
HAL Id: hal-00618264
https://hal.science/hal-00618264

Submitted on 4 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User-defined scenarios in ubiquitous environments:
creation, execution control and sharing

Matthieu Faure, Luc Fabresse, Marianne Huchard, Christelle Urtado, Sylvain
Vauttier

To cite this version:
Matthieu Faure, Luc Fabresse, Marianne Huchard, Christelle Urtado, Sylvain Vauttier. User-defined
scenarios in ubiquitous environments: creation, execution control and sharing. 23rd International
Conference on Software Engineering and Knowledge Engineering (SEKE 2011), Jul 2011, Miami Beach,
Fl, United States. pp.302-307. �hal-00618264�

https://hal.science/hal-00618264
https://hal.archives-ouvertes.fr


User-defined Scenarios in Ubiquitous Environments:
Creation, Execution Control and Sharing

Matthieu Faure, Luc Fabresse
Ecole des Mines de Douai, Douai, France

{Matthieu.Faure, Luc.Fabresse}@mines-douai.fr
Marianne Huchard

LIRMM - UMR 5506, CNRS and Univ. Montpellier 2, Montpellier, France
huchard@lirmm.fr

Christelle Urtado and Sylvain Vauttier
LGI2P / Ecole des Mines d’Alès, Nı̂mes, France

{Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

Abstract—Ubiquitous computing provides a dynamic access
to different functionalities of networkable electronic devices.
Whereas basic services have limited use, predefined complex
services cannot encompass every end-user’s needs nor be adapted
to a set of services that are dynamically discovered in an open
environment. Alternatively, users need to be provided with means
to express their requirements, choosing precisely which services
to compose into a scenario of their own. In service-oriented
computing, some systems propose mechanisms to develop tailored
components that provide composite services; however they are
not adapted to end-users, have limited composition capabilities
and/or do not consider several characteristics of ubiquitous
environments (such as multiple users and devices).

This paper presents a novel user-centric system called SaS
for mobile personal devices. SaS provides end-users with an easy
access to services and a simple GUI to combine them into complex
scenarios. A new architectural description language is used to
specifically support scenario creation by service composition.
Scenario may be shared among users and devices. SaS offers
scenario execution control for example to start and stop it but
also to query the current state of a scenario. In addition, SaS
proposes some mechanisms to maintain scenario availability in
case of service/device unavailability. SaS is currently implemented
in a proof-of-concept prototype on top of OSGi.

Keywords—Ubiquitous computing, service-oriented computing,
user-centric system, service composition, scenario creation.

I. INTRODUCTION

With the rise of ubiquitous computing [1], [2], we are surrounded
by electronic devices (such as smart phones or TVs) that propose
a huge amount of services through public or private networks.
According to the OASIS organization, “a service is a mechanism
to enable access to one or more capabilities” [3]. In service-oriented
computing (SOC) [4], and specially in home automation [5], [6], [7],
efforts have been made to facilitate the use of these electronic devices
through their services. As shown in Figure 1, the more complex
user requirements can only be satisfied by compositions of multiple
services provided by multiple devices. Different service composition
means have been studied and proposed [8], [9], [10], [11]. However,
they are not designed for end-users without technical knowledge.

Enabling end-users to describe their own scenarios is a first im-
provement and a step towards ambient intelligence [12]. In addition,
users should easily manage the created scenarios and have access to

them from several control devices (PDA, mobile phone or laptop).
Moreover, ubiquitous environments imply that several users might be
eager to share scenarios. Scenarios should therefore be exported in
the environment to be shared and reused.

Figure 1. User’s main issue

In this paper, we propose the SaS (Scenarios as Services) sys-
tem specifically designed for end-users to describe, use and share
scenarios in a high level manner. SaS comprises a new architecture
description language (ADL) [13], [14], [15] dedicated to user scenario
creation. SaS also integrates a graphical user interface (GUI) based
on this ADL. This GUI presents a classified and filtered view of the
services available from a set of widely spread devices and provides
tools to easily compose selected services. SaS integrates scenarios as
regular services. This enables easy scenario execution control, sce-
nario sharing among users and hierarchical composition of scenarios.
The SaS system has been prototyped. Its current implementation is
on top of OSGi [16].

