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Controllability of a parabolic system with a diffusive interface*

Jérome Le Rousseau! Matthieu Léautaud*® and Luc Robbiano’
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Abstract

We consider a linear parabolic transmission problem across an interface of codimension one in a bounded
domain or on a Riemannian manifold, where the transmission conditions involve an additional parabolic
operator on the interface. This system is an idealization of a three-layer model in which the central layer has
a small thickness §. We prove a Carleman estimate in the neighborhood of the interface for an associated
elliptic operator by means of partial estimates in several microlocal regions. In turn, from the Carleman
estimate, we obtain a spectral inequality that yields the null-controllability of the parabolic system. These
results are uniform with respect to the small parameter §.
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1 Introduction

When considering elliptic and parabolic operators in R™ with a diffusion coefficient that jumps across an interface
of codimension one, say {z, = 0}, we can interpret the associated equations as two equations with solutions
that are coupled at the interface via transmission conditions at x,, = 0, viz. in the parabolic case,

8tyl + vxclvxyl - fl in {xn < 0}7 atyQ + vxCQnyQ - f2 in {xn > 0}7 (11)
and

Y|z =0 = Y2|z, =0+ 102, Y1z, =0~ = €20z, Y25, -0+ (1.2)

Here, we are interested in parabolic/elliptic models in which part of the diffusion occurs along the interface.
Then the transmission conditions are of higher order, involving differentiations in the direction of the interface.
Such a model can be viewed as an idealization of two diffusive media separated by a thin membrane. We derive
this model starting from three media and formally letting the thickness of the intermediate layer become very
small. We introduce a small parameter § > 0 that measures the thickness of this layer. Questions such as
unique continuation, observation and controllability are natural for such a model. This is the main goal of the
present article.

Most of the analysis that we shall carry concerns a related elliptic operator, including an additional variable.
Our key result is the derivation of a Carleman estimate for this operator (see Theorem 1.2 below). The general
form of Carleman estimates for a second-order elliptic operator P is (local form)

hle? w7z + 12|/ Vwl|Z. < Chlle?/" Pwla, (1.3)

for h sufficiently small, an appropriately chosen weight function ¢, and for smooth compactly supported functions
w. We then deduce an interpolation inequality and a spectral inequality for the original operator in the spirit of
the work [LR95]. This spectral inequality then yields the null controllability of the considered parabolic system.
A important feature of the results we obtain here is their uniformity in the thickness parameter §. In particular
this allows us to recover the earlier results obtained on (1.1)—(1.2) in [LR10]; this corresponds to the limit § — 0
in the model we consider here.

1.1 Setting

Let (€2, g) be a smooth compact n-dimensional (n > 2) connected Riemannian manifold (with or without
boundary), with g denoting the metric, and S a n— 1-dimensional smooth submanifold of 2 (without boundary).
We assume! that Q\ S = Q; U Qs with Q1 N Qy = 0, so that ©; and 5 are two smooth open subsets of Q.
Endowed with the metric gjp(s), S has a Riemannian structure. We denote by 9, a non vanishing vector field
defined in a neighborhood of S and normal to S (for the Riemannian metric). We choose the vector field 9,
outgoing from 2y, incoming in 2. In local coordinates, we have

Oy = ana:rjv with nj = )‘angjka Inlg =1,
J k

where g¥ g;, = 05, A = (¢"'n;n;)~!, and n is the normal to S for the Euclidean metric in the local coordinates,
outgoing from Q;, incoming in Q5. In fact )\|QS = det(g)/ det(g;r(s)) at S.
The covariant gradient and the divergence operators are given in local coordinates by

Vg= Zgijaxi, divgv = dlt() > 0, (v/det(g)v;),
3 et(g)

Lother geometrical situations can be dealt with because of the local nature of the estimates we prove here. See Section 1.3.2
below.



with similar definition for the gradient V° =V
metric g|7(s)-

gr(sy and divergence div® = divg .. s, on the interface S with the

We consider a (scalar) diffusion coefficient ¢(z) with ¢jo, € €°°(Q;), i = 1,2, yet discontinuous across S and
satisfies ¢(x) > cmin > 0 uniformly for z € Q; U Q. We set

1 3
Ac =divye(z)Vy = —=——== > 0, (cg"”/det(g)0,,), in Q3 Uy,
V/det(g) i
in local coordinates. Let us denote ¢® a smooth (scalar) diffusion coefficient on S satisfying ¢*(z) > ¢, > 0.
Similarly we define A, = div® ¢®*V* as a second-order elliptic differential operator on S.
In what follows, we shall use the notation zg, = (Z|Qj)‘s, j =1,2, for the traces of functions on S.
Given a time 7" > 0, we consider the following parabolic control problem
Oz — Nz = 1,u in (0,7) x Q1 UQq,
O2* — Aesz® = 3 ((cOy2) s, — (cOy2)js,) in (0,T) x S, (1.4)
215, = 2° = 23, in (0,T) x S, '
zjpa = 0;

with some initial data in L%(2; U Q) x L?(S). Here, § denotes a bounded parameter, 0 < § < &y, and w is an
open nonempty subset of {23 U{2s. Let us suppose for instance that w C 3. The function « is a control function
and the null-controllability problem concerns the ability to drive the solution (z, z°) to zero at the final time T

Such a coupling condition at the interface was considered in [KZ06] and [LZ10] for the associated hyperbolic
system. In Appendix A, we briefly explain how this model can be formally derived. This model corresponds to
two diffusive media separated by a thin layer in which diffusion also occurs. The parameter § is then a measure
of the thickness of this intermediate layer. In the derivation of the model § is assumed small.

We present here some function spaces and operators and their basic properties to formulate Problem (1.4)
in a more abstract way. The reader is referred to Section 2 for the details. We introduce the Hilbert space
HY = L*(9Q1 UQs) x L?(S) with the inner product

(Z7 Z)'Hg = (272)L2(91U92) + 6(ZS7ZS)L2(S) , Z = (2},25)7 Z = (2,28)’
where
(28 2uuany = | 2% dv, (2°,2°) p2(g) = [ 2°2° dv°, (1.5)
Q1UQ; S

with dv = \/det(g) dr and dv® = \/det(g7(s)) dy. We also introduce the following Hilbert space
Hi={Z=1(2,2") € H(QUQ) x H'(S); 2100 =0 25, = 2° = 25, } (1.6)
with the inner product

(Z7 Z)Hg = (Z’ Z)Hg + (Cvgzvvgg)m(ﬂluﬂz) + 6(CSVSZ7V525)L2(S)’

Problem (1.4) can be written as
Z + AsZ = Bu, (1.7)

where the state is Z = (z,2%) € H and the operator A; reads

—A.z
AsZ = ¢ , 1.8
J < —Ags2® — % ((canz)|52 — (canz)wl) > (1.8)
with domain
D(As) ={(z,2°) € ’H%; As(z,2°%) € ’Hg}. (1.9)

The operator (As, D(As)) is nonnegative self-adjoint on HY. The control operator B is the bounded operator
from L2(Q U Q) into L?(Q1 U Q) x L2(S) given by B : u + *(1,u,0). We shall prove that System (1.7), i.e.
System (1.4), is well-posed for an initial condition in HJ.



Remark 1.1. In the limit § — 0, from System (1.4), we obtain the following system (see Section 2.2 for a proof
of convergence)

8tZ — ACZ = ]lwu in (O,T) X Ql U 927
(cOn2)|s, = (cOyz)|s, and 25, = 2|5, in (0,T) x S, (1.10)
zjpa = 0

which corresponds to the case studied in [LR10]. We also refer to the recent works [DOP02, BDL07a, Le 07,
BDLO7b, BGL07, LR11, LL11, BDL11] for the derivation of Carleman estimates for elliptic and parabolic
operators with such coefficients with applications to controllability and inverse problems.

1.2 Statement of the main results
1.2.1 Carleman estimate

The Carleman estimate we prove concerns an augmented elliptic operator: we introduce an additional coor-

dinate, xg € (0, Xp) C R, so that (xzg,z) € (0, Xp) x Q. This variable zo was introduced in [LR95]; there it

allowed to obtain the null-controllability of the heat equation. This approach was followed in several works

[LZ98, JL99, LR10]. It was also used to prove stabilization properties of the wave equation [Leb96, LRI7].
We consider the n + 1-dimensional partially determined elliptic problem

—02,w—Aw+ Vow+bw = f in (0, Xo) x (21 UQs),
—02, w* — Acsw® + Viw® 4 b'w®

= 1 ((cOyw)|(0,x0)x 52 — (€CONW)(0,x0)x5, +6%) in (0,X) x S,
W|(0,X0)xS1 = w® + 601 and W|(0,X0)xS2 = w® + 62 in (0, Xp) x S.

(1.11)

Note that we add lower-order terms to the elliptic operators here: V, (resp. V3) denotes any smooth vector
field on € U Qg (resp. S) and b (resp. b®) are some bounded functions on €3 U Qg (resp. S). Moreover, we
include source terms 67, j = 1,2, 6° at the interface through the transmission conditions. This system is not
fully determined as we do not prescribe any boundary condition on {0} x © and {X,} x Q.

In Section 3, we introduce a small neighborhood V; of S in 2, where we can use coordinates of the form
(y,xn) with y € S and x,, € [~2¢,2¢]. We then set M = (0, Xg) x Vz and M; = M N ((0, Xo) x ), j =1,2.

For a properly chosen weight function ¢ (see Section 3.1), for some 0 < oy < X/2, and a cut-off function
¢ =C((zn) € €([0,2¢)), with ( =1 on [0,¢), we shall prove the following theorem.

Theorem 1.2. For all §g > 0, there exist C' > 0, and hg > 0 such that

h||e¢/hw||g + h3||e¢/hvwo,xw”(2) +h X \e“’/hw‘_gj B +h* > |6¢/hv$o,$wlsj 3
j=1,2 j=1,2

< O<h4||€whf|/v11 15+ 21" fian 1§ + h20% (16 fiam, 13
62 ,
+ hle?/M0M 3 + (b + E)|e¢/h02|§ + 131e?/MV 502 + B3|V, 502)3 + h3|e“”/h95\§), (1.12)

for all0 < 6 < &g, 0 < h < hg, for (w,0%,6%,60%, f) satisfying (1.11), wipm; € > (M;), and w® € %“((O,Xo) X
S’) with
supp(w) C (ag, Xo — ap) X S X (—2¢, 2¢), supp(w®) C (g, Xo — ag) X S.

