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HALF-TURN SYMMETRIC FPLs WITH RARE

COUPLINGS AND TILINGS OF HEXAGONS

JEAN-CHRISTOPHE AVAL, PHILIPPE DUCHON

Abstract. In this work, we put to light a formula that relies
the number of fully packed loop configurations (FPLs) associated
to a given coupling π to the number of half-turn symmetric FPLs
(HTFPLs) of even size whose coupling is a punctured version of the
coupling π. When the coupling π is the coupling with all arches
parallel π0 (the “rarest” one), this formula states the equality of
the number of corresponding HTFPLs to the number of cyclically-
symmetric plane partition of the same size. We provide a bijective
proof of this fact. In the case of HTFPLs odd size, and although
there is no similar expression, we study the number of HTFPLs
whose coupling is a slit version of π0, and put to light new puzzling
enumerative coincidence involving countings of tilings of hexagons
and various symmetry classes of FPLs.

Introduction

Fully packed loop configurations (FPLs) are ubiquitous objects which
are fascinating both in the world of theoretical physics (they appear in
the so-called six-vertex ice model) and in the world of combinatorics
(they are in bijection with alternating sign matrices, which are the cen-
ter of an intense research for years). In 2004 Razumov and Stroganov
[16] stated a remarkable conjecture that relies the stationary distribu-
tion of the O(1)-dense loop model to the enumeration of FPLs accord-
ing to their coupling. After several years of efforts, their formula was
only recently proved by Cantini and Sportiello [1] by means of a purely
combinatorial method using the operation of gyration discovered by
Wieland [17]. Following Razumov and Stroganov’s investigations, de
Gier [9] gave in 2005 an analogous conjectural formula for the same
model with half-turn symmetry constraints.
When we compare Razuomv-Stroganov’s and de Gier’s formula (for

the even size), we are led to the following interesting expression: the
number of FPLs of size n and coupling π is equal to the sum of the
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numbers of half-turn symmetric FPLs (HTFPLs) of size 2n and cou-
pling a punctured version of π. A special case is when the coupling is
the rarest one π0 (with the arches all parallel), where this expression re-
duces to an equality between the number of half-turn symmetric FPLs
of size 2n with their coupling being a punctured version of π0 and the
number of cyclically symmetric plane partition of size 2n. We are able
to prove this assertion bijectively.
In the case of the odd size, there is no natural expression between

couplings of HTFPLs and asymmetric FPLs. Nevertheless, we may
study the number of HTFPLs of size 2n + 1 whose couplings are slit
versions of π0. Using a factorization principle due to Ciucu [3], we
are lead to evaluate the number of tilings with losenges of portions of
some hexagonal regions. These numbers of tilings may be expressed
through determinants [12]. Surprisingly, we put to light that several
determinant expressions are proved or conjectured to be equal to the
number of symmtry classes of FPLs!
This paper is organized as follows: Section 1 presents all definitions

relative to FPLs and their couplings, Section 2 deals with the case
of even-sized HTFPLs, Section 3 presents the problem studied in the
case of the odd size, together with its reduction to the evaluation of
determinants and presents new intriguing results and conjectures of
equinumeration between certain tilings and symmetry classes of FPLs.

1. Definitions

1.1. FPLs and their couplings. A fully-packed loop configuration
(FPL for short) of size N is a subgraph of the N × N square lattice,
where each internal vertex has degree exactly 2. The set of edges forms
a set of closed loops and paths ending at the boundary vertices. The
boundary conditions are the alternating conditions: boundary vertices
also have degree 2 when boundary edges (edges that connect the finite
square lattice to the rest of the Z

2 lattice) are taken into account, and
these boundary edges, when going around the grid, are alternatingly
“in” and “out” of the FPL. For definiteness, we use the convention that
the top edge along the left border is always “in”. Thus, exactly 2N
boundary edges act as endpoints for paths, and the FPL consists of N
noncrossing paths and an indeterminate number of closed loops.
Any FPL f of size N has a coupling π(f), which is a partition of the

set of integers {1 . . . 2N} into pairs, defined as follows: first label the
endpoints of the open loops 1 to 2N in clockwise or counterclockwise
order (for definiteness, we use counterclockwise order, starting with the
top left endpoint); then the link pattern π(f) will include pair (i, j) if
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and only if f contains a loop whose two endpoints are labeled i and j.
Because the loops are noncrossing, the coupling satisfies the noncross-
ing condition: if a link pattern π contains two pairs (i, j) and k, l, then
one cannot have i < k < j < l. The possible link patterns for FPLs of
size N are thus counted by the Catalan numbers CN = 1

N+1

(

2N
N

)

. Fig-
ure 1 gives an example of an FPL together with its coupling. We shall
denote by A(N ; π) the number of FPLs of sizeN which afford coupling
π, and by A(N) the total number of FPLs, which is equal, because of
the bijection between FPL and alternating-sign matrices [18] to:

A(N) =

n−1
∏

i=0

(3i+ 1)!