The remainder of this paper is structured as follows. Section II
introduces the context of this work, presents the requirements for
open and distributed environments and discusses the state of the art.
Section III presents the first part of our proposition: scenario creation.
Section IV is dedicated to scenario execution control and sharing.
Section V presents the architecture of the prototype implementation.
Finally, section VI evaluates our proposition, concludes and draws
some perspectives to this work.



II. USER-CENTRIC SYSTEMS IN UBIQUITOUS
ENVIRONMENTS

This section first describes the terminology of ubiquitous environ-
ments and especially that of user-centric systems. It then presents the
requirements that are mandatory for that kind of systems. It finally
compares some of the main state of the art approaches regarding
these requirements.

A. Terminology
Ubiquitous systems involve multiple users and multiple devices

that each provide a set of services. A device is an electronic object
(such as a clock). Devices publish services (such as Time). Each
service provides one or more operations (such as getTime or
setTime). They are called “capabilities” in the SOA norm [3] by
the OASIS consortium. End-users use these operations as an access
to functionalities of devices.

Devices can interoperate but the overall goal that the system has
to achieve always comes from users. Users can be simple consumers
or technical experts that command devices, their needs can always
be considered as scenarios which are combinations of operations.
However, we choose to name this combination a service composition
because services are not stand-alone elements and to stick to the
terminology used in SOC.

A SaS system is deployed on a mobile personal device. The system
and the device on which it is deployed together define a SaS platform.
A SaS platform participate in one or more networks which constitute
the platform’s environment. The global environment is the union of
all the environment of its constituting SaS platforms.

B. Requirements for user-centric systems
User needs always constitute a scenario. User-centric system must

therefore enable scenario creation. As seen in Figure 1, user scenarios
are not always simple service aggregations but can imply conditions,
control statements and logical operators. Users should thus be able to
compose services according to their needs. Most of the users are not
technical experts. Scenario creation should therefore be user-friendly
and adapted to devices. Ubiquitous environments imply multiple
users and devices. So, created scenarios should be available into
the environment and shared among users. Users must be able to
easily start and stop created scenarios and check scenario status
and execution advancement. Thus, the system should control the
scenario life-cycle. Moreover, already created scenarios should be
easily modified and recomposed into other ones. In addition, devices
that provide services and/or scenarios can disappear. The system
must therefore maintain scenario execution and availability in case
of device disappearance.

C. State of the art
With the requirements established previously, we can analyze

some of the main systems that provide a solution for ubiquitous
environments and enable end-users to create scenarios.

• SLCA [17] provides developers with the capability to compose
web services. A composite service contains proxy components
attached to involved web services. SLCA enables hierarchical
service composition. In addition, it is an event-based system
which adapts to environment changes. In case of service un-
availability the composite service replaces it if an appropriate
service is found. If not, the composite service removes the proxy
component attached to this service.

• MASML [6] is a multi-agent system for home automation.
Scenarios are defined with an XML syntax and consist of
a sequence of service operation invocations. MASML XML
documents can embed ECMA scripts [18] to add logic elements.
A mobile agent is in charge of scenario execution. It is moving
to each appropriate device with the scenario description file to

execute it. This enables scenario advancement tracking but not
parallel execution.

• SODAPOP [19] proposes an innovative approach based on the
same observation than us: user needs are scenarios. What is
important is the goal to achieve. The main hypothesis is that
each service contains informations about its initial conditions
and its effects. SODAPOP automatically classifies new services
with these informations. Then, it can combine some of them to
reach the user’s goal.

• SASHAA [20], [21] is one of our previous work, focused on
ubiquitous systems for home automation. It enables end-users to
create scenarios with Event - Conditions - Action rules through
an appropriate GUI. It is an adaptive system which creates a
new component for each new device.

Table I compares these systems with respect to the requirements
that we identified in II-B. Symbol

√
means that the requirements is

fulfilled, - signifies that it is partially accomplished and X represents
an absence of solution.