Here Vo2 = (029, Vo), Vag.s = (020, V*)* and ||.||o, |-]o are L?-norms on M and (0, Xo) x S respectively.
The weight function ¢ will be chosen increasing when crossing S from M; to My, which corresponds to an
observation on the side (0, Xy) x {23. Observe the non symmetric form of the r.h.s. of the estimate above. This
originates from our choice of observing the solution w in (0, Xo) x s.

This type of Carleman estimate is well known away from the interface S (see [Hor63], and [LR95] for an
estimate at the Dirichlet boundary 9%2).

Remark 1.3. The additional variable x( is used here to obtain the spectral inequality of Theorem 1.5 below.
The same Carleman inequality holds for the operator As. The proof can be adapted from that of Theorem 1.12.
In fact, without the additional variable, the proof becomes less involved.

The Carleman estimate of Theorem 1.2 exhibits the loss of a half derivative apart from one term in the r.h.s.
(see below). Usually, one proves such Carleman estimates locally in a neighborhood of a point, for instance
using local coordinates, treating only the principal part of the operator. Next, one includes lower order terms in
the operator, exploiting that the associated contributions can be absorbed thanks to the coefficients h® of the
terms in the Lh.s. of the Carleman estimate?. Finally, one patches these estimates together if a global estimate

2Note that the powers of h in estimate (1.3) are in fact optimal.



is needed. This can be achieved again thanks to the precise powers of h in all the terms. For a review of these
derivations see for example [LLar].

At the interface, for technical reasons, the powers of h obtained in the following terms in the r.h.s. of (1.12)
are

52
B0 G /" fi a1 + - e/ 67 3.

For the first term this corresponds in fact to a loss of one and a half derivative. We do not know if they
are optimal or not. If we simply prove the Carleman estimate in the neighborhood of a point, because of the
powers of h in these terms such local estimates cannot be patched together. The obstruction originates from
the diffusion that occurs in the (n — 1)-dimensional submanifold S through the operator A... Note that this
obstruction naturally disappears in the limit 6 — 0.

Our strategy will thus differ from what is done classically. The estimate of Theorem 1.2 is of semi-global
nature. It is global in the direction of the submanifold S and local in the other directions (z¢ and a normal
direction to S in 2): we work in a neighborhood of the whole interface S. Thanks to the cut-off function ¢ that
confines the term

h262(|Ce?/™ fian, |I2

in a neighborhood of S, estimate (1.12) can in turn be patched with Carleman estimates away from the interface
to form a global estimate. Moreover for the same reasons we do not restrict our analysis to the principal part:
in proof we consider also the first-order terms of the operator 3.

Following [LR10] we shall introduce microlocal regions. Here, the regions are defined on the whole (cotangent
bundle of) S. For each region we shall derive a partial Carleman estimate. The different estimates can then
be patched together to yield (1.12). Our strategy requires us to work on S globally; we shall thus consider
(pseudo-)differential operators on S. Yet, we shall often use their expression in local coordinates; this will allow
us to use some of the results proven in [LR10].

For the purpose of proving the null controllability of the parabolic problem (1.4), a local Carleman estimate
of the form of Theorem 1.2 in the neighborhood of any point at the interface would be sufficient. Yet, an
important property of Carleman estimates resides in the possibility of patching them together to obtain a
global estimate. Our result thus preserves this important feature.

1.2.2 Interpolation inequality

With the Carleman estimate of Theorem 1.2 we then prove an interpolation inequality of the form of that
introduced in [LR95]. This type of interpolation inequality for elliptic operators has also been used in [Leb96,
LR97] to address stabilization problems for the wave equation.

Let a; € [0, X0/2), we set K9(a1) = L?((a1, Xo — aq); 1Y) with also £ = K9(0), and the following Sobolev
spaces

Kj(a1) = L*((a1, Xo — an); H;) N H' (a1, Xo — an)s H3), K5 = K5(0),
and
K5 = L2((0, Xo); D(4s)) N H'((0, Xo); H5) N H?((0, Xo); H5).
Theorem 1.4. For all 9 > 0, there exist C > 0 and vg € (0,1) such that for all § € (0,d0) we have
— Yo
1Vlhescony < IO ([ (= 0, + 45)U [, + 1000 D)lzzr) (1.13)
for all U = (u,u®) € K2 with Ujzo—0 = 0 10 Q1 UQy.

An important consequence of this interpolation inequality is the spectral inequality that we present in the
next section.

1.2.3 Spectral inequality and null-controllability result

From the above interpolation inequality we deduce a spectral inequality for the elliptic operator As defined
in (1.8). We consider &5; = (es5,€3,), j € N, a Hilbert basis of #§ composed of eigenfunctions of the
operator A associated with the nonnegative eigenvalues ps; € R, j € N, sorted in an increasing sequence (see
Proposition 2.5).

3This technical point explains the regularity requirements we made above for V, and V3. Yet, we can treat bounded coefficients
for the zero-order terms.



Theorem 1.5. For §y > 0, there exists C > 0 such that for all 0 < d < &g and p € R, we have
1Zll30 < Ce“VEzllLzy,  Z = (2,2°) € span{é i ps; < i} (1.14)

Following [LR95], this estimation then yields a construction of the control function us(t,z) in (1.4), by
sequentially acting on a finite yet increasing number of eigenspaces, and we hence obtain the following d-
uniform controllability theorem. The proof can adapted to those in [LR95] or [LZ98, Section 5, Proposition 2]
and the uniformity w.r.t. the parameter 6 > 0 comes naturally. We refer also to [LLar| for an exposition of the
method and to [Mil06, Léal0, Mil10, TT10] for further developments.

Theorem 1.6. Let 6g > 0. For an arbitrary time T > 0 and an arbitrary nonempty open subset w C €
there exists C > 0 such that: for all initial conditions Zy = (z0,2§) € Hg and all 0 < § < dg, there exists
us € L2((0,T) x w) such that the solution (z,2°) of (1.4) satisfies (2(T),2*(T)) = (0,0) and moreover

usllrz(0,7)xw) < CllZoll3g-

An important feature of this result is that the control is uniformly bounded as § — 0, so that we can extract
a subsequence us weakly convergent in L?((0,7) x w). In Corollary 2.9 we prove that the associated solution
of Problem (1.4) converges towards a controlled solution of Problem (1.10). For this last control problem
(previously treated in [LR10]), we hence construct a control function which is robust with respect to small
viscous perturbations in the interface.

It is classical to deduce a boundary null controllability result from the previous distributed control result.

N.B. Here, for the sake of fixing the notation for the statement of the Carleman estimate above we chose
the observation in 5. This corresponds to w C €25 in the proofs of Theorems 1.4, 1.5 and 1.6. Yet, w can be
chosen as any arbitrary open subset of ).

1.3 Some additional results and remarks

1.3.1 A stabilization result.

A second important consequence of the interpolation inequality of Theorem 1.4 concerns the stabilization
properties of the hyperbolic system (studied in [KZ06, LZ10])

8ttZ — ACZ + a(x)@tz =0 in (O,T) X Ql U 927
Op2® — Npaz® = % ( c@nz)‘sz - (CanZ)I&) in (0,7) x S, (1.15)
25, = 2° = 2|s, in (0,7) x S, )

zjpa = 0;

where a is a nonvanishing nonnegative smooth function on 3 UQs. According to [Leb96, LR97], a local version
of (1.13) (see Lemma 5.1 below) allows one to produce resolvent estimates which in turn give a result of the
following type: for all §o > 0 and all k € N there exists C' > 0 such that for any 0 < § < dg, we have the energy

decay estimate
k1 ) )
(452 )

for all solutions of for (1.15). In particular, this decay rate is uniform w.r.t. §. See [Bur98, Theorem 3] to obtain
the power k exactly. The same properties can be obtained for this hyperbolic system with a boundary damping
(see [LRIT]).

C
1002002 g + (22 2°) s < _ ((atz,at:f)

A P (G

|t:0”D(A52)

1.3.2 Other geometrical situations

Above we assumed that € could be partitioned according to Q = Q1 U Qs U S. More general situations can be
treated (interpolation and spectral inequalities, and null controllability result) because of the local nature of
the Carleman estimate of Theorem 1.2. If V' is a neighborhood of .S, we require V' to be of the form V; UV, U S
with V7 and V5 on both sides of S. Several non intersecting interfaces can be considered as well. For example,
the geometrical situations in Figure 1 can be addressed as well. If needed the derivation of a global Carleman
estimate can done by combining Theorem 1.2 and the arguments of Section 5 in [LR11].



O

() (b)

Figure 1: Other geometrical situations: (a) € is an bounded open subset of R™; (b) and (c¢) € is a compact
manifold with boundary.

1.3.3 Lack of controllability from the interface

It is important to note that the parabolic controllability result of Theorem 1.6 does not hold in general if
the control function acts on the interface S. Let w® be an open subset of S then in general there is no
uw € L?((0,T) x S) that brings the solution of

Oz —Aez=0 in (0,T) x Q1 UQy,

O2* — Aeez® = 1 ((cOy2)js, — (c0y2)js,) + Lwsu  in (0,T) x S, (1.16)
25, = 2° = 2|5, in (0,T) x S,

Z‘QQ =0

to zero at time T'.

Let us consider the following two-dimensional example : Q@ = R/(27Z) x (—m,7) is the cylinder endowed
with a flat metric. For consistency with the notation of Section 3 we use (y,x,) as the coordinates in 2, with
periodic conditions in y. We define the interface as S = {z,, = 0} = R/(27Z) x {0}, so that Q; = {z, < 0} and
QQ = {.CL‘n > 0}

We take the diffusion coefficient ¢ to be piecewise constant (i.e. ¢ = ¢; in Q; for j = 1,2) and define the
operator As as in (1.8) (with Dirichlet boundary conditions in the x,-variable). In this geometrical context, we
have the following result.

Proposition 1.7. Ify:= /2 € N*, then for all ¢® >0, 6 >0, and j € Z, the function

C

| es ) ‘ [ esin(yjx,)  for z, <0,
85 1= ( 0 ) o with es (Y, o) = { e sin(jxy,) for xzp, >0,

is an eigenfunction of the operator As associated with the eigenvalue caj2(1 + ).

As a consequence, the adjoint problem of (1.16) (which is of the same form as (1.16) without any control
function) does not satisfy the unique continuation property when observed from any subset of S. More precisely,
we notice that the set of “invisible” modes is of infinite dimension. As a consequence, System (1.16) is not
approximately controllable in this case and moreover the set of non-controllable modes is of infinite dimension.

