the noise coming from other com-

puting blocks and the environment shapes the PMF shown in

Fig. 5 as a sum of Gaussian distributions. We reproduce the

MIA attack described in Sec. III-A on the masked DES with

sboxes in ROM; the attack failed even with up to 200,000

power consumption traces.

IV. EVALUATION OF A NEW ENTROPY-BASED ATTACK

A. Proposed Entropy-based Power Analysis (EPA)

By choosing a fixed and appropriate (key, message) cou-

ple in regard to a specific S-Box, the distribution of power

consumption has the same mean, but different conditional

entropy as shown in table V. For instance the conditional

entropy difference between the PDF for HW (∆(x, k)) = 0
and HW (∆(x, k)) = 4 should be enough discriminating, since

it is maximum when using the good key. This leads us to

define accordingly the Entropy-based Power Analysis or EPA

which is an improved partition distinguisher. The EPA is a

combination of conditional entropies of the power consumption

traces computed during the first DES round, while ciphering

random messages. The EPA algorithm is made explicit below:

1) Apply n plaintext messages (xi, i ∈ [1, n]) and collect n observations
of power consumption (traces Oi).

2) For each S-Box, make assumptions about the key k ∈ [0, 63]:

• Sort the traces Oi to get five activity partitions setl, l ∈ [0, 4],
corresponding to the five HW (∆(x, k)) = l possible values.

• Compute the conditional entropy H(O|HW (∆(x, k)) = l) for
each set setl.
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Fig. 7. EPA results on 200,000 power consumption traces of a ROM masked
DES implementation. The correct key is k = 56.

• Compute a EPA indicator Hk being a linear combination of

the conditional entropy with weights wl: Hk =
P

4

l=0
wl ×

H(O|HW (∆(x, k)) = l).

3) The correct guess of the key k corresponds to argmax
k

Hk .

B. Experimental results

The EPA is carried out on a ROM masked DES imple-

mentation. It is tested on 200,000 traces of a masked DES

implementation with different weights (w0, w1, w2, w3, w4)
values. The weights of the H function producing the best

results are (0.25, 1, 0,−1,−0.25).
Fig. 7 shows the EPA indicator values according to each

key predicted for the first DES S-Box. Then for each S-

Box, the round subkey guessed by the EPA attack is the key

corresponding to the highest indicator value. The eight DES

S-Boxes subkeys used during the first round of our masked

DES have been guessed by the EPA attack, using the same

weights wi,i∈[0,4].

C. EPA Vs VPA Vs MIA

In this subsection, we compare the EPA attack (this article)

to the MIA [8] and VPA [13] attacks. Following the recent

advances concerning the comparison of univariate side-channel

distinguishers [20], we apply the first-order success rate to

assess the performance of the three attacks. The first-order suc-

cess rate expresses the probability that, given n measurements,

the attack’s best guess is the correct key. For each scenario,

we acquired a set of 25,000 power consumption traces using

random masks and plaintexts. To evaluate the scenario, we

carry out the following algorithm:
for n := 1000 to 25000 step 1000

1) counter := 0
2) for i := 1 to 20

a) select random n power consumption traces from set vi

b) run the attack for the key k ∈ [0, 63]
c) increment counter if attack successful

3) compute success rate for n traces as counter/20

Figure 8 shows our experimental results for those three

attacks on the ROM masked DES implementation. We can

see that VPA performs well in this scenario. About 5,000

traces suffice to achieve a success rate of 50% and starting

from about 14,000 traces the VPA attack reveals the correct

key with success rate of 95%. The EPA attack performs well

also. The success rates stay well above 50% even when using

11,000 measurements, but eventually reaches success rate of
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Fig. 8. First order success rate of 3 distinguishers on a ROM masked DES.

95% using 18,000 traces. MIA attack performs much worse.

The success rates stay under 10% even when using 25,000

measurements. We conclude that the distinguisher based on the

computation of the difference between entropy is more efficient

than the MIA attack in the context of attacking a masked

implementation. The VPA remains the best attack, since the

leakage model is well known (see Eqn. (3)); however, in the

context of an unknown model, an information-theoretic attack

would be necessary; the EPA would be in this scenario the

preferred distinguisher, since it would outperform the MIA.

V. CONCLUSION AND PERSPECTIVES

This paper shows the limitations of the mutual information

attack, when masking is used to protect the implementation.

We presented a 2O-DPA attack based on entropy analysis

which succeeds in breaking a hardware masked DES imple-

mented in an FPGA. This is the first high-order information-

theoretic attack reported so far on a hardware accelerator. This

attack is quite efficient on ROM implementation (all the S-

Boxes are cracked) and requires a reasonable number of traces

(15K). We compared it with an efficient partition distinguisher

which is the variance. We observe that the variance performs

better than our EPA attack when the leakage model is known.

A perspective is to compare EPA and VPA attacks with an

MMIA [7], using multiple sensors (e.g. two magnetic probes)

placed at different (X,Y, Z, ϑ) locations over a zero-offset

masked cryptoprocessor.
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