Sy
st

em
s

Sc
en

ar
io

C
re

at
io

n

A
dv

an
ce

d
Se

rv
ic

e
C

om
po

si
tio

n

U
se

r
fir

en
dl

in
es

s

Sc
en

ar
io

sh
ar

in
g

Sc
en

ar
io

L
if

ec
yc

le

H
ie

ra
rc

hi
ca

l
C

om
po

si
tio

n

Sc
en

ar
io

M
ai

nt
en

an
ce

SASHAA
√

-
√

X - X
√

SLCA
√ √

X X X
√

-
MASML

√ √
X X - X

√

SODAPOP
√

X - X X X X

Table I
SYSTEM COMPARISON WITH OUR REQUIREMENTS

Except for SAASHA, we can notice in Figure I that all these
works propose programming tools for developers. They are not
directed to end-users. In addition, scenario sharing is never took into
consideration. For scenario life-cycle control, SASHAA only enables
to start and stop scenarios whereas MASML just allows users to
check scenario advancement. Because of this, we decided to propose
a new system which best meets all the expectations of user-centric
systems for ubiquitous environments.

III. THE SAS SYSTEM: SCENARIO CREATION

A. Overview of SaS
The purpose of SaS which stands for Scenarios As Services is

threefold:
1) help end-users create scenarios by service composition,
2) monitor scenario execution on a given platform,
3) export scenarios into the environment for future use or sharing.
To do so, several steps are necessary that define a user-centric

cycle, as illustrated by Figure 2:
0. The system (placed into a user device) discovers the services

available in its neighboring environment.
1. SaS classifies service operations depending on their providers

(devices) and services. It then displays them.
2. Users can compose several available services to create a sce-

nario. This is possible through a dynamically adaptive graphical
user interface based on our ADL.

3. The created scenario is translated into a descriptor file. It
therefore becomes easily transmissible and can be shared with
other platforms and users.

4. Next, SaS analyzes the scenario descriptor. It extracts infor-
mation about the different services involved and how they are
composed.

5. The system creates a composite with the involved services
and a generated manager. This manager handles the services
according to the previously made user choices.



Figure 2. Overview of the proposed SaS scenario creation and reuse cycle

6. Finally, the manager, which is in the composite, registers the
scenario as a new service into the environment. It becomes
accessible from other devices and shared among end-users.
Moreover, it can be composed into a new scenario.

B. Scenario creation
This section describes scenario creation, which is the main part of

our system. It consists in three steps: service selection, scenario con-
struction by service composition and scenario export. As described
in Section III-A, the first functionality of the SaS system is service
discovery. Some protocols already exist that do so (e.g. UPnP [22],
SLP [23], Jini [24]) along with different extra functionalities. To be
as interoperable as possible, our SaS system does not prescribe the
use of a particular discovery protocol. Once the available services are
discovered, they can be listed and ordered by SaS to enable service
selection.

1) Service Selection: Every service proposes one or more
operations (for example, the light service might offer two operations:
getValue and setValue). To define a scenario, users always
select operations, but the name of the service and the identity of
the provider device do not always matter. For example, to print a
document a person generally chooses his favorite printer, accesses the
specified service and selects the appropriate operation. Alternatively,
if he needs to know what time it is, he directly selects the getTime
operation, no matter which clock or service provides it.

Service selection in SaS sticks to this requirement. SaS proposes
three filtered views to select available operations: by device type
(e.g. the list of available printers), by service name (e.g. the printSer-
vice service) or directly by operation name (e.g. the print opera-
tion). If users select a device, services provided by this device are
then proposed to choose from. If users select a service, operations that
compose this service are then proposed to choose from. Moreover,
distinct devices can propose services with the same name, sometimes
with additional operations. SaS groups these services together and
displays all the available operations collectively.

2) Service Composition: SaS enables service composition
thanks to an ADL and its GUI. Depending on user choices, created
scenarios can be then exported into the environment.

a) Presentation of the ADL: In order to help end-users
create scenarios that correspond to their needs, we propose a new
ADL. It is simple and tailored to scenario creation. Compared to
other programming languages for service composition (like BPEL
[25]) which are imperative and designed for executable process, our
ADL is a high level language, declarative and destined to end-users.
With this ADL, one can declare both services and scenarios.

• Service declaration
We define a service by a device (its provider), a name and an op-
eration list. This list cannot be empty. Operations have a return

type (which can be void) and can have typed parameters. We
represent only the main elements of the grammar in Listing 1.