The phenomenon exhibited in this example is due to the high level of symmetry. However, in a general
setting, if the Laplace operator has an eigenfunction which has a ¥°° closed nodal curve, then the associated
problem (1.16) with ¢; = ¢o = 1 and S given by this nodal curve is not controllable from S. We hence see that
this question is connected to properties of the eigenfunctions of the Laplace operator and of their nodal sets.

1.4 Notation: semi-classical operators and geometrical setting
1.4.1 Semi-classical operators on R?

We shall use of the notation (n) := (1 + |7|?)2. For a parameter h € (0, ho] for some hg > 0, we denote by
S™ (R4 x RY), S™ for short, the space of smooth functions a(z, ¢, h) that satisfy the following property: for all
o, f multi-indices, there exists C g > 0, such that

020%a(2,¢,h)| < Cap(Q)™ P, 2 €R?, ¢ R, he (0, h].



Then, for all sequences a,,—; € S™ 7, j € N, there exists a symbol a € S™ such that a ~ Zj hiay,—;, in the
sense that

a— Y hlay_; e WNsm N (1.17)
J<N
(see for instance [Mar02, Proposition 2.3.2] or [Hor85a, Proposition 18.1.3]), with a,, as principal symbol. We
define U™ as the space of semi-classical operators A = Op(a), for a € S™, formally defined by

Au(z) = (2nh) "4 [[ 80 P (2 ¢ R) u(t) dt d¢, u e ' (RY).

We shall denote the principal symbol a,, by o(A). We shall use techniques of pseudo-differential calculus in
this article, such as construction of parametrices, composition formula, formula for the symbol of the adjoint
operator, etc. We refer the reader to [Tay81, Hor85a, Mar02]. We provide composition and change of variables
formulee in the case of tangential operators in Appendix B. Those formulse can be adapted to the case of

operators acting in the whole space R%. In the main text the variable z will be (z¢,z) € R™*! and ¢ = (&,¢) €
R+,

We set
m>0 m>0
U= T pRUT® = () AU
m>0 m>0

Note that if there exists a closed set F' such that in the asymptotic expansion (1.17) we have supp(a,,—;) C F,
j € N, then a representative of a modulo >S5~ can be chosen supported in F'.

We shall also denote by 2™ the space of semi-classical differential operators, i.e., the case where a(z,, h)
is a polynomial function of order m in {. In particular we set

D= 28, and we have o(D) = ¢&.
i

We now introduce Sobolev spaces on R? and Sobolev norms which are adapted to the scaling parameter h.
1
The natural norm on L?(R?) is written as |Jul|p2ra) = |Jullo := ([ [u(x)|* dz)2. Let r € R; we then set

lully = llull serray = |A™ullo,  with A := Op((§)") and " (R?) := {u € ' (RY); ||ul, < oo}.

The space " (RY) is algebraically equal to the classical Sobolev space H"(R?). For a fixed value of h, the
norm |.|| is equivalent to the classical Sobolev norm that we write ||.|| g+ gae). However, these norms are not
uniformly equivalent as h goes to 0.

1.4.2 Tangential semi-classical operators on R¢, d > 2

We set z = (2/,24), 2/ = (21,...,2¢-1) and ¢’ = ((1,...,{4—1) accordingly. We denote by ST (R? x RI~1),
S% for short, the space of smooth functions b(z,(’, h), defined for h € (0, ho] for some hg > 0, that satisfy the
following property: for all o, 8 multi-indices, there exists Cy 3 > 0, such that

0205b(2,¢' h)| < Ca ()™ 1Pl 2z eRY, ¢ € R, e (0, ).

As above, for any sequence by,_; € S;—"_j, J € N, there exists a symbol b € ST such that b ~ Zj hIby,—;, in the
sense that b— 3 J<N hiby,—; € N S}”_N , with b, as principal symbol. We define WU} as the space of tangential
semi-classical operators B = Op7(b) (observe the notation we adopt is different from above to avoid confusion),
for b € S, formally defined by

Bu(z) = (2wh) 4= [1 i =y ¢ Y ult, zg) b dC, u € S (RY).

In the main text the variable z will be (zg,2’,z,) € R"! and ¢’ = (&), ¢’) € R™.

We shall also denote the principal symbol b,, by o(B). In the case where the symbol is polynomial in ¢’ and
h, we shall denote the space of associated tangential differential operators by Z7. We shall denote by A% the
tangential pseudo-differential operator whose symbol is (¢')*. We set

57—_00 — ﬂ }817—_'HL7 hOOS7—_OO — ﬂ th7—_m’

m>0 m>0
(N A =N ol =y o WL e
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Figure 2: Local charts and diffeomorphisms for the submanifold S.

For function defined on zq = 0 or restricted to z4 = 0, following [LR95, LR97], we shall denote by (.,.), the
inner product, i.e., (f,9), := [[ f(z')g(z’)d7’. The induced norm is denoted by |.|o, i.e., |f[§ = (f. f),- For
r € R we introduce

|floer@a-1y = [flr == [AF flo- (1.18)

The composition Formula and the action of change of variables are given in Appendix B.1.

Note that we shall keep the notation W7 for operators with symbols independent of z4, acting on {z4 = 0}.
These operators are in fact in ¥™(R9~1). A similar notation will be used in the case of operators on a manifold.

1.4.3 Local charts, pullbacks, and Sobolev norms

The submanifold S is of dimension n — 1 and is furnished with a finite atlas (U;,¢;), j € J. The maps
¢;: Uj — U; C R"! is a smooth diffeomorphism. If U; N Uy, # ) we also set
bk = 6;(U;NU) CU; — éx(U; NUL) C Uy,
Yy~ dxo ;' (y).

The local charts and the diffeomorphisms we introduce are illustrated in Figure 2.
For a diffeomorphism ¢ between two open sets, ¢ : Uy — Us, the associated pullback (here stated for
continuous functions) is

¢* : %(Uz) — %(Ul),
U U0 .

For a function defined on phase-space, e.g. a symbol, the pullback is given by

6" uly,n) =u(d(y). (¢®) 'n), yeULNeTHU), ueF(T"Us). (1.19)

We shall use semi-classical Sobolev norms over the manifold S together with a finite atlas (Uj, ¢5);, ¢; :
U; — R"1 and a partition of unity (4;); subordinated to this covering of S:

Y; €€(S), supp(¥y) CU; 0<4hy <1, Yo =1
J

We then set:
[u| s sy = Z ‘(qu_l)*,(/)juL%’?'(]Rnfl). (1.20)
J

Note that the Lh.s. denotes a norm on the manifold and the r.h.s. is defined in (1.18). We shall need the
following elementary result.

Lemma 1.8. Let (f;); be a family of smooth functions on S with supp(f;) CU; and >_, fj =f>C>01in S,
We set Ny (u) =3, |(¢j_1)*fju|jf'r'(]Rnfl). Then N, is an equivalent norm to |.| or@n-1y, uniformly in h.

For a proof see Appendix C.1. Note that the L?-norm (r = 0) defined in (1.20) is equivalent to the natural
L?norm on the Riemannian manifold S given through the inner product in (1.5).



Norms in codimension 1. For a function u defined on (0, Xp) x R"™1 we set

Xo
|ulo = [ulz2(0.x0)xrr1)s  |ulf = [Dayulg + (f) |u|%1 (gn-1) dzo.

Note that the latter norm is equivalent to |u| 1 (rxrn-1) if moreover the function u is compactly supported in
the xo variable. For a function u defined on (0, X) x S, we set

ule =3 1(6;") bjule,  £=0,1, (1.21)
J
where ¢; stands for Id ®¢;.

Norms in all dimensions. For a function u defined on (0, Xy) x R"~1 x R we set

Xo
lullo = llull 2 (0. x0)xrn-1xm)s  llullf = [[Dagull§ + [ é”u”ifl(ﬂ%"*l) dzo dwy + || Dy, ul3.

Note that the latter norm is equivalent to ||ul| y1 (rxrn—1 xRy if moreover the function u is compactly support in
the z¢ variable. For a function u defined on (0, Xp) x S x R, we set

lulle = S 11(8;") bjulle,  £=0,1, (1.22)
J

where ¢; stands for Id ®¢; @ Id.
The following lemma is a counterpart of Lemma 1.8 when working on a local chart of (0,Xy) x S or
(0, Xp) x S xR.

Lemma 1.9. Let u be such that supp(u) C K C (0,Xo) x U; (resp. (0,Xo) x U; x R) with K compact. Then
for some constant Cx we have

Cfule < 1(67Y) ule < Cclule— (resp. Ol lulle < 11(65) " ulle < Ccllull), £=0,1.

Proof. We treat the case of a function defined in (0, X) x U;. Consider a partition of unity of S, >, ’(/AJk =1,
Uy € €2°((0, Xo) x Ug), such that 1 ® ¢; = 1 in a neighborhood of K. Then the induced norms are equivalent
to that given above by Lemma 1.8 and for the particular function u they are equal to |(¢;1)*u|4, (=0,1. O

Tangential semi-classical operators on a manifold. We can define tangential semi-classical operators on
a manifold by means of local representations. This relies on the change of variables formula for semi-classical
operators in R? presented in Appendix B.1. We provide details of this construction in Appendix B.2. In
particular we define the local symbol of the operator in each chart and its principal symbol on the manifold. We
also provide composition and Sobolev regularity results for such operators. In Section 3.6 below we introduce
a particular class of tangential operators that will be important in the proof of the Carleman estimate as they
will allow us to separate the analysis into microlocal regions.

A trace formula. In the sections below, we shall also use of the following trace formula [LR97, page 486]
connecting the tangential and volume norms introduced above:

[Wjen=o+lo < CR72 [, (1.23)
for 1 defined on R"*! as well as for ¢ defined on (0, Xg) x S x [0, 2¢].

2 Well-posedness and asymptotic behavior

We introduce a more general operator

A7 — < —Ayz+ Vaz + bz )

—Apez® + VE25 +b°2° — 1((cOpz)1s, — (cOn2))s,)

with domain D(As) = D(As) (see (1.9)), where V, (resp. Vi) denotes a smooth vector field a(z)V, (resp.
a®(x)V?®), and b (resp. b°) is a bounded function.

We start by considering the well-posedness of the evolution problem (1.4), 8;Z + AsZ = F. Note that the
lower-order perturbations we add to As to form As do not affect the well-posedness properties (compare with

(1.8)).
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2.1 Well-posedness

In this section we simply assume that a, a® are bounded coefficients. For Z, Z e D(As), an integration by parts
gives

((As + A1) Z, Z) wo = (Y42, VoZ) 1200 + (Vaz + (b+ N2, 2)r2(0,00.)
+ 6(CSVSZS, VSES)LZ(S) + (5(VZZS + (bs + )\)ZS, ZS)LQ(S)
= ax(Z,2). (2.1)
The bilinear form ay is in fact continuous on (’H%)Z.