(n+ i)!
. (1)

1

2

1

2

Figure 1. An FPL of size 8 and its coupling

Let us introduce a particular coupling, denoted π0,n (or π0 if there is
no ambiguity), defined as:

π0,n = {{i, 2n+ 1− i}1≤i≤n}.

The coupling π0 is, up to rotation the rarest one: A(n, π0) = 1.
The 2N generators e1, . . . , e2N of the cyclic Temperley-Lieb algebra

act on couplings of size N in the following way: if the coupling π
contains pairs (i, j) and (i+ 1, k), then eiπ = π′, where π′ is obtained
from π by replacing the pairs (i, j) and (i+1, k) by (i, i+1) and (j, k);
if (i, i + 1) ∈ π, then π′ = π. An illustration of this action is given by
Figure 2.
One can define a Markov chain on couplings where we choose at each

time step one of the appropriate generators (uniformly at random) and
apply it to the current state. The Markov chain defined in this way is
easily checked to be irreducible and aperiodic, hence it has a unique
stationary distribution. The celebrated Razumov-Stroganov conjecture
[16], proven by Cantini and Sportiello [1], may be stated as follows.
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Figure 2. Temperley-Lieb action

Theorem 1.1. [Cantini, Sportiello] The stationary distribution for
couplings of size N is

µ(π) =
A(N ; π)

A(N)
. (2)

1.2. HTFPLs – Punctured and slit couplings. An FPL is said to
be half-turn symmetric if it is invariant under the central symmetry
of the square grid. It is easy to observe that such HTFPLs do exist
whatever the parity of the size N . Let us denote by AHT (N) the
number of HTFPLs of size N .
HTFPLs, be they of even or odd size, have couplings that are in-

variant under a half-turn rotation: if their size is L and the coupling
contains an edge (i, j), it must also contain (i+ L, j + L).
For odd L, parity and planarity considerations immediately imply

that the coupling must contain exactly one diameter edge of the form
(i, i+L), with the endpoints i+1 to i+L− 1 organized into a normal
coupling (and endpoints L+ i+ 1 to i− 1 organized into a translated
version of the same). Such a coupling of size 2L can be represented more
compactly as a “slit” coupling of (odd) size L, where the diameter edge
becomes a singleton (i) and each pair of edges (j, k) and (j+L, k+L)
becomes a single (j, k) edge. Graphically, this corresponds to a classical
coupling of size L− 1 with an added single vertex (which we represent
by a half-edge leading inside the circle).
For even L, no diagonal edge can exist for parity reasons. Instead,

HT-symmetric couplings of size 2L can be represented as classical plane
couplings of size L drawn on a punctured disk (or half-cylinder) instead
of a full disk.
Figure 3 shows examples of half-turn symmetric couplings respec-

tively of odd (left) and even (right) size.
Let us denote by AHT (N ; π) the number of HTFPLs which have π

as coupling.
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Figure 3. Half-turn symmetric couplings of odd (left)
and even (right) size

Similarly to the asymmetric case, and for N ≥ 2, we consider the N
“symmetrized” operators

e′i = eiei+N . (3)

These operators act on the couplings of HTFPLs of size N , we may
define a Markov chain on the set of half-turn symmetric couplings. The
assertion analogous to Theorem 1.1 is due to de Gier [9] and may be
stated as follows.

Conjecture 1.2. [de Gier] The stationary distribution for couplings of
size N is

µHT (π) =
AHT (N ; π)

AHT (N)
. (4)

2. Even-sized HTFPLs with rare couplings

2.1. A general formula. When viewed as “punctured” plane cou-
plings, the couplings of even-sized HTFPLs have a natural projection
to “normal” plane couplings of half their size - the projection corre-
sponds to simply forgetting the puncture. What is more important,
this projection commutes with the ei and e′i operators: if π

′ is a punc-
tured plane coupling and p is the projection from punctured to normal
plane couplings, one has p(e′i(π

′)) = ei(p(π
′)).