<service> ::= service <device> <service_name> <op_list>

<op_list> ::= ( <operation> ; )*

<operation> ::= operation <operation_name> (
[<parameter_list>] ) : <return_type>

<parameter_list> ::= <parameter_type> (,<parameter_type>)*

<return_type>::= <type>
<parameter_type> ::= <type>

Listing 1. Service declaration with the Backus–Naur Form (BNF)

• Scenario declaration
By definition, a scenario has a name and an action list. An
action can be:

– an operation invocation: a service operation is invoked,
with its parameter values. Users can directly enter param-
eter values or invoke another service operation to create
the desired value (operation composition). SaS checks if
parameter types conform to the service definition.

– an alternative (if - else): conditions compare the result of
two service operations or the result of a service operation
and a value chosen by the user.

– a repetition loop: enables while loops iterations while
a condition remains satisfied. Alternatively, it is possible
to precise how many times a series of actions should be
invoked.

Listing 2 describes the main elements of a scenario declaration
using the BNF notation.

<scenario> ::= scenario <scenario_name> <action_list>

<action_list> ::= { <action> + }
<action> ::= <op_invocation> ; | <alternative> | <repeat>

<op_invocation> ::= [<device>] <service_name>.
<operation_name>([<parameter_list>])

<parameter_list> ::= (<op_invocation>|<parameter_value>)
(, (<op_invocation>|<parameter_value>))*

<alternative> ::= if <cplx_cond><action_list> [<else_clause>]
<else_clause> ::= (else <action_list> )*
<cplx_cond> ::= (<condition> (<log_operator><condition>)*)
<condition> ::= <op_invocation> <comp_operator>

(<op_invocation> | <compare_to_value>)
<repeat> ::= (while <cplx_cond> | <repeat_value> times)

<action_list>

<log_operator> ::= and|or|not
<comp_operator> ::= < | <= | > | >= | ==

Listing 2. Grammar of the scenario declaration using the BNF notation

b) The graphical user interface: This ADL syntax is simple
and declarative as we can see in the example on the right of
Figure 3. Nevertheless, SaS proposes a more user-friendly option
to create scenarios through a graphical representation of the ADL.
Users therefore do not manipulate the ADL anymore but compose
service operations with basic instructions (based on the operators
of our ADL): if, else, while, times, and, or, not,
<, >, ≤, ≥, ==. For parameters entries, users can select an
operation result or choose fixed values and apply an arithmetic
operation (such as +, -, *, /).

Once the scenario is defined, users can choose to export it into
the environment. They also have to specify if the scenario can be
redeployed into another SaS platform. Thanks to a transformation
process, the scenario is then automatically transcribed into our ADL.
Figure 3 (right) shows the scenario transcription with a simplified
version of the GUI (left).

3) Composite service creation: After the scenario is created,
SaS analyzes its description file to create a composite that manages



Figure 3. Scenario Transcription: from our ADL

its deployment. This composite includes references to the services
chosen in the scenario and a Scenario Manager. The manager has
two roles: manage the different services and export the scenario as a
new service in the system according to users preferences.

Depending on user choices, services instantiated inside the com-
posite are specific to a device or come from any of its available
providers1. In this last case, if the service provider disappears, SaS
dynamically recomposes the composite that implements the scenario
to integrate another implementation of the same service (if available).
Figure 4 illustrates composite services with an example. The scenario
is simple and placed in a home automation environment: at 6pm, close
the main door and set the thermostat at 7. There are three services:
only one is defined from a specific device (the main door). Others
are instantiated from any devices that provide these services.

Figure 4. A Composite Service

IV. SCENARIO EXECUTION CONTROL AND SHARING

Once scenarios are created, they can be shared among users. In
addition, scenarios are easily manageable and should stay available
into the environment in case of service or device unavailability.

A. Scenario sharing
As seen in subsection III-B3 the Scenario Manager registers the

scenario as a new service. The scenario can then be used as a service
and, as such, composed into a new coarser grained scenario (scenario
hierarchical composition). This service has four operations: start,
stop, getScenarioState and getDescriptor. It does not
describe the functioning of the scenario: it hides services and their
interactions inside the composite. This guarantees encapsulation.
Reflexion is nonetheless provided (composites are not black boxes but
gray boxes) thanks to a service operation: getDescriptor. This
operation provides access to the scenario descriptor file. Users can
directly read this file or obtain a visual transcription of the scenario
on his GUI.

