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Introduction

Permutation tableaux and alternative tableaux are equivalent combinatorial objects that have been the focus of intense research in recent years. Originally introduced by Postnikov [START_REF] Postnikov | Total positivity, Grassmannians, and networks[END_REF], they were soon studied by numerous combinatorialists [Bur07, CN09, SW07, [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF][START_REF] Nadeau | The structure of alternative tableaux[END_REF][START_REF] Viennot | Alternative tableaux, permutations and partially asymmetric exclusion process[END_REF]. They also popped up surprisingly in order to get a combinatorial understanding of the equilibrium state of the PASEP model from statistical mechanics: this is the seminal work of Corteel and Williams, see [START_REF] Corteel | A Markov chain on permutations which projects to the PASEP[END_REF][START_REF] Corteel | Tableaux combinatorics for the asymmetric exclusion process[END_REF][START_REF] Corteel | Staircase tableaux, the asymmetric exclusion process, and Askey-Wilson polynomials[END_REF].

In this work we introduce and study tree-like tableaux (cf. Definition 1.1), which are objects in simple bijection with alternative tableaux. Indeed, our results have immediate reformulations in terms of alternative/permutation tableaux (see Proposition 1.3). We chose to focus on these new tableaux for one main reason: they exhibit a natural tree structure (giving them their name: cf. Figure 2, right) more clearly than the alternative tableaux, and we use this structure in Section 4.2. As is mentioned in this last section, the present work originated in fact in the study of trees.

The main result of this work is Theorem 2.3:

There is a simple bijective correspondence Insertpoint between (1) tree-like tableaux of size n together with an integer i ∈ {1, . . . , n+1}, and (2) tree-like tableaux of size n + 1.

A variation Insertpoint * for symmetric tableaux is also defined and shares similar properties, see Theorem 2.7. We prove that both Insertpoint and Insertpoint * carry various statistics of tableaux in a straightforward manner: we obtain thus new easy proofs of formulas enumerating tableaux and symmetric tableaux (Section 2.3), as well as information on the average number of crossings and cells of tableaux (Section 3).

An immediate corollary of Theorem 2.3 is that tree-like tableaux of size n are enumerated by n!, while Theorem 2.7 shows that symmetric tableaux of size 2n + 1 are enumerated by 2 n n!. Several bijections between tableaux and permutations appeared already in the literature; the ones that seem essentially distinct are [SW07] and the two bijections from [START_REF] Corteel | Bijections for permutation tableaux[END_REF]. All of them give automatically a correspondence as in Theorem 2.3, but none of them is as elementary as Insertpoint. Conversely, it is clear that Insertpoint allows to define various bijections between permutations and tableaux. We will describe two of them here: the first one sends crossings to occurrences of the generalized pattern 2-31, while the second one preserves the binary trees naturally attached to permutations and tree-like tableaux.

Let us give a brief outline of this work. Section 1 introduces numerous definitions and notations, and most notably the tree-like tableaux which are the central focus of this work. Section 2 is the core section of this article: we introduce our main tool, the insertion Insertpoint, and prove that it gives a 1-to-(n + 1) correspondence between tableaux of size n and n + 1. We use it to give elementary proofs of refined enumeration formulas for tableaux. We also define a modified insertion Insertpoint * for symmetric tableaux from which refined enumeration formulas are derived in a similar fashion. In Section 3 we keep using the insertions Insertpoint and Insertpoint * to enumerate crossings and cells in tableaux. We also give a bijection between square symmetric tableaux and ordered partitions. In Section 4 we define two bijections between tree-like tableaux and permutations, both based on Insertpoint: the first one sends crossings to occurrences of the pattern 2-31, while the second one "preserves trees": it sends the tree structure of the tree-like tableau to a tree naturally attached to the permutation (its increasing tree without its labels).

Definitions and Notation

1.1. Basic definitions. A Ferrers diagram F is a left aligned finite set of unit cells in Z 2 , in decreasing number from top to bottom, considered up to translation: see Figure 1, left. The half-perimeter of F is the sum of its number of rows plus its number of columns; it is also equal to the number of boundary edges, which are the edges found on the Southeast border of the diagram. We will also consider boundary cells, which are the cells of F with no other cells to their Southeast.

There is a natural Southwest to Northeast order on boundary edges, as well as on boundary cells. Moreover, by considering the Southeast corner of boundary cells, these corners are naturally intertwined with boundary edges: we will thus speak of a boundary cell being Southwest or Northeast of a boundary edge. Two cells are adjacent if they share an edge.

Ribbons: Given two Ferrers diagrams F 1 ⊆ F 2 , we say that the set of cells S = F 2 -F 1 (set-theoretic difference) is a ribbon if it is connected (with respect to adjacency) and contains no 2 × 2 square. In this case we say that S can be added to F 1 , or that it can be removed from F 2 . Note that a removable ribbon from F is equivalently a connected set S of boundary cells of F , such that the Southwest-most cell of S has no cell of F below it, and the Northeast-most cell of S has no cell of F to its right. Row/Column insertion: Let F be a Ferrers diagram and e one of its boundary edges. If e is at the end of a row r, we define the insertion of a column at e to be the addition of a cell to r and all rows above it; symmetrically, if e is at the end of a column denoted by c, we can insert a row at e by adding a cell to c and all columns to its left; see Figure 1, where the shaded cells of the figure are the added cells of the column or row.