An immediate consequence is that the eigenvector for the H ′ Hamil-
tonian must project to the eigenvector for H . In terms of FPL and
HTFPL enumerations, in light of (2) and assuming (4), this becomes,
for any coupling π:

A(n; π)

A(n)
=

∑

π′

AHT (2n; π
′)

AHT (2n)
, (5)

where the sum in the right-hand side extends to all punctured couplings
π′ such that p(π′) = π.
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Now, it is known that AHT (2n) = PSC(2n)A(n), where PSC(2n)
denotes the number of cyclically symmetric plane partitions of size 2n.
Thus, (5) is equivalent to

∑

π′

AHT (2n; π
′) = PSC(2n)A(n; π) (6)

with the same convention on the summation.

2.2. The case of the rarest coupling. When π is one of the rotated
versions of the rarest coupling, one has A(n; π) = 1 and (6) simplifies
accordingly. Our first result is a bijective proof of this special case of
equation (6).

Theorem 2.1. For any integer n, there exists a bijection between the
set of HTFPLs of size 2n whose coupling is a punctured version π0,n,
and cyclically symmetric plane partitions of size 2n.

Proof. The first thing to do is identify exactly which punctured cou-
plings project to π0,n. As plane couplings of size 4n, these must link 1
to either 2n or 4n, and 2n + 1 with the other, and more generally, for
each 1 ≤ k ≤ n, k must be linked with either 2n+1− k or 4n+ 1− k,
and 2n + k must be linked with the other. If we add the noncrossing
condition, we obtain a full description of the n + 1 possible couplings:

π′
k,n = {{i, 4n+ 1− i}1≤i≤k} ∪ {{i, 2n+ 1− i}k<i≤n}

where k ranges from 0 to n.
Now, the important property of this set of plane couplings is that

they are exactly all plane couplings of size 4n whose short links are
among {1, 4n}, {n, n + 1}, {2n, 2n + 1}, {3n, 3n + 1} - in fact, except
for π′

0,n and π′
n,n, these are exactly all short links of each π′

k,n. On
the corresponding (HT)FPLs, this translates into exactly the same set
of fixed edges (we refer to [2] for the presentation of the fixed edges
technique):

• all eastbound edges from odd vertices in the (i > j, i + j <
2n− 1) area;

• all edges obtained by rotations from the previous: northbound
from even vertices in the (i > j, i+ j > 2n−1) area, westbound
from odd vertices with (i < j, i+ j > 2n− 1), and southbound
from even vertices with (i < j, i+ j < 2n− 1).

The fixed edges for size 12 are shown in Figure 4 (left).
It is easy to check that all HTFPLs with these edges will have one of

the π′
k,n as their coupling; more precisely, though it is not important for

our purpose, any FPL, whether half-turn-symmetric or not, will have
such a coupling.
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Figure 4. Fixed and non-fixed edges in even size

Figure 5. Honeycomb lattice version of the graph in Figure 4

Thus, our problem becomes that of finding a bijection between the
set of HTFPLs with this set of fixed edges, and CSPPs of size 2n. This
is relatively straightforward: since each vertex in the grid is incident to
one fixed edge, these (HT)FPLs are in a natural bijection with the (half-
turn-symmetric) perfect matchings of the subgraph of non-fixed edges.
Taking symmetry into account corresponds to taking the quotient of
the graph under the half-turn-symmetry, and it is easy to check that
this quotient graph is also the quotient under a 2π/3-rotation of a
hexagonal region (of size 2n) of the honeycomb lattice. In other words,
the HTFPLs with these fixed edges are in bijection with the perfect
matchings of the honeycomb lattice that are invariant under a third-
turn rotation - or, taking the dual, lozenge tilings of a regular hexagon
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(of side 2n) that are invariant under a rotation of order 3, that is,
cyclically symmetric plane partitions of size 2n.

3. Rare couplings in odd size

3.1. Factorization. While there is an easy way to project couplings
of HTFPLs of odd size 2n + 1 to those of FPLs of size n (by “unslit-
ting” them), this projection, contrary to the even sized case, does not
commute with the ei and e′i operators, so that (2) and (4) together do
not have a “nice” consequences on the numbers AHT (2n + 1; π′) and
A(n; π). Still, applying the fixed edges technique to some sets of HTF-
PLs whose couplings are a slit version of the rarest coupling does lead
to intriguing enumerative results.
The slit couplings we are looking for are all those with at most two

short edges, i.e. of the form (for some 0 ≤ k ≤ n + 1)