Figure 5 illustrates scenario sharing. The user of the SaS platform
named A creates and exports a scenario. This scenario is registered
as a new service. It is then discovered by platforms B and C. The
user of platform B recomposes this scenario into a new one, whereas
the user of platform C just gets an overview of the scenario on its
GUI.

1An optimized selection scheme is a perspective.

Figure 5. Overview of SaS scenario sharing

B. Scenario execution control
We define scenarios as service compositions. We can see a scenario

as an active entity, which evolves, changes from one state to another.
Moreover, the execution contains several steps which can fail or
succeed. For example, users that discover a scenario might want to
know if this scenario is currently in execution. If so, it is important
to check which steps have been executed, which succeeded and what
are the next steps. This is why, SaS manages scenarios’ life-cycles
and enables to check scenario execution status.

1) Scenario life-cycle: Scenarios are dynamic. They can be
executed, stopped, have a missing service... The state diagram of
Figure 6 illustrates the different states of scenario life-cycle which
are:

• Installed, the scenario has been deployed and registered (and
so discovered) as a new service. SaS automatically checks if
the different involved services are present.

• Ready to launch, all involved services are available. If a service
disappears, the scenario goes to the previous state.

• Running, the scenario has been launched and is currently
executed. The scenario could finish and come back to the
previous state or be interrupted.

• Stopped, the scenario has been stopped by a user or a service
inside the scenario disappeared. The scenario is paused waiting
to be restarted or to be executable again by the appearance of
an appropriate service.

Figure 6. State diagram of scenario life-cycle

2) Scenario running state advancement: Users must know
which scenario operations are running and which have already been
executed. This is why, SaS registers scenario execution progress. To
do so, SaS considers the Running state of the scenario life-cycle as



a succession of stages: the operation invocations. These stages are
evaluated depending on their types:

• Functions, if an operation is invoked to obtain a result, SaS
logs this operation as done when we obtain the result. If an
error occurs, SaS continues to execute the scenario if possible
(i.e. if the operation result is not needed) and displays a warning
to the user.

• Procedures, if the operation does not return a result, SaS logs
it as executed when the operation is invoked.

In addition, SaS logs the execution times of the different scenario
steps. Users can see when the scenario began and how long every
operation took. So, SaS enables users to check the current scenario
position and control its correct advancement. Users can get these
informations thanks to the getScenarioState operation.

C. Scenario availability
With scenario export as new services, users can have access to the

same scenario on several devices, however, they might want access
to it even if the original provider is off. This is why, scenario access
should be maintained if the original provider disappears.

To do so, SaS enables scenario redeployment on other platforms.
This is possible because SaS differentiates scenarios from available
services. When a scenario appears, every SaS platform downloads
the scenario description. Thus, users can directly have an overview
of the scenario definition and platforms can redeploy the scenario if
the original scenario provider disappears.

V. SYSTEM DESIGN AND IMPLEMENTATION

This section describes the design and implementation of the SaS
prototype. It is an ongoing work implemented in Java over OSGi [16],
[26] with iPOJO [27]. OSGi is a popular SOC framework that is
widely adopted by industry for developers to create bundles (Java
components). iPOJO is based on OSGi and follows the Service-
Oriented Component Model [28]. The main idea is that a component
should only contain business logic as in EJB 3.0 [29] (EJB entities);
SOC mechanisms should seamlessly be handled by the component
container as container-managed cross-cutting services.

A. Model
As shown in Figure 7, four components compose SaS. Each of

them is packaged as an OSGi bundle because it is safer and easier
to update.

Figure 7. The SaS prototype implemented over OSGi and iPOJO

• Service Listener. This bundle obtains, orders and dynamically
updates the list of available services from the OSGi context.

• Service Directory Management (SDM). It is the intermediate
between the Service Listener and the GUI responsible of man-
aging (adding, removing) services and scenarios in the Service
Directory.

• GUI. The GUI is platform and operating system specific (PDA,
mobile phone, Android, iOS,...). It provides a graphical repre-
sentation of our ADL which provides users with the capability
to see the available services and compose them.

• Scenario Creator. It creates scenario bundles which are com-
posed of the selected services and a scenario manager. This
latter manages services inside the composite and exports the
scenario as a service.