Permutations and trees:

We consider permutations σ of {1, . . . , n}, which are bijections from {1, . . . , n} to itself, and are counted by n!. We will represent permutations as words σ 1 . . . σ n of length n where σ i = σ(i). A descent is an index i < n such that σ i > σ i+1 . An occurrence of the pattern 2-31 in σ is a pair (i, j) of two indices such that 1 ≤ i < j < n and σ j+1 < σ i < σ j .

A planar binary tree is a rooted tree such that each vertex has either two ordered children or no child; vertices with no child are called leaves, those of degree 2 are called nodes. The size of a tree is its number of nodes; see Figure 2 (right) for an example of tree of size 8. 1.2. Tree-like tableaux. We can now define the main object of this work: Definition 1.1 (Tree-like tableau). A tree-like tableau is a Ferrers diagram where each cell contains either 0 or 1 point (called respectively empty cell or pointed cell), with the following constraints:

(1) the top left cell of the diagram contains a point, called the root point;

(2) for every non-root pointed cell c, there exists either a pointed cell above c in the same column, or a pointed cell to its left in the same row, but not both;

(3) every column and every row possesses at least one pointed cell.

An example is shown on the left of Figure 2.

Remark 1.2. Condition (2) associates to each non-root point a unique other point above it or to its left. Now draw an edge between these two points for each non-root point, as well as an edge from every boundary edge to the closest point in its row or column: the result is a binary tree, where nodes and leaves correspond respectively to pointed cells and boundary edges. This is pictured in Figure 2, and explains the name tree-like given to our tableaux. We will come back to this tree structure with more detail in Section 4.2. Let T be a tree-like tableau. If the diagram of T has half-perimeter n + 1, then T has exactly n points: indeed Condition (2) associates to each row and column a unique point, except that the first row and column are both associated to the root-point. We let n be the size of T , and we denote by T n the set of tree-like tableaux of size n. A crossing of T is an empty cell of T with both a point above it and to its left; we let cr(T ) be the number of crossings of T . The top points (respectively left points) of T are the non-root points appearing in the first row (resp. the first column) of its diagram. The tableau of Figure 2 has 4 crossings, 2 top points and 2 left points. 1.3. Alternative tableaux and permutation tableaux. Tree-like tableaux are closely related to alternative tableaux [START_REF] Nadeau | The structure of alternative tableaux[END_REF][START_REF] Viennot | Alternative tableaux, permutations and partially asymmetric exclusion process[END_REF] as follows: given a tree-like tableau, change every non-root point p to an arrow which is oriented left (respectively up) if there is no point left of p (resp. above p). This transforms the tableau into a packed alternative tableau [Nad11, Section 2.1.2], which is an alternative tableau with the maximal number of arrows for its half-perimeter. To obtain an alternative tableau, one simply deletes the first row and first column (empty rows and columns may then occur). Moreover, the shape is preserved: to any Ferrers diagram F , we associate (see Figure 3 We have the following correspondences, where we refer to [START_REF] Nadeau | The structure of alternative tableaux[END_REF] for definitions on alternative and permutation tableaux: Proposition 1.3. Let n, i, j, k, be nonnegative integers. There exist bijections between:

(1) Tree-like tableaux of half-perimeter n + 1, with i left points, j top points, k rows, crossings, and with shape a Ferrers diagram F .

(2) Permutation tableaux of half-perimeter n with i + 1 unrestricted rows, j top ones, k rows, superfluous ones, and with shape F .

(3) Alternative tableaux of half-perimeter n -1 with i free rows, j free columns, k -1 rows, free cells, and with shape F .

The fundamental insertion

This section is the core of this work. We describe a new way of inserting points in tree-like tableaux, shedding new light on numerous enumerative results on those tableaux.

Main Result.

The key definition is the following one, which introduces a distinguished point in a tableau: Definition 2.1 (Special point). Let T be a tree-like tableau. The special point of T is the Northeast-most point among those that occur at the bottom of a column. This is well-defined since the bottom row of T necessarily has a pointed cell (Definition 1.1, (3)), which is then at the bottom of a column. Definition 2.2 (Insertpoint). Let T be a tableau of size n and e be one of its boundary edges. Let T be the tableau obtained by inserting a row (resp. column) at e and then pointing its rightmost (resp. lowest) cell. Then we distinguish two cases:

(1) If e is to the Northeast of the special point of T , then we simply define Insertpoint(T, e) := T ;

(2) Otherwise, we add a ribbon starting just to the right of the new point of T and ending just below the special point of T . (If e is the lower edge of the special cell of T , do nothing.) The result is a tableau T , and define Insertpoint(T, e) := T .

The result is a tree-like tableau of size n + 1, since all three conditions of Definition 1.1 are clearly satisfied. Examples of the two cases of Insertpoint are given in Figure 4, while insertion at all possible edges of a given tableau is represented in Figure 8. Cells from the inserted rows or columns are shaded, while those from added ribbons are marked with a cross.

Theorem 2.3. For any n ≥ 1, the insertion procedure insertpoint is a bijection between:

(A) The set of pairs (T, e) where T ∈ T n and e is one of the n+1 boundary edges of T , and (B) The set T n+1 .