Lemma 2.1. There exists \g > 0 sufficiently large such that the bilinear form ay is coercive, uniformly in ¢, if
A > Ao

Proof. The result follows since we have

||a||%oo(ﬂ UQ2)
) b e ) ) 123 )

Cmin
ax(Z,Z) > 2 IVo2l72(0, 00, + ()\ B 2¢mi
‘as|2°°(S) s s
e |b |Loc(s))|z |%2(S)'

min

+ 5922 72 ) + 0(A -

O

The coercivity of ay shows that the problem (As + AId)Z = F for F € 7—{,2 is well-posed in a weak sense; for
any continuous linear form L on H}, the Lax-Milgram theorem ensures the existence and uniqueness of Z € H}
satisfying } R ~

ax(Z,7) = L(Z) for any Z € H;. (2.2)
and HZHH§ < C|L]| (Hl)/ with the constant C' uniform in 8. If we take L(Z) = (F, Z)HO for some F € HY, this
S5 3

linear form is continuous on 7—[%. Then, for some constant C' > 0 uniform in § the solution satisfies
1Z]l32 < CIEF | 30- (2.3)
Higher regularity can be obtained.

Proposition 2.2. Let A > Xy and F € HY. The unique weak solution Z = (z,z°) € H} to (2.2) with
L(Z) = (F, Z)HU belongs to D(As). Hence, for all F € HY there exists a unique Z € D(As) such that
)

AsZ + \Z = F and moreover for some positive constant C' uniform in 6 we have

2 Nzl @) + 0212 m2s) < CllF g (2.4)

Proposition 2.3. Let A > Ao and F = (f, f*) € H™(Q1 UQa) x H™(S). The unique weak solution Z =
(z,2°) € H} to (2.2) with L(Z) = (F, Z)?—LO belongs to H™T2(Qy U Qy) x H™F2(S) with
)

1) ps
() + 02 Em(s)) (2.5)

1
Z ||Z‘Q1 Hm+2(Q;) + 62 |ZS|Hm+2(S) < C( Z ||f‘Q7
i=1,2 i=1,2
We refer to Appendices C.2 and C.3 for proofs.
A consequence of the properties we have gathered on Ay is the following well-posedness for the evolution
problem.

Proposition 2.4. Let a,b,a®,b° be bounded coefficients. Then, the operator (—As, D(As)) generates a €°-
semigroup on HY. If moreover a =0, a® =0 and b,b* € R, then As is self-adjoint on HY.

Proof. Lemma 2.1 shows that As + Ao Id is monotone and Proposition 2.2 shows that this operator maps its
domain D(As) onto HY. Hence As+ A Id is maximal monotone. The Lumer-Phillips theorem (see e.g. [Paz83))
then allows one to conclude that A5 generates a strongly continuous semigroup on H.

Note that if a = 0, ®* = 0 and b, b* € R, with (2.1) we see that the operator Ay is symmetric. It is self-adjoint
as the surjectivity of As + Aol implies D(A}) = D(As) = D(As) (see e.g. [Bre83, Proposition VII-6]). O

With the Rellich theorem we see that H} can be compactly injected in HJ. It follows that the inverse
(As + Ao Id)_1 that we constructed is a compact map from Hg into itself. One then deduces the following
spectral result.
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Proposition 2.5. There exists a Hilbert basis of HY formed of eigenfunctions & = (e(;vj,eg)j), 7 €N, of the
self-adjoint operator As associated with the eigenvalues 0 < pso < ps1 <o+ < sy < oo -

Note that if 2 is a manifold with no boundary then 0 is an eigenfunction for As. If 2 has a boundary, the
Dirichlet boundary condition that we prescribe yield the first eigenvalue to be positive.

Corollary 2.6. The following space of functions
T = {(z,zs) € Hy; 2|0, € €< (), i = 1,2}
is dense in D(Ay).

Proof. From Proposition 2.3 the eigenfunctions of A5 are in 7. The results follows as they generate a dense
subset in D(Ay). O

2.2 Asymptotic behavior of the solutions as § — 0
2.2.1 Asymptotic behavior in the elliptic problem

Consider F5 = (fs5, f5) € HY. Let Zs = (25, 2§) be the strong solution defined in the previous section for the
elliptic equation (As + \)Zs = F.
We also consider the weak solution z € Hi of the elliptic problem

—divg(cVyz)+ Az=f in Q. (2.6)

Arguing as in the previous section such a solution exists and is unique for A > Xg (the same value of )¢ as in
Lemma 2.1 can be used). In particular we have z|5, = z|g,, i.e. the solution is continuous across the interface,
and as ¢V z has its divergence in L?(2) we have cd,z|s, = cdyz|s,. Moreover zjq, € H?(Q;) and

>z,
i=1,2

w20 < CllfllL2 @ ue,)- (2.7)
Proposition 2.7. Suppose that ||Fs0 < C uniformly in § and that fs — f in L3(QUQs) as § — 0. Then,
Zsj0, = 2o, in H?(Q) for j=1,2.

Note that the assumption || Fgs|[30 < C implies that there always exists a sequence &, — 0 such that fs5, — f.

Proof. We set (5 := zs — z. According to (2.4), the boundedness assumption on Fjs, and (2.7), we have

_;QHCJ\QiHHQ(Qi) <,

uniformly in §. Moreover, (s satisfies

—divg(cVgls) + A = fs — f in Q; UQy,
(Can@)‘gz — (Can@s)‘gl =4 (—Acszg + )\Z(‘; — ff) in S,

C6|s1 = <6|s2 in S,

€5|BQ =0.

Taking the inner product of the first line of this system with (s and integrating by parts, we obtain
(CVQC& vg<5)L2(Qluﬂ2) + ((Can<5)|32 - (Can<5)|51 ) €5)L2(S) + A (<5a Cé)L2(QlL_JQQ) = (f§ - fa Cﬁ)L2(QIU92) .

In this expression, we have

| (05152 = (€0yGs) 1511 Gs) 1oy | = 07 \(mcsz; — 12z + 65 3.65)

L2(S)
1 1 5

< C8% (831231ms) + 1Fsllag ) IGoll i @,0m,)
1

< 062Gl 2 (0,00,) — 0, (2.8)

according to (2.4), the trace estimate and the boundedness assumption on Fs. Moreover, since (s is bounded
in H2(Q; U ), for all sequence §,, — 0, we can extract a subsequence, also called d,,, such that (s, converges
strongly in L?(Q; U Q2), and we have

(fs. = £.¢5.) 2,00, — 0
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As a consequence, we obtain

(€Yo, Vo) r2(0,00,) T A (€656, ) 2 (0,00.) = 05
ie. (5, — 0in H'(Q;), for j = 1,2. Because the limit is the same for any subsequence of (s, , this implies that
the whole (s converges to zero in H'(€2;). Since (s)q, is uniformly bounded in H 2(9Q;), the result follows. O
2.2.2 Asymptotic behavior in the parabolic problem

Here, we discuss, for some A > 0 (one can take A = 0 if 9Q # @) the convergence properties of the solution
Zs = (zs,25) of

Osz5 — Dczs + Azs = fs in (0,T) x Q; UQy,
Oyzs — Deozy + Azg = § ((cOyp2s) s, — (cOyzs)isy) + f5 in (0,T) x S,
Zs|s, = 25 = 26|, in (0,T) x S, (2.9)
25190 = 0 in (0,7),
25|4=0 = 20 and Z§|t:0 =23,
towards the solution z of
Oiz—Acz+Xz="1 in (0,T) x Q1 UQy,
7|5, = 7|5, and (c@nz)‘sz = (canz)w1 in (0,7) x S, (2.10)
Zjg0 =0 in (0,7),
Z|t=0 = 20 in Q.

Proposition 2.8. Suppose that || Fs| 12 0,7.49) < C uniformly in 6, that fs — f in L2((0,T)xQ1UQ) as § — 0
and that zy € H(Q) and z§ € H'(S). Then, we have, 2510, — zjq, in L*(0,T; H*(Q;)) N H'(0,T; L*(€))
and x-weak in L>(0,T; H*(;)), and there exists C' > 0 such that for all t € [0,T], 2510, (Dl () < C for
j=1,2.

Proof. First, Problem (2.9) can be equivalently rewritten as 0;Zs + (As + \)Zs = Fs with Zs(0) = (2o, 2§)-
For Zs(0) € D(A;s) and Fs € €°([0,T]; HY) the semigroup solution of this equation is in €°([0,77]; D(4s)) N
€1([0,T); HY) (see [Paz83, Corollary 2.6 Chap 4] or [Bre83, Théoreme VIL.10]). As a consequence, we can form
the square of the ’Hg—norm of this equation and integrate on (0,7"). This yields

T ( T T T
[ (A5 + N2 25540 + [NI(As + N Zs(t)|3gdt + [ 10:Z5 (£) 3,90 = / 175 (8) 13 dt,
which, in turns gives the stability estimate for the solution of (2.9) :
2 T 2 T 2 T 2 2
12603 + [ 1(As + N Za(O) 3t + 1 10,25(6) gt < C(JIFNOIgelt + 1 Z5(0)s):
uniformly in 6. With a density argument, this energy estimate remains valid if Z;(0) € H} and Fjs(t) €

L2(0,T;HY).
According to (2.4), this yields

T T
(Dl + 3123 ()i sy + ] s Olfadt + 8 150 racs
T T T
+ 1 10rs(0)Fadt +8 [ 10025yt < O T IFsOl3gde + 1Z60)3) <€, (211)

uniformly in ¢ (the volume norms are taken over €23 U Q).
In addition, the solution of (2.10) also satisfies

2 T _ 2 T 2 T 2 2
(T + LU= B + Nz(@)l[2dt + [102() [ 20t < C(({ 1F(8)[z2dt + HZ(O)HHl)y

where all the norms are taken over €; U Qs. Using the additional regularity (2.7), this gives

2 T 2 T 2 T 2 2
[2(T) s+ 12Olade+ [ 10r20) 3t < C( IR0t + 200) ). (212)
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Now, we set (5 = zs — z. According to (2.11)-(2.12), we have,

21:2 <||C6|Qj | Loo (0,711 (02)) + ||C5‘Qj||L2(O,T;H2(Qj)) + ||<—6|QjHH1(O7T;L2(Qj))) <C, (2.13)
j=1,

uniformly in §. Moreover, (5 satisfies

OrCs — AcCs + A5 = f5 — f in (0,7) x (21 UQy),

(€0yCs)1s, — (cOnCs) sy = 0 (Opz — Acozi + Az5 — f5) in (0,T) x S,

G5, = Go)s, in (0,7) x S, (2.14)
Cé\aQZO in (0,7),

C(S\tzo =0 in €.