B. Insights into the SaS prototype
This subsection presents the implementation of the main function-

alities of the SaS system.
The latest version (4.2) of OSGI now supports distribution (RFC

119 [26]). So, for service discovery, SaS uses the API of distributed
OSGi which can be implemented by many discovery protocols. Then,
the Service Listener retrieves the list of available services from the
directory provided by the OSGi framework and sends it to the SDM.
This latter orders and classifies the service list. The GUI2 displays
available devices, services and operations. It filters the displayed
services (resp. operations) if a specific device (resp. service) is
selected. A user creates a scenario through the GUI which stores
it in an XML-based description file. This description becomes easily
transmissible and promptly interpretable and analyzable since XML is
a standard as an exchange format. Using this description, the Scenario
Creator of SaS automatically (i) generates a scenario manager which
(ii) exports and manages the scenario. Finally, the scenario (iii) is
redeployed on other SaS platforms according to user preferences. The
remainder of this section describes more deeply this three important
steps.

1) Scenario Manager generation: Starting from the XML-
based description of a scenario, SaS generates a Java class that
represents the manager of this scenario (Scenario Manager). To do so,
the first step consists to parse the XML description file using a SAX
parser [30]. SAX translates XML elements into a sequence of Java
instructions. Then, SaS generates a Scenario Manager class with the
Javassist [31] library that enables dynamic byte code edition such as
creating classes or modifying existing classes. The Scenario Manager
is generated as a class that implements the ScenarioManagerInterface
interface. This interface declares four public methods including a
start method which is automatically filled in the Scenario Manager
class with the Java instructions resulting from the SAX parsing.

2) Scenario export and execution control: SaS uses the
iPOJO API [32] to dynamically create an OSGi composite bundle
that packs together the generated Scenario Manager and the involved
services. This composite bundle is then installed and started into
the OSGi platform. Finally, the Scenario Manager registers a new
service inside the OSGi directory, specifying its capability to execute
four public methods (start, stop, getScenarioState and
getDescriptor).

For scenario execution control, the Scenario Manager creates a
log file every time the start service operation is invoked with the
invoker platform id and the current time. Then, the Scenario Manager
logs in this file every service invocation success (or failure) with
time. With this log file, SaS knows at every moment if the scenario
is currently in execution, when it began, who launched it and which
steps are already executed. These informations are available through
the service operation getScenarioState.

3) Scenario automatic deployment: As seen in V-B1, all
scenarios implement the same Java interface (ScenarioManagerIn-
terface). So, SaS can easily recognize them. Thus, when a scenario
is discovered as a new service, the Service Directory Manage-
ment automatically gets the scenario description file thanks to the
getDescriptor operation provided by the service. The scenario
is not deployed again but SaS keeps the XML description file. SDM
sends the scenario description to the GUI. If the original provider
disappears, another SaS platform may redeploy the scenario if its
directory contains all the involved services.

2which is still under development.



VI. EVALUATION AND CONCLUSION

With the SaS system, we propose a newly user-centric system that
meets the expectations of ubiquitous environments. First, we provide
scenario creation by service composition. Users can create complex
scenarios that correspond to their needs thanks to an appropriate
ADL. This ADL is simple, user-oriented and proposes an alternative
graphical view to be accessible for everyone. SaS exports scenarios
as new services into its environment, thus, users can easily share
their scenarios. Moreover, SaS manages scenario life-cycle: it enables
users to start and stop scenarios, check scenarios status and scenario
execution advancement. Moreover, users can get an overview of a
scenario specification (scenario introspection capability) thanks to a
descriptor file and reuse a scenario as a service being part of a new
encapsulating scenario composition (scenario hierarchical composi-
tion). SaS also tries to maintain scenario availability. Locally, if a
service involved into a scenario disappears, SaS tries to replace it into
the composite. Globally, when a SaS platform disappears, scenarios
exported by this platform are redeployed on other ones to remain
available. In conclusion, the SaS system presented in this paper
satisfies all the requirements defined is section II-B. A prototype of
SaS in Java over OSGi and iPOJO is currently under development.

We have three major perspectives. First, we want to evaluate SaS to
show its simplicity for non technical end-users by comparing it with
existing tools such as Yahoo Pipes [33], Automator [34] and Scratch
[35]. Such tools provide non-technical end-users of the capability to
graphically develop small applications by composing elements. Then,
we plan to define some recovery strategies to anticipate service loss
such as caching and hoarding. Finally, we want to improve scenario
distribution and propagate scenarios into the network.