Before we give the proof, we need the following fundamental lemma: Proof. Notice that the new point p is at the bottom of a column of T , so we must prove that the columns of T which are to the right of p do not have a bottom point. If we are in case (1) of Definition 2.2, this is clear since these columns are the same as in T and they are to the right of the special point p of T . In case (2), all columns of T strictly to the right of p and weakly to the left of p have a bottom cell coming from the added ribbon, and therefore contain no point. Since columns to the right of p contain no bottom points either since p is the special point of T , the proof is complete.

e 1 e 2 e 1 Tableau T (1) T1 = insertpoint(T, e1) (2) T2 = insertpoint(T, e2)
We can now give the proof of Theorem 2.3:

Proof of Theorem 2.3. We first define a function Removepoint; we will then prove that it is the desired inverse of Insertpoint. Let T be a tableau of size n + 1 and consider the cell c containing the special point. In case there is a cell adjacent to the right of c, then follow the boundary cells to the Northeast of c and let c be the first cell encountered which has a point (that cell exists since the last column possesses at least one point); we then remove the ribbon of empty cells comprised strictly between c and c . This leaves a Ferrers diagram since c is not the bottom cell of its column. Coming back to the general case, delete now the row or column which contains c but no other points: let T 1 be the resulting tableau, and e be the boundary edge of T 1 which is adjacent to c in T . We define Removepoint(T ) := (T 1 , e); T 1 has clearly size n and e is one of its boundary edges, and we claim Removepoint is the desired inverse to the function Insertpoint.

It is clear that if T = Insertpoint(T, e), then Removepoint(T ) = (T, e): this is a consequence of Lemma 2.4. Let us now prove that Insertpoint • Removepoint is the identity on T n+1 . So let T ∈ T n+1 , with c its special cell, and let (T 1 , e) := Removepoint(T ). Suppose first c lies at the end of a row. In this case the special point of T 1 must be to the Southwest of e, therefore no ribbon will be added in Insertpoint(T 1 , e) and this last tableau is thus clearly T . Now suppose there is a cell just to the right of c: in this case the cell c in the definition of Removepoint contains the special point of T 1 , since the removal of the ribbon will turn c into a bottom cell of a column. Now e will be to the left of c in T 1 , and so the application of Insertpoint will add the removed ribbon: in this case also Insertpoint(T 1 , e) = T , and this achieves the proof.

Since |T 1 | = 1 we have the immediate corollary:

Corollary 2.5. |T n | = n! for any n ≥ 1.
So we have an elementary proof that tableaux of size n are equinumerous with permutations of length n. In fact, many bijections can be deduced from Insertpoint; we will describe two such bijections in Sections 4.1 and 4.2. 2.2. Symmetric tableaux. In this section we consider symmetric tableaux, i.e. tree-like tableaux which are invariant with respect to reflection through the main diagonal of their diagram; see an example in Figure 6, left. Symmetric tree-like tableaux are in bijection with symmetric alternative tableaux from [Nad11, Section 3.5], and "type B permutation tableaux" from [START_REF] Lam | Total positivity for cominuscule Grassmannians[END_REF].

The size of such a tableau is necessarily odd, and we denote by T sym 2n+1 the set of symmetric tableaux of size 2n + 1. T sym 2n+1 has cardinality 2 n n!, as was shown in [START_REF] Lam | Total positivity for cominuscule Grassmannians[END_REF][START_REF] Nadeau | The structure of alternative tableaux[END_REF]; we will give here a simple proof of this thanks to a modified insertion procedure. Note that given a tree-like tableau T of size n, one can associate to it a symmetric tableau as follows: if T has k columns, then add on top of it a k × k square of cells, where only the top left cell is pointed; then add to the right of the square the reflected tableau T * : see Figure 6, right. In this way we embed naturally T n in T sym 2n+1 . We now define a modified point insertion Insertpoint * for symmetric tableaux. First let us call * -special point of a symmetric tableau the point at the bottom of a column which is Northeast-most among those that are Southwest of the diagonal ; we will call edges and cells below the diagonal the lower edges and points. Definition 2.6 (Symmetric insertion). Let T ∈ T sym 2n+1 and (e, ε) be a pair consisting of a lower boundary edge e and ε ∈ {+1, -1}. Define a first tableau T by inserting a row/column at e with a point at the end, as well as the symmetric column/row. There are then three cases:

(1) If ε = +1 and e is Northeast of the * -special point, simply define Insertpoint * (T, e, +1) := T .

(2) If ε = +1 and e is Southwest of the * -special point, add a ribbon to T between the new point (Southwest of the diagonal) and the * -special point of T below the diagonal; add also the symmetric ribbon. If T is the resulting tableau, then define Insertpoint * (T, e, +1) := T .

(3) If ε = -1, add a ribbon in T between the two new points, and the resulting tableau is by definition Insertpoint * (T, e, -1). Examples of all 3 cases are given in Figure 7. It is easy to check that when only ε = +1 is chosen during insertions, then the insertion produces precisely those symmetric tableaux given by the embedding of usual tree-like tableaux pictured in Figure 6. Hence the symmetric insertion Insertpoint * is a generalization of Insertpoint.

Theorem 2.7. The procedure Insertpoint * is a bijection between the set of triplets (T, e, ε) as in Definition 2.6 and T sym 2n+3 . Proof. The key remark is the following natural generalization of Lemma 2.4: the new lower point inserted by Insertpoint * is the * -special point of the resulting tableau. In cases (1) and (2) of Definition 2.6, the proof is the same as in Lemma 2.4, and this is clear in case (3).