{{i, 2n+ 2− i}1≤i≤k} ∪ {{k}} ∪ {{i, 2n+ 3− i}k+1≤i≤n+1}

or rotated from this form. In extended form, these are all HT-symmetric
couplings with at most 4 short edges that are restricted to be in po-
sitions (i, i + 1), (n + i + 1, n + i + 2), (2n + i + 1, 2n + i + 2) and
(3n+ i+ 2, 3n+ i+ 3) for some i.
If we use the case i = 0 above (that is, we allow short edges (4n+2, 1),

(n+1, n+ 1), (2n+ 1, 2n+ 2) and (3n+ 2, 3n+ 3)), we get a large set
of fixed edges that is similar to what we got in the even-sized case:

• eastbound edges from odd vertices in the (i > j, i + j < 2n)
area, and westbound edges from odd vertices in the symmetric
(i < j, i+ j > 2n) area;

• northbound edges from even vertices in the (i > j, i + j > 2n)
area, and southbound edges from even vertices in the symmetric
(i < j, i+ j < 2n).

Figure 6 shows the fixed edges, and the fundamental domain of non-
fixed edges, for size 13 (n = 6), and Figure 7 shows the same graph
of non-fixed edges as a region of the honeycomb lattice. In the latter
figure, dotted edges are those that are “cut” by Ciucu’s Factorization
Theorem, and bold edges are those that are given a weight 1/2 by the
same.
When we restrict our attention to the nonfixed edges, the correspond-

ing HTFPLs are in bijection with the perfect matchings of a region Gn

of the honeycomb lattice as shown on Figure 8 (where the sides of the
region along the bold line must be glued together).
The region Gn can be deformed to have a reflexive symmetry as

shown on Figure 9 size 4k + 1 and 4k + 3.



HTFPLs: RARE COUPLINGS AND TILINGS OF HEXAGONS 9

Figure 6. Fixed and non-fixed edges in odd size

Figure 7. Honeycomb version of the graph in Figure 6

Figure 9 shows (in the triangular lattice) the result of applying
Ciucu’s Factorization Theorem [3]: for each size, we are to count the
lozenge tilings of two regions of the trangular lattice. In the figure,
grayed lozenges have a weight of 1/2 attached, and dashed lozenges are
“fixed” in the sense that they must appear in all lozenge tilings of the
corresponding region.
Ciucu’s theorem thus implies that the number Hn of such HTFPLs

of size n is given in odd size by:

• H4k+1 = 22kRk(1/2, 1)R
′
k−1(1/2, 1),

• H4k+3 = 22k+1Rk(1/2, 1)R
′
k(1/2, 1)

and in even size by:
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Figure 8. The region G4.

Rk

R′
k−1

Rk

R′
k

Figure 9. Decomposition by symmetry of G6 and G7.

• H4k = 22kRk(1/2, 1/2)Rk−1(1, 1),
• H4k+2 = 22k+2Rk(1/2, 1/2)Rk−1(1, 1).

To enumerate weighted tilings of regions Rk and R′
k, we may use

Lindström-Gessel-Viennot’s [11] determinants to get:

Rk(x, y) = det (mi,j,0)1≤i,j≤k

R′
k(x, y) = det (mi,j,1)1≤i,j≤k

mi,j,ℓ = (1+xy)

(

i+j+ ℓ−2

2i−j−1

)

+ x

(

i+j+ℓ−2

2i−j−2

)

+ y

(

i+j+ℓ−2

2i−j

)

3.2. Enumeration of certain tilings of hexagons. When evaluat-
ing Rk(x, y) and R′

k(x, y) for x and y in {1/2, 1}, we are surprised to
recover well-known sequences. More generally, we define:

Rℓ(n; x, y) = det (mi,j,ℓ)1≤i,j≤n
.
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The aim of this subsection is to identify some specializations of the
functions Rℓ(n; x, y) in terms of cardinality of some classes of alternat-
ing sign matrices.
The function Rℓ(n; x, y) counts the weighted lozenge tilings of the

region shown in Figure 10, where grayed lozenges carry a multiplicative
weight of x or y as indicated.

ℓ rows

n lozenges

n lozenges

xxxx

y

y

y

y

Figure 10. Interpretation of Rℓ(n; x, y)

Proposition 3.1. We have the following special values for the func-
tions R:

R0(n; 1/2, 1) = AHT (2n+ 1) (7)

R1(n; 1/2, 1) =
1

2
AHT (2n+ 2) (8)

R1(n; 1, 1) = AV (2n+ 3) (9)

R1(n; 1, 1/2) = A(n)2 (10)

R2(n; 1/2, 1) = A(n)A(n + 1) (11)

where AHT (N), AV (N) and A(N) stand respectively for the number of
half-turn symmetric, vertically symmetric and unrestricted alternating
sign matrices.