ACKNOWLEDGEMENTS

This work is partially supported by a grant from the CARNOT
M.I.N.E.S Institute (http://www.carnot-mines.eu/ ).

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American,
pp. 78–89, 1995.

[2] H. Schulzrinne, X. Wu, S. Sidiroglou, and S, “Ubiquitous computing in
home networks,” IEEE Communications, pp. 128–135, nov 2003.

[3] OASIS, “Reference Model for Service Oriented Architecture 1.0,”
pp. 12 – 13, oct 2006. [Online]. Available: http://docs.oasis-open.org/
soa-rm/v1.0/soa-rm.html

[4] M. P. Papazoglou, “Service-Oriented Computing : Concepts , Character-
istics and Directions,” in Proc. of the 4th International Conference on
Web Information Systems Engineering. IEEE Computer Society, 2003,
pp. 3–12.

[5] A. Bottaro, A. Gérodolle, and P. Lalanda, “Pervasive service composition
in the home network,” in Proc. of the 21st International Conference on
Advanced Networking and Applications, 2007, pp. 596–603.

[6] C.-L. Wu, C.-F. Liao, and L.-C. Fu, “Service-Oriented Smart-Home
Architecture Based on OSGi and Mobile-Agent Technology,” IEEE
Transactions on Systems, Man and Cybernetics, Part C (Applications
and Reviews), vol. 37, no. 2, pp. 193–205, mar 2007.

[7] D. Valtchev and I. Frankov, “Service gateway architecture for a smart
home,” Communications Magazine, IEEE, pp. 126–132, 2002.

[8] M. Bakhouya and J. Gaber, Agent Systems in Electronic Business. IGI
Publishing, 2007, ch. Service Composition Approaches for Ubiquitous
and Pervasive Computing Environments: A Survey, pp. 323–350.

[9] J. Bronsted, K. M. Hansen, and M. Ingstrup, “Service composition issues
in pervasive computing,” IEEE Pervasive Computing, vol. 9, pp. 62–70,
2010.

[10] A. Urbieta, G. Barrutieta, J. Parra, and A. Uribarren, “A survey of
dynamic service composition approaches for ambient systems,” in Pro-
ceedings of the 2008 Ambi-Sys workshop on Software Organisation and
MonIToring of Ambient Systems, ser. SOMITAS ’08, 2008, pp. 1–8.

[11] N. Ibrahim and F. Le Mouël, “A Survey on Service Composition
Middleware in Pervasive Environments,” International Journal of
Computer Science Issues (IJCSI), vol. 1, pp. 1–12, 2009. [Online].
Available: http://hal.inria.fr/inria-00414117/en/

[12] E. Aarts and B. de Ruyter, “New research perspectives on Ambient
Intelligence,” Journal of Ambient Intelligence and Smart Environments,
vol. 1, pp. 5–14, 2009.

[13] P. Clements, “A survey of architecture description languages,” in Proc.
of the 8th international workshop on software specification and design.
IEEE Computer Society, March 1996, pp. 16–25.

[14] S. Vestal, “A Cursory Overview and Comparison of Four Architecture
Description Languages,” Honeywell, Tech. Rep., February 1993.

[15] P. Mishra and N. Dutt, “Architecture description languages,” IEEE proc.
- Computers and Digital Techniques, vol. 152, no. 3, p. 285, 2005.

[16] OSGi Alliance, “OSGi Service Platform Core Specification Release 4,”
2005. [Online]. Available: http://www.osgi.org/download/r4v40/r4.core.
pdf

[17] V. Hourdin, J. Tigli, S. Lavirotte, G. Rey, and M. Riveill, “SLCA, com-
posite services for ubiquitous computing,” in Proc. of the International
Conference on Mobile Technology, Applications, and Systems. New
York, New York, USA: ACM Press, 2008, pp. 1–8.

[18] Ecma International, “ECMA-262: ECMAScript Language Spec-
ification,” December 2009. [Online]. Available: http://www.
ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

[19] J. Encarnaçao and T. Kirste, “Ambient intelligence: Towards smart
appliance ensembles,” From Integrated Publication and Information
Systems to Information and Knowledge Environments, no. December,
pp. 261–270, 2005.