The inverse of Insertpoint * is defined as follows: given T ∈ T sym 2n+3 , find its lower special point. If there is an empty cell to its right, follow the ribbon to the Northeast until the next pointed cell c. If c is a lower cell, remove the ribbon of empty cells and its symmetric, and define ε := 1; otherwise c must be the cell symmetric to the lower special cell, and in this case remove from T the ribbon of empty cells and let ε := -1. If there is no empty cell to the right of the lower special point, let ε := +1. For all cases, remove the row (resp. column) which contains the special point and no other point, and let e be the right (resp. bottom) edge of the special point which remains in the resulting tableau T . Then T → (T , e, ε) is the inverse of the insertion Insertpoint * : the proof is essentially the same as in the case of Insertpoint and is left to the reader.

We have the following immediate enumerative consequence: Corollary 2.8. For n ≥ 0,

|T sym 2n+1 | = 2 n n! . 2.
3. Refined enumeration. We now show how our insertion procedures give elementary proofs of some enumerative results on tableaux.

Let T n (x, y) be the polynomial

T n (x, y) = T ∈Tn x left(T ) y top(T ) ,
where left(T ) and top(T ) are respectively the number of left points and top points in T . When we insert a point in a tableau T of size n, then we get an extra left (respectively right) point in the resulting tableau if the Southwestmost edge (resp. Northeast-most edges) is picked, while for other boundary edges the number of top and left points remains the same. This gives immediately the recurrence relation T n+1 (x, y) = (x + y + n -1)T n (x, y) which together with T 1 (x, y) = 1 gives:

T n (x, y) = (x + y)(x + y + 1) • • • (x + y + n -2).
(1)

This formula was proved in [START_REF] Corteel | Bijections for permutation tableaux[END_REF] and then bijectively in [START_REF] Nadeau | The structure of alternative tableaux[END_REF]; the proof just given is arguably the simplest one, and is bijective.

We can also give a generalization of Formula (1) to symmetric tableaux [START_REF] Lam | Total positivity for cominuscule Grassmannians[END_REF][START_REF] Corteel | Combinatorics on permutation tableaux of type A and type B[END_REF]. Following [CK11, Section 5] -reformulated in terms of treelike tableaux-, we define

T sym 2n+1 (x, y, z) = T ∈T sym 2n+1 x left(T ) y top * (T ) z diag(T ) ,
where diag(T ) is the number of crossings among the diagonal cells; for top * (T ), consider the northernmost non-root point p in the first column, then the number of points on the row of p is by definition top * (T ). Let T = Insertpoint * (T, e, ε) be as in Theorem 2.7. One has diag(T ) = diag(T ) + 1 when ε = -1, and diag(T ) = diag(T ) when ε = +1. Also left(T ) = left(T ) + 1 when e is the Southwest-most edge while left(T ) = left(T ) for other choices of e. Finally, if the row r considered in the definition of top * (T ) has its boundary edge e Southwest of the diagonal, then the insertion at e = e increases top * (T ) by one, while all other choices for e leave top * (T ) invariant; if r has its boundary edge e Northeast of the diagonal, then the column c symmetric to r ends below the diagonal at a boundary edge e , and then the insertion at e = e increases top * (T ) by one while the other choices for e leave top * (T ) invariant.

Putting things together we obtain the recurrence formula

T sym 2n+3 (x, y, z) = (1 + z)(x + y + n -1)T sym 2n+1 (x, y, z
), from which it follows:

T sym 2n+1 (x, y, z) = (1 + z) n (x + y)(x + y + 1) • • • (x + y + n -2). ( 2 
)
This proof is much simpler than any of the two proofs given in [START_REF] Corteel | Combinatorics on permutation tableaux of type A and type B[END_REF]. Note also that diag(T ) = 0 means precisely that T is of the form given on the right of Figure 6, from which one gets T n (x, y) = T sym 2n+1 (x, y, 0) and thus (2) can be seen as an extension of (1).

Enumeration of crossings and cells

We denote by [T ] the set of tableaux {Insertpoint(T, e)} where e goes through all boundary edges of T . Theorem 2.3 expresses that [T ] has cardinality n + 1 when T has size n, and that we have the disjoint union

T n+1 = T ∈Tn [T ] . (3) 
Similarly we denote by [T ] * the set of tableaux {Insertpoint * (T, e, ε)} where e goes through lower boundary edges of T and ε = ±1. Theorem 2.7 expresses that [T ] * has cardinality 2(n + 1) when T has size 2n + 1, and that we have the disjoint union

T sym 2n+3 = T ∈T sym 2n+1 [T ] * (4) 
Given a tableau T = T n of size n, there is a unique sequence of tableaux T 1 , T 2 , . . . , T n-1 , T n = T such that T i = Insertpoint(T i-1 , e i ) for certain boundary edges e i ∈ T i . Necessarily T i has size i for all i and in particular T 1 is the unique tableau of size 1. We refer to this sequence of tableaux as the insertion history of T .

In this section we will analyze the mean number of crossings and cells that tree-like tableaux have, by analyzing how these quantities evolve through the insertions procedures of the previous section.

3.1. Unrestricted tree-like tableaux. Crossings of tree-like tableaux are an important statistic of these objects: They correspond to superfluous ones in permutation tableaux (cf. Proposition 1.3) and the work of Corteel and Williams [START_REF] Corteel | A Markov chain on permutations which projects to the PASEP[END_REF][START_REF] Corteel | Tableaux combinatorics for the asymmetric exclusion process[END_REF] shows that this statistic is involved in the study of the PASEP.