Forming the inner product of the first line of this system with (s and integrating on (0,7"), we obtain

1
§||CS(T)H%2(Q) + VeV gCsll 2 0.1y xa) + ACslIT2 0.7y x0)
+ ((cOnCo)1s2 — (€0nCo)i1:66) 120wy = (Fo = F.C8) 20,1y ) -

In this expression, we have

M

| ((€00o) 13, = (€DuCo)isis o) ooy | = 0% | (520025 — 5% Aoz + 0% 025 — 83 £3,65)

L2((0,T)xS)
<062 1G5l 22 0,7 112 (2, u2)) — O,

according to (2.11) (proceeding as in (2.8)). Proceeding as in the proof of Proposition 2.7, we have

(fs = £,66) 2(0,1) x (00220 = 05

for a subsequence, and we obtain

1
16Dz ) + VeV oCsllia(o,myxa) + Ml lzz 0,y x0) = O-

This, together with (2.13) concludes the proof of the proposition. O

As a consequence, we can obtain a convergence result for the control problem under view. We denote by ug
the control function given by Theorem 1.6, that satisfies

0:Zs + AsZs = Bus
Zsjt=0 = 2o
Zsj=t = 0.

According to Theorem 1.6, us is uniformly bounded in L?((0,7) x w), so that we can extract a subsequence
(also denoted by us) weakly converging in this space towards u. We also consider the solution Zs = (Z5, Z3) of

{ QtZ(s + AsZs = Bu

2.15
Zs|t=0 = Zo- (2.15)

The following result is a consequence of Proposition 2.8.

Corollary 2.9. The limit u is a null-control function for the limit system (1.10). Moreover, (Z5s — 25)|o, — 0
in L2(0,T; H*(Q;)) N HY(0,T; L*(Y)) and x-weak in L>°(0,T; H*(Q;)), and there exists C > 0 such that for
all t € [O,T], ||Z§|Qj (t) — 25|Qj (t)HHl(QJ) < C f07‘j = 1,2.

In particular, we have Z5(T) — 0 in H'(2). This shows that the limit u is a control function for the limit
system (1.10) which is robust with respect to small viscous perturbations. Indeed, it realizes an approximate
control for System (2.15).
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3 Local setting in a neighborhood of the interface

In a sufficiently small neighborhood of S, say V., we place ourselves in normal geodesic coordinates (w.r.t. to
the spatial variables z). More precisely (see [Hor85a, Appendix C.5]) for ¢ sufficiently small, there exists a
diffeomorphism

F:S %[22 =V,
(y,zn) = F(y,zn),
so that the differential operator —8%0 — A, +V, takes the form on both sides of the interface:

_830 - C(y’ 'r‘n) (azn - RQ(y’ xn)) + Rl (y, Jin),
and the differential operator —92 — A% 4 V; takes the form on the interface
—03, + ¢ (y) Ra(y, 0 = 0) + R (y),

where Ro(y,x,) is a z,-family of second-order elliptic differential operators on S, i.e., a tangential operator,
with principal symbol 7(y, z,,,7), n € T,/ (5), that satisfies

r(y,zn,m) €R, and  Ciln|2 < r(y,an,n) < Calnl?, (3.1)

for some 0 < C; < Cy < o0, and Ry (y, ) is a z,-family of first-order operators on S x [—2¢,2¢], Ri(y) is a
first-order operator on S.
By abuse of notation we shall write V. in place of S x [—2¢,2¢]. In this setting, we have

Vo =F(S x[-26,0) =V.NQy, V5 =F(S x (0,2]) = V. N Qy,

and we recall that the observation region w is in (2s.
In the sequel, we shall often write

x:=(y,x,), and x:=(zg,x)= (T0,y,%n) € [0,X0] xS x [—2¢, 2¢].
We set

1 1 1 1
P= —Eaﬁu — (92, — Ra(x)) + ERl(:c), P = —C—Saﬁo + Ro(y, 2, = 0) + ng(y).

They both have smooth coefficients.
In this framework, in the neighborhood V_ of S, System (1.11) becomes

Pw=F, in (0, Xo) x S x ([—2¢,0) U (0, 2¢]),
Pow® = = ((cOp,w) 5, =0+ — (€02, W) |z, —0- +©O%) in (0,Xp) x S, (3.2)
Wiy, —o- = w4+ 0" and  wy,, _o+ =w®+ 62, in (0, Xo) x S,
with
1
F= Ef + Row, ©°=0°+ 0Rjw®, (3.3)

where Ry and R{ are zero-order operators with bounded coeflicients on S x ([—257 O) U (O7 25]) and S respectively.

3.1 Properties of the weight functions

We denote by 7(x,n,7’) the symmetric bilinear form associated with the quadratic principal symbol r(x,n). We
introduce the following symmetric bilinear form

B(z; &0, m; €, 1') = ﬁfa&é + 7 (x,m,n'). (3.4)

and the associated positive definite quadratic form 8(x; &g, n). We choose a positive bounded continuous function
y(x) in V2" such that

ﬂ(ya 717560;7’) - ’Y(y@n)ﬁ(yafﬂmfmﬂ) > C|(€Oan)‘2 > Oa (50377) €eRx T;(S)v (35)

for © = (y,x,) € VT+

We then choose a function ¢ = p(x) on [0, Xo] x V. that that is smooth on both sides of the interface and
simply continuous across the interface, that moreover satisfies the following properties.
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1. For a function 4" such that 0 < v/(x) < y(z) — € in VZ*, for some € > 0, we have

7,(yaxn)(aa:n§0)2(x07yaxn) - (azn,SD)z(x07ya 75511) >C >0, (36)
for zg € [0, Xo], and = = (y,z,) € V",
2. For a given value of v > 0 sufficiently small we have

1Orop ()] + [V(x)lg < vinf |0, ¢l, - x = (w0, 2) € [0, Xo] x Ve. (3.7)

3. We have |0y, | + |V*¢|g + 10z, ¢ > 0 in [0, Xo] x V2 and Hormander’s sub-ellipticity condition is satisfied
on both sides of the interface. This condition will be precisely stated below after the introduction of the
conjugated operator (see (3.18)).

Note that we have infy + [0, | > C > 0.

The first condition states the increase in the normal slope of the weight function when crossing the interface.
The value of v in the second condition will be determined below (see (3.19)-(3.20) and the proof of Proposi-
tion 3.5). We thus ask the weight function to be relatively flat in the tangent directions to the interface as
compared to its variations in the normal direction. We explain below how a weight function satisfying the
sub-ellipticity condition can be built through a convexification procedure (see Remark 3.3).

Remark 3.1. Property (3.6) and |95,¢| + |V®¢lg + |0z, > 0 can be obtained by choosing ¢ such that
(02, )10, X0]xs = C > 0 and assuming that (3.6) only holds on [0, X¢] x S and then shrinking the neighborhood
Ve by choosing ¢ sufficiently small.

An example of such a function will be given in the application of the Carleman estimate in Section 5.

Remark 3.2. Note that the conditions we impose on the weight function are much simpler than the conditions
given in [LR10]. Such condition are proven sharp in [LL11] in the limiting case § — 0. If (3.5) is not satisfied,
i.e., the increase in the normal slope of the weight function is chosen too small, one can then build a quasi-mode
that concentrates at the interface and shows that the Carleman estimate cannot hold.

3.2 A system formulation

Following [Bel03, LR10], we shall consider (3.2) as a system of two equations coupled at the boundary x,, = 0F.
Here, the coupling involves a tangential second-order elliptic operator. In [0, Xo] X S x [—2¢,0), we make the
change of variables z,, to —z,,. For a function ¢ defined in V_, we set

'd)r(y?xn) = '(/)(ywxn) and wl(van) = w(y’ _xn)7 for z,, > 0,
and similarly for symbols and operators, e.g.,

(Y, o) = 1(y, 2p,n) and  r(y,zn,m) =7(y, —Tn,n), for z, > 0.

We set VI =5 x (0,2¢]. System (3.2) then takes the form

Phw'h = Fl, in (0, Xg) x V_F,
Pt = L5 ((¢7 0, w") g, =0+ + (05,00, =0+ +©7) in (0,X0) x S, (38)
w\gﬂ,:OJr = w’ + 071 in (O,X()) X S,

3.3 Conjugation by the weight function

We now consider the weight functions ¢/ built up as above from the continuous function ¢ defined on V.. We
introduce the following conjugated differential operators

P;/z _ h2€<p7z /hP7Le—<pT/l/h7 P = h2eeis/h pse=eis/h.
With the functions
ol = ey s = s gy,

F;/l _ thLPT/l/hF%’ @; — —ihe“p‘S/h@S, QZz — ew|s/h9T/z7

16



with 0 < h < hg, System (3.8) can be rewritten as

Pl = FJl in (0, Xo) x Vi,
PS'U = CZ%( (Dxn + 10z, ¢ ) Vlzn=0+

+c(Dg, +i0,, ¢ )U‘T o+ +05) in(0,Xp) xS,
/! = +0/’ in (0, Xp) x S,

|zp=01t "

(3.9)

Recall that D = hd/i here. We shall consider the operators P;/l and PJ as semi-classical differential operators.