[20] F. Hamoui, M. Huchard, C. Urtado, and S. Vauttier, “Specification of
a component-based domotic system to support user-defined scenarios,”
in Proc. of 21st International Conference on Software Engineering and
Knowledge Engineering (SEKE 2009), July 2009.

[21] ——, “Un système d’agents à base de composants pour les environ-
nements domotiques,” in Actes de la 16ème conférence francophone sur
les Langages et Modèles à Objets (LMO 2010), Mars 2010, pp. 35–49.

[22] UPnP Forum, “Understanding UPnP: A White Paper,” 2000. [Online].
Available: http://www.upnp.org/download/UPNP UnderstandingUPNP.
doc

[23] C. Bettstetter and C. Renner, “A comparison of service discovery
protocols and implementation of the service location protocol,” in Proc.
of the 6th EUNICE Open European Summer School: Innovative Internet
Applications. Citeseer, 2000, pp. 13–15.

[24] G. Aschemann, R. Kehr, and A. Zeidler, “A Jini-based Gateway Ar-
chitecture for Mobile Devices,” In Proc. of the Java-Informations-Tage
(JIT99), p. 203–212, September 1999.

[25] OASIS, “Web services business process execution language version
2.0,” april 2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/
2.0/wsbpel-v2.0.pdf

[26] OSGi Alliance, “OSGi Service Platform Enterprise Specification,”
pp. 15 – 27, march 2010. [Online]. Available: http://www.osgi.org/
download/r4v42/r4.enterprise.pdf

[27] C. Escoffier and R. Hall, “Dynamically adaptable applications with
iPOJO service components,” Proc. of the 6th international conference
on Software composition, pp. 113–128, 2007.

[28] H. Cervantes and R. Hall, “Autonomous adaptation to dynamic avail-
ability using a service-oriented component model,” in International
Conference on Software Engineering (ICSE). IEEE, 2004, pp. 614–
623.

[29] Sun Microsystems, “Enterprise javabeans specifications,” may 2006.
[Online]. Available: http://java.sun.com/products/ejb/docs.html

[30] S. Means and M. A. Bodie, Book of SAX: The Simple API for XML.
No Starch Press, 2002.

[31] S. Chiba and M. Nishizawa, “An Easy-to-Use Toolkit for Efficient
Java Bytecode Translators,” Proc. of the 2nd international conference
on Generative programming and component engineering, pp. 364–376,
2003.

[32] Apache Foundation, “ipojo api,” 2010. [Online]. Available: http:
//felix.apache.org/site/apache-felix-ipojo-api.html

[33] Yahoo, “Rewire the Web.” [Online]. Available: http://pipes.yahoo.com/
pipes

[34] Apple, “Automator: Your personal Automation Assistant.” [Online].
Available: http://www.macosxautomation.com/automator

[35] M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: Programming for Everyone,” Communications of the
ACM, vol. 52, no. 11, pp. 60–67, 2009.

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://hal.inria.fr/inria-00414117/en/
http://www.osgi.org/download/r4v40/r4.core.pdf
http://www.osgi.org/download/r4v40/r4.core.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc
http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.osgi.org/download/r4v42/r4.enterprise.pdf
http://www.osgi.org/download/r4v42/r4.enterprise.pdf
http://java.sun.com/products/ejb/docs.html
http://felix.apache.org/site/apache-felix-ipojo-api.html
http://felix.apache.org/site/apache-felix-ipojo-api.html
http://pipes.yahoo.com/pipes
http://pipes.yahoo.com/pipes
http://www.macosxautomation.com/automator

	Introduction
	User-Centric Systems in Ubiquitous Environments
	Terminology
	Requirements for user-centric systems
	State of the art

	The SaS System: Scenario Creation
	Overview of SaS
	Scenario creation
	Service Selection
	Service Composition
	Composite service creation


	Scenario execution control and sharing
	Scenario sharing
	Scenario execution control
	Scenario life-cycle
	Scenario running state advancement

	Scenario availability

	System Design and Implementation
	Model
	Insights into the SaS prototype
	Scenario Manager generation
	Scenario export and execution control
	Scenario automatic deployment


	Evaluation and Conclusion
	References