It turns out that crossings are particularly well-behaved with respect to our insertion procedure, as the following shows.

Lemma 3.1. Let T ∈ T n . The crossings of T are the ribbon cells added in its insertion history.

Proof. Consider T = Insertpoint(T, e) for any tableau T with e as one of its boundary edges. Notice first that the empty cells of the inserted row or column are not crossings, and that the status of the empty cells of T is left unchanged by this insertion. If a ribbon is inserted, then all cells of the ribbons are clearly crossings, since all rows and columns of T contain at least one point. This shows that the crossings of T are those coming from T plus the ribbon cells, which achieves the proof.

Let T be a tableau of size n. From the Southwest to the Northeast, we label its boundary edges e 0 (T ), . . ., e n (T ) and its boundary cells b 0 (T ), . . ., b n-1 (T ). We have the following proposition whose easy proof is omitted: Proposition 3.2. Let T ∈ T n and i ∈ {0, . . . , n}, and consider the tableau T = Insertpoint(T, e i (T )). Then the special cell of T is b i (T ). Moreover, if b k (T ) is the special cell of T (where 0 ≤ k ≤ n -1), then we have This is illustrated in Figure 8, for which k = 3 and i goes from 0 to 5. A first consequence of the proposition is that given k ∈ {0, . . . , n-1}, there are n!/n = (n-1)! tableaux T in T n where the special cell of T is b k (T ). A second consequence is that given such a tableau T , the total number of ribbon cells added when constructing all tableaux in [T ] is 1 + 2 + . . . + k = k+1 2 , and thus the total number of crossings in [T ] is (n + 1)cr(T ) + k+1 2 . Set Cr n = T ∈Tn cr(T ), then we get from (3) that, for n ≥ 1,:

cr(T ) = cr(T ) if k ≤ i, while cr(T ) = cr(T ) + (k -i) if k > i.
Cr n+1 -(n + 1)Cr n = (n -1)! × n-1 k=0 k + 1 2 = (n -1)! n + 1 3 .
If we let X n = Cr n /n!, we obtain simply X n+1 -X n = (n-1)/6, from which we get:

Proposition 3.3. The total number of crossings in T n is given by Cr

n = n! × (n -1)(n -2)/12.
This can also be stated as: given the uniform distribution on T n , the expectation of cr is given by (n -1)(n -2)/12. This was proved first in [CH07, Theorem 1] by a lengthy computation, which relied on the recursive construction of (permutation) tableaux obtained by adding the leftmost column.

Now we want to enumerate all cells in the tableaux. Recall first that the Eulerian number A(n, k) is defined as the number of permutations of length n with k -1 ascents. In order to analyze the number of cells inserted during the insertion of a row or column, the following proposition is helpful.

Proposition 3.4. The number of tree-like tableaux of size n with k rows is given by A(n, k).

Proof. Suppose T has k rows. Then in [T ] there are k tableaux with k rows and n + 1k tableaux with k + 1 rows, which correspond respectively to a column and a row insertion. From this one deduces that A(n + 1, k) = kA(n, k) + (n + 2k)A(n, k -1); this is the familiar recursion followed by Eulerian numbers.

Introducing the Eulerian polynomial

A n (t) = n k=1 A(n, k)t k , we have A n+1 (t) = (n + 1)tA n (t) + t(1 -t)A n (t),
with initial condition A 0 (t) = 1. If we differentiate this equation twice, and plug in t = 1 in each case, one obtains equations for A n (1) and A n (1) which give (this is well-known):

A n (1) = (n + 1)! 2 and A n (1) = (n + 1)!(3n -2) 12 , valid for n ≥ 1 and n ≥ 2 respectively.

Proposition 3.5. The average number of cells in a tree-like tableau of size n is

Y n = (n + 1)(5n + 6) 24 (5)
Proof. Suppose T ∈ T n has k rows, and thus n + 1k columns, and let ncr(T ) be its number of non-crossing cells. Note that if the edge e is at the end of the jth row or column, then Insertpoint(T, e) has ncr(T ) + j noncrossing cells since we inserted a column or row with j cells. Hence we have that ncr

([T ]) is equal to (n + 1)ncr(T ) + k(k + 1)/2 + (n + 1 -k)(n + 2 -k)/2;
by summing over all tableaux T ∈ T n we get for n ≥ 2:

ncr(T n+1 ) =(n + 1)ncr(T n ) + n k=1 A(n, k) k(k+1) 2 + (n+1-k)(n+2-k) 2 =(n + 1)ncr(T n ) + n k=1 A(n, k)k(k + 1) =(n + 1)ncr(T n ) + A n (1) + 2A n (1) =(n + 1)ncr(T n ) + (n + 1)! 3n + 10 12
where we used the fact that A(n, k) = A(n + 1k) in the second equality. Dividing both sides by (n + 1)! and setting AvN cr(n) := ncr(T n )/n! we get the equation:

AvN cr(n + 1) = AvN cr(n) + 3n + 10 12 for n ≥ 2.
With the initial condition AvN cr(2) = 2 this gives AvN cr(n) = 1/24(3n 2 + 17n + 2), which added to the average number of crossings (n -1)(n -2)/12 gives the result.