We separate the self- and anti-adjoint parts of the operators P;/L , Viz.,

~T 1 7 L * *
I = (P (BLY), Q= 5o (PL - (P1Y),

The (semi-classical) principal symbols §; of Qj, j =1,2 are then

‘*% (X 50777 gn) = 52 +Q;l( 507 )7
(X §0a77 fn) - 2£n w,LL)O/l +2q1 ( 607 )7

for (y,n) € T*(S), with

(Ozy ‘P% )2

g . . .
o ) = (U T (w dy) + (0,67

T/l (X 507 ) =

50 T
/l(x €0,1) = C;‘p _’_T/L(m n, dy(p/z)
Recall that 77 (z,m,n") stands for the symmetric bilinear form associated with the quadratic principal symbol
r/:(z,n). The principal symbol of Pf is naturally

=

pl =) +ig] = 2 +2i€,0,, 0" + ¢f' + 2iq]'. (3.10)

For the sake of concision we have at places omitted some of the variable dependencies, e.g. writing 7 in place

of /1 (x).
Note also that the symbol of P} is given by

s 60 (830 90)2 . 50830 2 ~
Py = (o) = (TR (e, ) )| (P @ dye, )| B1D)
(Recall that 7! and r" (resp. ¢! and ¢") coincide at z,, = 0F.)
3.4 Phase-space regions
Following [LR97, LR10] we introduce the following quantity
1 (x6.m)°
0
/j//l (X,§07 ) - QQ ( 607 ) #7 (312)
(92,97
and the following sets in the (tangential) phase space:
E’y/hi = {(x07yaxn;£07 ) [O XO} X 5 x [0 25] X R x T*(S) g ($an7xn7£07 < 0}7 (313)
ZT/l = {(anyaxn;€0an) [OaXO] X S x [0725] XRXTJ(S), /l(fcoay,%n;foaﬁ :0} (314)

The analysis we carry on will make precise the behavior of the roots of pZ’ (viewing le as a second-order

polynomial in the variable &,, see (3.10)) as (x,&,n) varies. In particular, we prove that (x,&y,n) € Z7, i.e.

w(x,&,m) = 0, if and only if there exists &, € R such that (x,&,7,&n) € Char(P;/l).
With the following symmetric bilinear forms,

~m 1 ey
B7 s 0,560, 1) = o8y + 7 (2,1,
dT/L (x; 50777,571; 56777/75;) = Br/l (m;£0777;£677]l) + gnfiw
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and the associated quadratic forms, 57 (x; &, n) and o’ (z; &, 7, &n), we have

~r ™ 7 2
(BT (50,5 0zt dyo™))
CREOE

N’T/l (X, 507 77) = ﬂ% (Iv 503 77) + - a% (:E; az0 (PT/Z ) dyQDTﬁ ) 3%8071 )7

We also set the following quadratic form
—r v o9
B (x:&0,m) = (B (30,13 0nyp”, dyp™)) "
The quadratic forms $7 are positive definite. With the function () on V" we chose in Section 3.1 we have

B (w5 €0,m) — v(@)B" (x30,m) = C|(&,m)]* > 0. (3.15)
From the properties of the weight function listed in Section 3.1 we have
V(02 ") = (00, @')? 2 C >0, 0<7'(z) <7(x)—€ €>0, (3.16)
and
O™ + Iy, < wint(10, '), (3.17)

with v > 0 sufficiently small. Furthermore |0y,07 | + |V 07| + |0,, 7| > 0 in [0, X] x V2 and the following
sub-ellipticity property is satisfied

vx € [0, Xo] X V¥, (€0,m,60) ER X TE(S) xR, pli(x,0,m,60) =0 = {G4 /' }(x.€0,m,62) > 0. (3.18)

The sub-ellipticity property (3.18) is necessary for the derivation of the Carleman estimate and is geomet-
rically invariant (see e.g. [Hor63, Section 8.1, page 186], see also [LLar]).

Remark 3.3. A weight function ¢ that satisfies the properties of Section 3.1, or (3.16)—(3.18) equivalently,
can be obtained in the following classical way. Choose a continuous function v, smooth on both sides of S,
such that ¢” satisfies conditions (3.16),(3.17) and |90 | + |V*9 7|, 4 [0z, 7| > 0 on [0, Xo] x V2. These
conditions are then also satisfied by ¢ = e*¥, A\ > 1. For the parameter )\ sufficiently large ¢ will also fulfill
the sub-ellipticity condition (see e.g. Lemma 3 in [LR95, Section 3.B], Theorem 8.6.3 in [Hoér63, Chapter 8], or
Proposition 28.3.3 in [H6r85b, Chapter 28]).

Using (3.15), (3.16) and (3.17) for v sufficiently small, we obtain
B = (@) (8" + B5/(9:,9")?) = Cl(&, ) > 0, (3.19)
and
V(@) (@5 Oagp" dy”, D, ") — 0 (3 00y 0 dy ', 0, 1) > C > 0, (3.20)

where we have used that v >+ +e¢.
The assumption we have formulated yields the following key property.

Proposition 3.4. There exists Cy > 0 such that in the neighborhood V. we have

(:ul - ’Y(m)ur)(xa 50377) > CO<(£0777)>2 > Oa X = (1'071’) = (xoayaxn)a (50377) ERx T;(S)
In particular, E™T U Z" C EbT.

Proof. With the properties of the weight function of Section 3.1, and more precisely (3.19)—(3.20) that follow
from them, we have

b= B (w;&0,m) — () (B (360, m) + B (% §0,m)/ (O, ")) + B (%:60,m)/ (0z, 01
+y(@)a (s 9") — ol (@5 9") + (z)p"
> C{(&0, ) + ()"

Proposition 3.5. With the properties of the weight function of Section 3.1 we have

Char(pg,) C Char(Rep,) C (E"~ n{z, = 0}).
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® Imé¢, ¥ Imé¢&, ® Imé&, 'X,lpr,Jr
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1 ! P!
PL'D Imé&, 1 P<P Imé¢, 1 v Im gn L+
xp o+ xp T+ xp
syl
XpP
1 Reé&, _; Re&, R,
p i p 77;‘<
(a) Root configuration in E™™, (b) Root configuration in Z", (c) Root configuration in E™T,
pd < 0. pr=0; ur >0

Figure 3: The root p™* crosses the real axis before the root p"~ does, as " decreases.

Proof. From the form of (3.11) we see that Rep, = 0 implies

|77|g + |50| < C(|(9$030T/l| + |dy507l |9)a;”:07 (321)
and we find
1 1 1 0000 2
! _ [y(e2 2 12 09z )
Hanmor = [(6 = 0n0) (5 = 55) = Oua) + 5 (P + P dypien=0) ]|
Using (3.21) together with (3.17) in this expression gives
loor < [ = (0,2 + Cvint ((02,697)]| .
The result thus follows when taking v sufficiently small. O

3.5 Root properties

The following lemma describes the position of the roots of le of (3.10) viewed as a second-order polynomial in
&n. The proof is given in Appendix C.4.

Lemma 3.6. We have the following root properties.

1. In the region E7o% | the polynomial pZ" defined in (3.10) has two distinct roots that satisfy Im p/t >0
and Im p/= < 0. Moreover we have

p'>C>0 < Impht>C">0and Imp/~ < —C' <0,

2. In the region E7~, the imaginary parts of the two roots have the same sign as that of —&Cnap%.
3. In the region Zt, one of the roots is real.

Moreover, there exist C > 0 and H > 0 such that [p/vF — p/o=| > |Tmp/t —Tmp”~| > C > 0 in the region
{uh > —H}.
Remark 3.7. Note that (x,&,n) € E/oF for [&] + |n|, sufficiently large, say || + ||, > R, uniformly in

x € [0, Xo) x V2" and for h bounded. Note also that in the region {17t > —H}, the roots p/-* are smooth since
they do not cross.

For the polynomial pg, for || + [, small, i.e. in the region E™~, the two roots p"T and p™~ both have
negative imaginary parts. As the value of u” increases, the root p™* moves towards the real axis, and crosses
it in the region Z". In the region E™* we have Im p™* > 0 and Im p"™~ < 0.

For the polynomial pfp, for |€o| + |n|y small, i.e. in the region E“~, the two roots p"* and pb~ both have
positive imaginary parts. As the value of u! increases, the root p»~ moves towards the real axis, and crosses it
in the region Z'. In the region Eb* we have Im pb* > 0 and Im p>~ < 0. The “motion” of the roots of pfo and

pg, is illustrated in Figure 3.
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Figure 4: Sketch of the relative localization of the different phase-space regions. Here, (x, &g, n) is fixed and we
plot the different zones for (x, v&y, vn) as v increases from 0 to co. Here, v represents the norm of the tangential
frequencies. This situation can be represented under this form since for x fixed, the sets E7~ and {pfo <0}
are star-shaped with respect to 0 in the variables (§o,7) € 17, ,1((0, Xo) x 5).

We now call
M, =(0,Xg) x S x[0,2¢].

We also set
Mi = {($07y7xn750777) € (OaXO) X 5 x [0725} X R x Ty*(s)} ~T" ((07X0) X S) X [0a2€]
With the symbols defined in Section B.2 (see Definition B.4) we obtain the following result.

Lemma 3.8. Let H be as given in Lemma 3.6. Let x/' € SY-(M?) with support in {u > —H}. Then
X" phE € SL(M®). Let Co > 0, there exists C > 0 such that |Im p/v%| > C(1 + |&] + |nly) in {u”' > Co}. It
follows that for some C' > 0 we have

™)
1

p7et — p7om | > [ Tm(poF — p77) | > C' (1 + |&o| + nly), in {ut > Co}.

We refer to Appendix C.5 for a proof.

3.6 Microlocalisation operators

We define the following open sets in (tangential) phase-space:

&= {(Xafo»ﬂ) € Mi, €1 < MT(ngovn)}V

Z = {(Xa 5077’) € Mj—v 7261 < :ur(x7§0777) < 261}7

7 = {(Xafo,ﬁ) € Mj_, €2 < Nl(xv&)an)v and /JT(X’&)’W) < —61},
G = {(x,&0,n) € M%; pl(x,&0,1m) < 262}

The constants €1 and ez are taken such that sup(y)e; + e2 < Cy/2, with Cp as in Proposition 3.4. Our analysis
in the region 2 will require €; to be small (see Section 4.4 below). Recall that 7 is defined in Section 3.1. This
yields ¥ N Z = . As a consequence of Propositions 3.4 and 3.5, the localization of the different microlocal
zones can be represented as in Figure 4. In particular, we have Char(py,) C (¥ \ .#) N {z, = 0}.

With the open covering of M* by &, 2, .% and ¢ we introduce a € partition of unity,

(3.22)

Xe +Xzr+xz+xg=1 0<xe<1, supp(xe) Ce, ©=&,2,7,9.

*

The sets 2, .# and ¢ are relatively compact which gives x#, x.#, xo € S7°°(M?) and consequently xes €
S%)-(Mi) Associated with these symbols we now define tangential pseudo-differential operators on M. .