Proof – It appears that the three specializations we need to interpret,
namely Rℓ(n; 1, 1/2), Rℓ(n; 1/2, 1) and Rℓ(n; 1, 1) are computed in [7,
12]. We denote by (a)i = a(a+ 1) · · · (a+ i− 1) the shifted factorial.

Proof of (7) and (8). We may use [12] to write:

Rℓ(n; 1/2, 1) =

n−1
∏

i=0

(2ℓ+ 3i)i!
(ℓ+ i− 1)!(2ℓ+ 2i)i(ℓ+ 2i)i

(ℓ+ 2i)!(2i)!
.

It is then a simple computation to check that
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• for ℓ = 0:

(3i)i!
(i− 1)!(2i)2i

(2i)!2
=

4

3

(

3n
n

)2

(

2n
n

)2 =
AHT (2n+ 1)

AHT (2n− 1)
,

• for ℓ = 1:

(2 + 3i)i!
(i)!(2i+ 2)i(2i+ 1)i

(2i+ 1)!(2i)!
=

4

3

(

3n+3
n+1

)(

3n
n

)

(

2n+2
n+1

)(

2n
n

) =
AHT (2n)

AHT (2n)
.

Now to conclude, we observe that R0(1; 1/2, 1) = 3 = AHT (3) and
R0(1; 1/2, 1) = 5 = 1/2.AHT (4). This implies equations (7) and (8).

Proof of (9). We know from [7] that R1(n; 1, 1) is equal to the num-
ber of cyclically symmetric transpose-complementary plane partitions
(CSTCPP) in a hexagonal region with a triangular hole of size 2. We
thus get:

R1(n; 1, 1) = PCSTC(2n, 2) =
1

2n

n−1
∏

j=0

PCS(2j + 1, 2)

PCS(2j, 2)

By using

PCS(2j + 1, 2) =
(−1/2)!(2j + 3)j+1

(j + 1/2)!

×

j
∏

i=0

i!2(2i+ 1)2i (i+ 1/2)!(2i+ 1/2)i+1(2i+ 1 + 1/2)i
(2i)!2(j + i+ 1 + 1/2)!

PCS(2j, 2) =
(−1/2)!j!(2j + 1/2)j+1

(2j)!(2j + 1/2)!

×

j−1
∏

i=0

i!2(2i+ 3)2i+1(i+ 1/2)!(2i+ 1 + 1/2)i(2i+ 1/2)i+1

(2i)!2(j + i+ 1/2)!

we get:

R1(n; 1, 1) =
1

2n

n−1
∏

j=0

j!(2j + 1 + 1/2)j(2j)!
2(2j + 1)j

(3j)!2(j + 1 + 1/2)j+1

.

Thus, because of [15, 14]

AV (2n+ 1) = (−3)n
2

∏

i,j≤2n+1,j≡1[2]

3(j − i) + 1

j − i+ 2n+ 1
=

n
∏

j=1

(

6j−2
2j

)

(

4j−1
2j

) ,

we have to check that:

j!(2j + 1 + 1/2)j(2j)!
2(2j + 1)j

(3j)!2(j + 1 + 1/2)j+1

=

(

6j+4
2j+2

)

(

4j+3
2j+2

)
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which comes from a simple computation.

Proof of (10) and (11). For equation (10), we know from [7] that
R1(n; 1, 1/2) is equal to the number of cyclically symmetric self-complementary
plane partitions (CSSCPP) in a hexagonal region, which is known [13]
to be given by:

PCSSC(2n) =
(

n−1
∏

i=0

(3i+ 1)!

(n+ i)!

)2

= A(n)2.

For equation (11), it has been shown in [10] that R2(n; 1/2, 1) is the
number of quasi-cyclically symmetric self-complementary plane parti-
tions (qCSSCPP) in a hexagonal region, which is proved to be given
by:

PqCSSC(2n+ 1) = A(n)A(n + 1).

Remark 3.2. It appears that the specialization of the functionsRℓ(n; x, y)
to x = y = 1/2 may also have interesting values. In particular, it seems
that R0(n; 1/2, 1/2) corresponds to the development of the generating

series for A
(2)
UU(4n) (cf. [14]) and that:

R2(n; 1/2, 1/2) = AV (2n + 3)

(

2n+ 1

n+ 1

)

which needs an explanation.
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