3.2. Symmetric tree-like tableaux. We will give here analogues of the results of the previous section for symmetric tableaux Proposition 3.6. For n ≥ 1, the average number of crossings in symmetric tree-like tableaux of size 2n + 1 is given by

X * 2n+1 = 2n 2 + 1 6 . ( 6 
)
Proof. Assume n ≥ 1. We denote by Cr * 2n+1 the total number of crossings in all symmetric tableaux of size 2n + 1. Let T be such a tableau, and let i ∈ {0, . . . n -1} be the position of its * -special point, and we wish to compute the number of crossings in [T ] * . Then, as for unrestricted tableaux, the crossings added by the insertions Insertpoint * with ε = 1 are counted by 2(1 + . . . + i) = i(i + 1), while the insertions with ε = -1 contribute 1 + 3 + . . . + (2n + 1) = (n + 1) 2 crossings.

Summing over T we get

Cr * 2n+3 = 2(n + 1) Cr * 2n+1 + 2 n (n -1)! n-1 i=0 i(i + 1) + (n + 1) 2 (7) 
= 2(n + 1)

Cr * 2n+1 + 2 n (n -1)! (n + 1)n(n -1) 3 + n(n + 1) 2 ) (8)
which together with X * 2n+1 =

Cr * 2n+1 2 n n! leads to:

X * 2n+3 = X * 2n+1 + n -1 6 + n + 1 2 . (9) 
Since X * 3 = 1/2 we get by summation (6). Note that X * 1 = 0 while (6) would give 1/6. Proposition 3.7. The numbers B(n, k) of symmetric tableaux of size 2n+1 with k diagonal cells obey the following recursion:

B(n + 1, k) = kB(n, k) + (n + 1)B(n, k -1) + (n + 3 -k)B(n, k -2).
with B(0, 1) = 1 and B(0, k) = 0 if k = 1.

Proof. Suppose T has k diagonal cells; then in [T ] * there are:

• k tableaux with k diagonal cells (row insertion when ε = +1);

• (n + 1 -k) + k = n + 1 tableaux with k + 1 diagonal cells ( row insertion when ε = -1 or column insertion when ε = +1); • n + 1 -k tableaux with k + 2 diagonal cells (column insertion when ε = -1).
This gives BvN cr(n) = 2n 2 +7n+3 4 , for n ≥ 1, which together with the crossing numbers (6) achieves the proof.

3.3. Square symmetric tableaux and ordered partitions. It does not seem that the numbers B(n, k) defined in Proposition 3.7 have been studied in all generality. There exist "Eulerian number of type B" (A060187 in [Slo]) but these are different: as shown in [START_REF] Corteel | Combinatorics of the permutation tableaux of type b[END_REF], these numbers E B (n, k) count symmetric tableaux of size 2n+1 such that k is the sum of the number of non crossing diagonal cells and half the number of crossing diagonal cells.

There is a recursive way to compute the exponential generating functions

E h (x) = n B(n, n + 1 -h)x n /n! as follows: hE h (x) = (1 -x)E h-1 (x) -E h-1 (x) + (h -3)E h-2 (x) -xE h-2 (x). (11)
This is a reformulation of the recurrence of Proposition 3.7. The initial values are E -1 (x) = 0 and E 0 (x) = n≥0 B(n, n + 1)x n /n! which is given by

E 0 (x) = 1 2 -exp(x) (12) 
We will prove this bijectively, as a consequence of Theorem 3.10 below.

Say that a symmetric tableau is square if its shape is a square Ferrers diagram. For a given size 2n+1, these are clearly the only tableaux with the maximum number n + 1 of diagonal cells, and they are thus counted by the numbers B(n, n + 1) whose exponential generating function is by definition E 0 (x). An ordered partition of {1, . . . , n} with k blocks is a partition in k blocks together with a linear ordering of the blocks; the corresponding counting sequence is given in [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF]A000670]. We will construct a bijection Ξ from square tableaux to ordered partitions.

Here we will consider only the cells of T that are strictly below the diagonal: this is enough to reconstruct the whole tableau by symmetry, since non-root diagonal cells are necessarily empty in symmetric tableaux. Call these restrictions half tableaux. Bijection Ξ: Let T be a half tableau coming from a square symmetric tableau of size 2n + 1. Therefore T consists of n rows which have 1, 2, . . . , n cells from top to bottom, and has n points in total; see Figure 9.

Consider the last row of T , which has necessarily at least one point; let B = {i 1 < . . . < i m } be the positions where these points appear; here positions are labeled by 1, . . . , n from left to right. Now notice that for j > 1, column i j has no point beside the one in the last row, while row i j -1 is empty. Delete all these rows and columns from T , together with the last row: after left-and bottom-justifying the remaining cells, the result is clearly a half tableau T of with nm points.

By induction, Ξ(T ) is an ordered partition π = (B 1 , B 2 , . . . , B ) of {1, . . . , n -m} where is the number of nonempty rows of T ; relabel the entries in the blocks of π by applying the only increasing bijection {1, . . . , n -m} to {1, . . . , n}\{i 1 , . . . , i m }, and denote by B i the block B i after this relabeling. Then Ξ(T ) is defined as the ordered partition π := (B 1 , . . . , B , B).

Theorem 3.10. Ξ is a bijection between:

• Square symmetric tableau of size 2n + 1, and

• Ordered partitions of [n].
Moreover if T has j diagonal crossings and π = Ξ(T ), then π has j blocks.