Given 0 < ap < Xo/2, we choose a function (! € €>°(0, X,) that satisfies (! = 1 on a neighborhood of
(g, Xo — ap) and 0 < ¢! < 1. Setting

Cj(l”o,yﬁﬂn) = Cl(xo)%(y) (3.23)

gives a partition of unity on (g, Xo — ag) x S x [0,2¢]. Recall that (¢;);es is a partition of unity on S (see
Section 1.4.3).
We define the following operators on M :

[1]

.= ZJEJ with Za; = ¢5Op7(Xe)(0;1) Gy JEJ, 0=6,2,7.9, (3.24)
je

where ¢7 denotes the pullback by the function ¢; and

Xe,j = 5]' (¢;1)*X07 (325)
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and fj denotes a function in €°((0, Xo) x U]) with CJ =1 in a neighborhood of supp((cz) ) Gj)-
Proposition B.14 in Appendix B.3 shows that the operators E, are zero-order tangential semi-classical
operators on M, with principal symbol ¢!(z0)xe (X, &0, 7)-

Remark 3.9. The role of the parameter ag introduced here is to avoid considering boundary problems on
({0} U{Xo}) x S x [0, 2¢].

4 Proof of the Carleman estimate in a neighborhood of the interface

In this section, we prove Carleman estimates in the four microlocal regions described above, that is, for functions
Eov’t, with vt € €2°((0, Xo) x S x [0,2¢)) and @ = &, Z,.F,%. It will be more convenient to do this in local
coordinates?, since we then can use the techniques and some of the results of [LR10].

Our strategy in each microlocal region e (with ¢ = &, 2% %) is hence the following: we first produce
Carleman estimates in each local chart (0, Xo) x U; x [0, 2¢) for the functions

ul; = Opr(xe v and  uj; = ODp7(Xe |y, _g- )05, (4.1)

where ) ]

Uj/l = ((bj_l) ¢t and vy = ((bj_l) G,
with ¢; defined in (3.23). Then, we pull the local estimates back to the manifold and patch them together to
finally obtain a Carleman estimate for E.v7l, as

= — *o, 71
vt = ;quu.fj. (4.2)

Note that the functions v;/l (vesp. v;) are defined in (0, Xo) x U; x [0,2¢) (resp. (0, Xo) x Uj). Yet, because
of their compact support, we naturally extend them by zero to R x R"~! x R (resp. R x R"~1). In the sequel,
functions with such a compact support will be extended similarly.

In what follows, we shall use the notation < for < C, with a constant C independent of § and h (but
depending on d¢ and hyg).

4.1 Preliminary observations

In the local chart Uj, the differential operators Pg', a =r,l or s, are given by
—1 *
Py =(5") P35,

with principal symbol pg ; = (gi)j_l)*pg.

Observe that the definition of x”' in (3.12), and of the associated microlocal regions Z7, E7>* in (3.13)—
(3.14), and &, &, . and ¢ in (3.22), are geometrically invariant.

In local coordinates, System (3.9) becomes

Plol = Fl in (0, X0) x U; x [0,2¢),
P v ;:ct?( j(Dz,, +i0x,,95)0] Ten=0" ) (4.3)
+cJ (D, + z@zngaj) G om0t + Gi’,j) in (0, Xo) x Uj, .
”a‘/l\xn:m =05+ 0/ in (0, X) x U;,
where we have set . / R
77 = (0, 1) GF (0 1P Gl
(d)_l)*C]thlv
. (4.4)

= (6,1)7G05 055 =05+ % (6;1) [P Gl
(¢ ) /z Cj/z _ (¢j 1) C/z7 C; _ (¢j—1) ¢,

with [P/, ¢;] € h@l(/\/u) and [P3, ;] € hDH(M.).

J
1

4However, note that it would be interesting to obtain the results of [LR10] directly in a global setting.
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We now formulate System (4.3) in terms of u, ; in preparation for the estimations in the four different

microlocal zones. First, we have

©,J ’J ®.J°J ®,J°

Plull; = Opr(xes)PL ] + [P, Op7(xe, )] 0]
| ——
ER(¥Y Dy, +TL)

In particular, this gives
P Vi

ulillo S NPT o + Rl 1.

/z

Second, as a consequence of (4.3), the transmission conditions satisfied by u,'; and ug ; read

CS . T T
;T;Pw,ju-a = ( (D, + Zamn%) )|w —0+ +(¢j(Da, +Zaxn¢j)”-,j)\mn:o+ +Gi,

T _ +6 Yo

®J |z, =0+ 5
ith 0/ = 0O : 07 and
w1 0 — pT(XO,”m":oJr) ©,j an

oce

G = hizj [ (pj?OpT(X.,jlx _0+)} U + [Op7’<XO,j|Jr _0+)7 J<Da:” + Zawn%@])] J |20 =0+

S €h¥y

+ [OPT(XO,J’|M:0+)7 C;(Dxn + 10, 505)] UJT'\M:O*- + OPT(XOJ|M:0+))©Z,J"

chvy
We have the following estimate
Gilo S olvlu +hlvf, _gilo+hlvf, _oilo+ (S
S G+ n)sly + k|6 ;1o + RIOL ;1o + 1550,
by (4.3) and (4.4). We set

(ul',

L]

Yol =uly, o nly) = (Da,ul),=or-

In this local setting we also introduce

B = (C;/C§)|£7L:0+7 G zawn@j (el G:J) + - Gl7
j\mn:0+
. l r
k= _Z(amnso‘ﬂ:vn:o* + Bamnsoj\w,L:O*)'
Transmission conditions (4.6) can be written as
oci ¢
hiclptp] 03*71( o])+671( ) 'ZVYO( )+Gla

S
where the remainder G can be estimated thanks to (4.7) by

Gilo S (04 B)[vslL + 105 ;1o + 16L ;1o + 107 ;1o-

We are now prepared to prove the different Carleman estimates in the four microlocal regions.

4.2 Estimate in the region ¥

(4.5)

(4.7)

(4.8)

(TCo,;)

(4.11)

Here, we place ourselves in the region ¢, and prove a Carleman estimate for uy ;, and consequently for Egwv.

We introduce a microlocal cut-off function xz € €°(M?), 0 < xgz < 1, satisfying

X« = 1 on a neighborhood of supp(xg),
X« + X = 1 on a neighborhood of supp(xgz).
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We choose (% € €>°(0, , Xo) such that 0 < Cz <1, ¢? = 1 on a neighborhood of supp(¢!) (with ¢! defined in
(3.23)), and such that {; =1 on supp((gb ) ) Where GG (wo,y) = ¢*(x0);(y). As in (3.25) we set

Sk
X9z, = G(95") xuz7,
and we define the associated tangential pseudo-differential operator =42 by

Eyz = Y Egzj, with Zgz;=¢;Oprxes;)(6;") ¢, Je,
jeJ
Note that the local symbol (see Proposition B.7) of 2«4 in each chart is equal to one in the support of that of
Ey.
We recall that the function ¢ = {(x,,) € €:°([0,2¢)) satisfies ((0) =1 on [0, €).

Making use of the Calderdn projector technique for PJ ; and of the standard Carleman techniques for P,
we obtain the following partial estimate.

<PJ’

Proposition 4.1. Suppose that the weight function ¢ satisfies the properties listed in Section 3.1. Then, for all
8o > 0, there exist C > 0 and ho > 0 such that, for all0 < § < 8y and 0 < h < hg, v/ € €>°((0, Xo) xS x[0,2¢))
and v°® € €°((0, Xo) x S) satisfying (3.9), we have

IZv" I3 + hlZ vl ot [} + BlDz, vl _os 3 < C(IP" I + W27 I3 + b Do 0y, o+ 3), (413)
and
B! I} + hiZqvly, i} + hIDz, Bgvly, i [}
< 1+ 55) (ICPL I3 + B2IZar [+ 11D 0 g3 W07 + 00 )
4 C (1P IR + R0+ MIBLE + 203+ o2 + hje3 ). (4.14)

Proof. The function uy ;, defined in (4.1), satisfies (TC, ;), with ¢ = ¢. On the “r” side, the root configuration
described in Lemma 3.6 (and represented in Figure 3) allows us to apply the Calderdén projector technique used
in [LR97, LR10]. According to [LR10, Remark 2.5] and using Eqgs. (2.59), (2.60), and (2.61) therein, applied
with v? replaced here by vy, we have

T i r i r
lugg 4lln + h2 o (ug )l + k2 (uy )l < 1P j05llo + hllvjll + A2 Do, v .o, (4.15)

which is a local version of (4.13).
Let us now explain how such local estimates can be patched together to yield (4.13). Concerning the first
term on the left hand-side of (4.15), and using the definition of Sobolev norms given in (1.20)—(1.22), we have

[Egv™lln S X llug sl Bgv =0t S 22 Iyolug ;)h (4.16)
JjeJ jeJ

by (4.2) and Lemma B.15. Similarly we have D, = Egvl,, o+ = =>_; ®jm(uy ;) since ¢} does not depend on the
x,-variable. As a consequence, we obtain

|(De,Zgv") |z, =0+ lo < 22 (€571 (ug j)lo S X2 n(uig j)lo, (4.17)
jeJ jeJ
by Lemma 1.9.
Now concerning the right hand-side of (4.15), we directly have
il = 11(8;) " Gom = 1161 (8;) w50 Il S (65 1) %0" Il S 1", (4.18)

by the definition of ||.|[; on M, as well as
1Dz, 05 1, —o+ |0 S 1Dz 0, o+ lo- (4.19)
Finally, we compute P5 v = (¢51) " Pig5 (¢71) G = (671) "GP + (¢571) [P, ¢lv". We have

‘PJ]

(65 1) ¢ Pov o = 11K (05 1) s Ppo" llo < [1P50" o, (4.20)
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and, using Lemma 1.9,
(&5 1) [P5, G1v" llo S NIEPS- ¢ilo"llo < Rllo” |, (4.21)

since [P}, ;] € h?'(M,). Finally combining all the estimates (4.16)-(4.21), together with the local inequali-
ties (4.15) summed over j € J, we obtain the sought global estimate (4.13) on M.