As a corollary, we obtain the expression (12) since 1/(2exp(x)) is the exponential generating function of ordered partitions.

An example of the bijection Ξ is shown on Figure 10.

2 5 → 1 3 → 2 → 1 ({3}, {6}, {1, 4}, {2, 5}) ← ({2}, {4}, {1, 3}) ← ({1}, {2}) ← ({1})
Figure 10. The bijection Ξ between half square tableaux and ordered partitions

Proof. The property about diagonal crossings and blocks is obvious for Φ by construction, since diagonal crossings correspond to nonempty rows in a half tableau. We describe the reciprocal construction of Ξ, once again inductively. Assume Ξ -1 is known for ordered partitions with blocks, an let π have size n and + 1 blocks B 1 , B 2 , . . . , B +1 . Assume B +1 has m elements {i 1 < . . . < i m } and consider the partition π with m blocks B 1 , B 2 , . . . , B which are B 1 , B 2 , . . . , B relabeled on {1, . . . , n -m}, so we can construct T = Ξ -1 (π ). In T , insert rows in positions i 2 -1, . . . , i m -1 from top to bottom, and columns in positions i 2 , . . . , i m from left to right; to finish, add a bottom row with n cells and points in positions i 1 , i 2 , . . . , i m . The result is the wanted (half) tableau Ξ -1 (π). It is easily verified that this is indeed the inverse of Ξ.

We end this section with two remarks. First notice the case j = n: the bijection Ξ then restricts to a bijection between permutations of {1, . . . , n} and inversion arrays. It is tempting to consider half tableaux as generalized inversion arrays for ordered partitions and investigate which properties of permutations can be extended.

To finish, consider the numbers B(n, n) which counts almost square symmetric tableaux, that is non square tableaux whose shape becomes square after adding a symmetric ribbon. The generating function E 1 (x) is (1x)/(2exp(x)) by 11; thus B(n, n) counts threshold graphs on [n] with no isolated vertices [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF]A053525]. This can be also shown bijectively using the construction of Proposition 3.7 in the case k = n + 2, Theorem 3.10 and the formula in [Sta99, Exercise 5.4.b.]

Bijections with permutations

It is pretty straightforward to derive bijections between permutations and tableaux from Theorem 2.3. Here we will single out two such bijections because of their specific properties. The first one sends crossings in a tableau to occurrences of the pattern 2-31 in a permutation, and the second one preserves a tree structure underlying both objects.

Remark 4.1. Both bijections of this section can be extended with little effort to bijections between symmetric tableaux and signed permutations.

4.1.

A first bijection which respects 2-31 patterns. As mentioned at the end of Section 2.1, it is immediate to construct bijections from T n to permutations using Insertpoint. We will here define one with the goal of sending crossings of tableaux to occurrences of the pattern 2-31 in a permutation.

First, a tableau T of size n is naturally encoded by a list of integers a(T ) = (a 1 (T ), . . . , a n (T )) satisfying 0 ≤ a i (T ) ≤ i -1. This is done as follows: let T 1 , T 2 , T 3 , . . . , T n = T be the insertion history of T . For i ∈ {2, . . . , n}, we define a i (T ) as the index j such that Insertpoint(T i-1 , e j ) = T i , using the labeling of boundary edges defined before Proposition 3.2.

We now give an algorithmic description of our first bijection Φ 1 . For i = n, n -1, . . . down to i = 1, apply the following: consider the set {1, . . . , n}\{σ(i + 1), . . . , σ(n)} =: {x 0 < x 1 < . . . < x i-1 } arranged in increasing order and simply define σ(i) = x a i (T ) ; the function Φ is then defined by setting Φ 1 (T ) = σ. For instance, if a(T ) = (0, 1, 0, 3, 1), one finds easily σ = 34152. Theorem 4.2. Φ 1 is a bijection from T n to permutations of length n. If σ = Φ 1 (T ), then cr(T ) is equal to the number of occurrences of 2-31 in σ.

Proof. First, it is clear that the construction is bijective. Now i is a descent in σ if and only if a i (T ) ≥ a i+1 (T ). Moreover, in this case, this descent i will give rise to exactly a i (T )a i+1 (T ) occurrences of the pattern 2-31 of the form (σ(k), σ(i), σ(i + 1)) an occurrence of 2-31. So we showed that the number of occurrences of 2-31 in σ is given by n-1 i=1 max (a i (T )a i+1 (T ), 0). But it is an easy reformulation of Proposition 3.2 that this quantity is precisely cr(T ), which completes the proof. This bijection is much simpler than bijection II from [START_REF] Corteel | Bijections for permutation tableaux[END_REF], which was designed specifically to preserve the equivalent pattern 31-2.

4.2.

A second bijection which "respects trees". Here we show that the tree structure of our tableaux can be naturally sent to the tree structure on permutations underlying their representations as increasing trees. From permutations to binary trees: We define an increasing tree of size n to be a binary tree of size n where the n nodes are labeled by all integers in {1, . . . , n} in such a way that the labels increase along the path from the root to any node. There is a well-known bijection with permutations: given an increasing tree, traverse its vertices in inorder, which means recursively traverse the left subtree, then visit the root, then traverse the right subtree. By recording node labels in the order in which they are visited, one obtains the wanted permutation: see Figure 11 (left). If σ is a permutation with associated increasing tree inctree(σ), then we define tree(σ) as the binary tree obtained by forgetting the labels in inctree(σ). From tree-like tableaux to binary trees: We described this in Remark 1.2. It can also be obtained graphically by drawing two lines from every point of T , one down and one to the right, and stopping them at the boundary. We let tree(T ) be the binary tree thus constructed, see Figure 11 (right). Note that there is a natural identification between boundary edges of T and leaves of tree(T ). Using Insertpoint, we now define a bijection Φ 2 between permutations and tree-like tableaux which preserves the binary trees attached to the objects. For this we proceed by induction on n.

Let σ be a permutation of size n + 1, and τ be the permutation of size n obtained by deleting n + 1 in σ. By induction hypothesis, the tableau T := Φ 2 (τ ) is well defined and satisfies tree(T ) = tree(τ ). Define L to be the leaf of inctree(τ ) appearing in the inorder traversal at the position occupied by n + 1 in σ: then inctree(σ) is obtained by replacing L by a node labeled n + 1 with two leaves. Now L corresponds naturally to a boundary edge e L in Φ 2 (τ ), and we define Φ 2 (σ) = Insertpoint(Φ 2 (τ ), e L ).

Theorem 4.3. Given n ≥ 1, the function Φ 2 is a bijection between permutations of length n and tree-like tableaux of size n, satisfying tree(σ) = tree(Φ 2 (σ)). This is a simple consequence of the properties of Insertpoint. The permutation σ and the tree-like tableau T from Figure 11 satisfy Φ 2 (σ) = T .

Remark 4.4. The tree structure attached to tableaux is not new: first Burstein [START_REF] Burstein | On some properties of permutation tableaux[END_REF] defined it on so-called bare tableaux, which are essentially our tree-like tableaux minus a column. Then this tree structure was also studied by the third author in some detail [Nad11, Section 4]. The main difference is that, although the (unlabeled) tree structure is essentially the same, the labeling is quite different: here we have a quite simple bijection with increasing trees, while the labelings from the two aforementioned references involve some complicated increasing/decreasing conditions. The root of such complication can be traced to the fact that the boundary edges in [START_REF] Burstein | On some properties of permutation tableaux[END_REF][START_REF] Nadeau | The structure of alternative tableaux[END_REF] were labeled independently of the structure of the tree, while here we use the tree to determine the labeling.

Further results and questions

In this work we described a very simple insertion procedure Insertpoint which can be seen as a 1-to-(n + 1) correspondence between the sets T n and T n+1 . We proved that from this simple seed one could produce automatically most of the enumerative results known on tableaux, as well as design bijections to permutations with various properties. Other enumeration results can also be proved with the same techniques: enumeration of tableaux according to the number of rows (this gives Eulerian numbers [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF]), or the total number of cells.

A further question would be to revisit the work of Corteel and Williams on the PASEP model from statistical mechanics (see [START_REF] Corteel | Staircase tableaux, the asymmetric exclusion process, and Askey-Wilson polynomials[END_REF][START_REF] Corteel | Tableaux combinatorics for the asymmetric exclusion process[END_REF][START_REF] Corteel | A Markov chain on permutations which projects to the PASEP[END_REF]), which involves objects related to alternative tableaux. In particular, do their (weighted) staircase tableaux have recursive decompositions similar to those given here for tree-like tableaux ? An answer is given in [START_REF] Aval | The tree structure in staircase tableaux[END_REF].

As mentioned in the introduction, this work founds its origin in problems about trees, and not tableaux; we will here briefly describe such a problem. Suppose we draw the nodes of a plane binary tree as points in the center of unit cells of Z 2 , where the children of a node are drawn below and to the right of this node (as in the trees tree(T ) attached to a tree-like tableau T ); we allow edges to cross outside of nodes. Let us call the drawing unambiguous if, when one deletes the edges of the tree, it is then possible to reconstruct them uniquely: one sees that this comes down essentially to condition (2) in Definition 1.1. We are led to the following definition: a ambiguous tree is a tree-like tableau T with rectangular shape. Such objects are investigated in [START_REF] Aval | Combinatorics of non-ambiguous trees[END_REF] where several combinatorial results are obtained.
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and from this one deduces the above recursion.

Let T be a symmetric tableau of size 2n + 1. Since Insertpoint * increase by 1 the width and the height of symmetric tableaux, the diagonal of T contains less that n + 1 cells. We deduce that B(n, k)! = 0 if and only if

Introducing the polynomial B n (t) = n+1 k=1 B(n, k)t k the previous recurrence relations become

where B 0 (t) = t. If we differentiate this equation we get:

Substituting t = 1 in this equation one gets:

(1) n + 3 2 , which is easily solved: Proposition 3.8. For n ≥ 1, the average number of diagonal cells on a symmetric tableau of size 2n + 1 is E

(1)

Using these results we can then obtain the average number of cells in symmetric tableaux, giving Proposition 3.9. The average number of cells in a symmetric tree-like tableau of size 2n + 1 is

for n ≥ 1.

Proof. Let T be a symmetric tableau of size 2n + 1 with k diagonal cells. The number of non crossing cells in T is noted ncr(T ); now we want to compute ncr([T ] * ). The row insertions contribute 2 • 2 k i=1 i = 2k(k + 1) cells, while the column insertions contribute 2

We now sum this over all tableaux of size 2n + 1 and get ncr(T sym 2n+3 ) = 2(n + 1)ncr(T sym 2n+1 ) + 2