To obtain Estimate (4.14) on the “I” side we first need a more precise estimate for the “r” side. For this,
we introduce another microlocal cut-off function Y¢g satisfying the same requirements (4.12) as xgz, and such
that Yz = 1 on a neighborhood of supp(X«z). We choose (3 € €>°(0, Xg) such that 0 < (3 <1,(3=1ona
neighborhood of supp(¢!), and such that (2 = 1 on a neighborhood of supp(¢?). As in (3.25) we set

~ ~ — * o
Xz = (i (9] Y ez,
and we define the associated tangential pseudo-differential operator Z¢g by

égy = Z égy7j, with é%?,j = (b; OPT()Z%?,J)(%_l)* _?a Cf = ngjv ,7 € J7
jeJ

According to [LR10, Remark 2.5] and using (2.60) and (2.61) therein, applied with v¢ replaced by ¢ (z,,) (qS;l) *Cj gz v”,
we have

12|70 (OpT(xew.3) (67 1) G Zezv" )1 + h2 [ (Opr(xer.s) (67 1) ¢iBuzv")lo
SIPE;C(651) GEazv o + hIC(871) GEazv I + B2 v (65 1) GEwzv") 0. (4.22)

We notice that the right hand-side of this inequality can directly be bounded by global quantities. First, we
have

1€(¢;1) " ¢iEazv 1 S |1Egzv” |1y (4.23)
Second, we estimate
11 ((¢71) GEazv") |y < (D, Zazv") |, _gelos
where

(D2, Zgzv") |, _gv = (B92 Do, "), _g + ([Da,y Zaz]0") |, o

Eh\Pg—(M+)

Using Proposition B.12 and the trace formula (1.23), we have the estimate
B N 5
K2 ((¢51) GEazv")lo S B2 Do, v, —or o+ A2 [[0"|1. (4.24)

Concerning the term with P} ; in the right hand-side of (4.22), we can proceed as in (4.20)-(4.21) to obtain
1P ¢(651) GEazv o = 1(6;) Pr¢¢iEazv” llo S IIPE¢Euzv" |lo + hl|Egzv" ||y (4.25)

Moreover, using Proposition B.10, we have 24z (1 — Egz) € hWL> (M, ), as their local symbols in every
chart have disjoint supports by Proposition B.14, because of the supports of ¢? and ¥«s. We then obtain with
Proposition B.12

hl|Zgzv" |l S hIEgrEgs v |1 + hl|Sgs (1 — Sz )v" |1 S h|Zgzv" [l + B2[|v"]|1- (4.26)
We also have
|PL¢Egzv"[lo S |12z CP" (o + | [PS, Egz (v o- (4.27)
Arguing as above with Propositions B.10 and B.14, and also Corollary B.11, we have

[PL,Z4z(] = [P}, Eyz (] Egz + [Ph,Zgz(](1 — Syz)
—_——
ERUL(My) €heow—o0 (M)
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so that (4.27) now reads with Proposition B.12
IPL¢Egzv"|lo S ICPE0" llo + PlEgzv" 1 + h2[[v" |- (4.28)
The three estimates (4.25), (4.26) and (4.28) give
1P ;¢ (651) " ¢Zaz 0" lo S NICPHV" o + bl Ewzo” [l + B2 [[o" 1. (4.29)
Combining (4.22) together with (4.23)—(4.24), (4.26) and (4.29), we finally have
h# 10(Op7(xe,5) (67 1) Bz v") 1 + hE 1 (Opr(xw,) (67 1) "¢ Euezv")lo
S ICPpv o + hl|Egzv" |1y + B2 Dy, 0", _gilo + B2 [0 [l1. (4.30)

Then, we need the following lemma to come back to the variable ug, ; = OpT(Xg,j)(gb;l)*(jv’" on the left
hand-side of (4.30).

Lemma 4.2. There exists R € h*°W:>(M,), such that

Op7(xe.j)(87") ¢z = uy ; + (67") Rv".
This lemma is proven in Appendix C.6. As a consequence we have
B2 o (uly )l < R o(OpT(xer ) (651) G Zaz o) + b2 o((651) Rem)o
< h#0(0pr(xer ) (671) ¢ Z ez v )1 + 1¥|o" |l
with the trace formula (1.23). This, together with Estimate (4.30) give
0 o(uy )l S ICPpllo + hl[Egzv" [+ B2 [0 [y + b2 Da, v, o+ lo- (4.31)
Lemma 4.2 also yields
hE |y (uly ;o < B2 v (Op7(xw.;) (67) s Eazv o + hE [ ((671) Ru")lo,
< ht |71(OPT(Xs§,j)(¢;1)*¢j§gﬂvr)|o + W2 |l + h?| Dy, 0l o+ o, (4.32)
Combining (4.30) together with (4.32), we finally obtain
By (uly o S ICP" o + AlIZgz "l + B0 [l + B2| Dy, o], ot lo- (4.33)

On the “I” side, we apply the Carleman method. With the properties of the weight function of Section 3.1
and in particular by (3.18), and by Lemma 2 in [LR95], we then have

Blluly ;12 + Re (b8 (uly ;) + 2 ((Dutdy ; + Lhdly )ja,moe Ly, 1) ) S Py 53, (4:34)

for 0 < h < hg, ho sufficiently small, where L} € @%7 L€ \Ilg—. The quadratic form %' is given by

_ 28%“’5}%: o B () 71 (%) 5
B () = << s 0 Bé) ("/0(1#)) ’ (’70(1@) O, supp(y’) C (0, Xo) x U; x [0, 2¢), (4.35)

where B}, B! € 2%, with principal symbols o(B}) = o(BY) = 2(¢j_1)*qll‘$n:0+ and Bh € 9%, with o(B}) =

—204, 0% (671) Gy, —o+-
Observe that we have

(Dt + Ly )jamor Ly 51, )| S Py I+ Po(ady )12 (4.36)

and
‘%l(uéﬁ,j)‘ S |’YO(U§£,]')|% + |’71(ué§,j)|g' (4.37)
Now, using (4.34), together with the estimates (4.36) and (4.37), we have,

hllug ;11T S 1P juig ;115 + hlvo(ulg ;)17 + hlyi (ug ). (4.38)
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It remains to estimate the traces on the “I” side by the traces on the “r” side, through the transmission
conditions (TC, ;):

Yol(uly ;) =0 (U(y])+9s¢] Ot ;
T (uly ;) = ﬁgpw (vo(uly ;) — 0% ;) — By (uly ;) + kyo(uy ;) — G,
J

uy ;= ’yo(urgyj) — 9%_’]-.

As a consequence, Vo(uéﬁ ;) and 71(165977 ;) can be estimated as follows

o(ug ;)1 < ho(ug ;)i + |9gJ|1 + 10 511,

(4.39)
Iy1 (uly ;o S |71(Ug,j)|o + - \ 0.5 70(ug o+ + | 9% 510 + [vo(u ;)lo + |G1lo-

We now prove that, on the support of x« ;, the operator P; ; is of order 0. For this, let x € €>°(T*(R")), be
equal to one on a neighborhood of the supp(ngjlm _o+)- We then have

Yo(ug ;) = OpT(x9,5)v5, _or = OPT(X) OPT(X9,5)0] . _or +OPT(L = X)OPT(X9,) V]|, _o0s

Eh®W L™
which yields
P jvol(ug ;) = (P Op7(X)) 10(uiy ;) + P ; Opr(1 = X) OpT(X9,5) LA
%,_/

evy Ehoow >

This, together with the trace formula (1.23) gives the estimate,
g s r g r Nj|,,T
71Pe.70(ug j)lo < €5 o (ug ;)lo + Cnoh™|lujll, N €N.
Similarly, we have the estimate

) 1)
E|P;,j9s2,j|0 < CE|9<9,J‘|0 + CN5hN|9 ‘9 ;lo-

jlo S5
The last two estimates and the second equation of (4.39) yield,
g r A r

Iy (uly o S 1 (uly ;)lo + (1+ )|70(Ug o+ + |0<p,j|0 +|Gilo + Cn 6B |[0f[l1, N €N.

Using estimates (4.31) and (4.33) to bound the traces on the “r” side, we obtain

5 L
Wl o S (14 3) (ICP5 o+ 1B s+ B30 s + 821Dl Zpelo) + 10 o + b o
2

for 0 < h < hg, and, using (4.11) to estimate the remainder, we have
Wy (ulg o S (1 + )(HCPTUTHO +h|[Zgz 0" |1 + B2 0" |1 + B2 D, v, o+ lo
+ RE (o3l + B8] o) + 1103 1o + hAI6L Lo, (4.40)

We observe now that the first line of (4.39) together with (4.31) yields

12 o(uly )i S ISP llo + Al Zgz v [l + B2 ([0 [l + B2 D, o, —g+lo + B2 6%, ;|1 + hZ10, ;1. (4.41)
Combining (4.5), with (4.38), (4.40) and (4.41) we obtain
hllug ;113 + hlo(ugg ;) + kv (g ;)13
52 T, T T ‘s
(1"" )(”CP 15 + h2(|Zgz 0" (|7 + h*[lv ||1+h4|Dan\zn_o+|0+h3‘ Hh )
+ |0, ;1T + ﬁw;,j% +h|0g 513+ hO% ;13 + 1P ;05113 + h2[lujllE. (4.42)

This is a local version of (4.14). Patching together on M the local Carleman estimates (4.42) as we did in
(4.16)-(4.21) yields (4.14). This concludes the proof of Proposition 4.1. O
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Figure 5: Root configuration in the region .%.

4.3 Estimate in the region .

Here, we place ourselves in the region .%, and prove a Carleman estimate for ugz ;, and consequently for Zzv.

Making use of the Calderén projector technique for both P7 ; and Pw ;» we obtain the following partial estimate.

Proposition 4.3. Suppose that the weight function ¢ satisﬁes the properties listed in Section 3.1. Then, for all
o > 0, there exist C > 0 and hg > 0 such that, for all0 < § < 8y and 0 < h < hg, v/" € €2((0, Xo) xS x [0, 2¢))
and v° € €°((0, Xo) x S) satisfying (3.9), we have

[E50 I + BIES 0], ot B+ AIDe, Eptfy, —or i < C(IPL I + B2 IR + HD0, o, e ), (4.43)
and
IEz0' 1} + hIE#v),, _o+ 1 + Al Do, Epvfy, o+l < C(HprleI% + RV + 1 Do, vy, o+ [8 + 1 PE0" IS
+ B2 0" I3 + B4\ Da, 0], v 3+ BIOLE 4+ BIOLIR).  (4.44)
Proof. Here, the functions ué ., j € J satisty (TC, ;), with ¢ =.%. On both the “r” and “” sides, the roots
conﬁguratlon described in Lemma 3.6 (and represented in Figure 5) allows us to use the Calderon projector

technique used in [LR97, LR10]. According to [LR10, Remark 2.5] and using Egs. (2.59), (2.60), and (2.61)
therein, applied with v¢ replaced here by vy, we have

s 5l + B2 o (wis )l + B2 I (s )0 S 1IPS 05 llo + Bllv] |l + b Ds, v V5 1m0t [0° (4.45)

This is a local version of (4.43). Patching together on M the local Carleman estimates (4.45) as we did in
(4.16)-(4.21) yields (4.43).

On the “I” side, since both roots are separated by the real axis (see Figure 5) we only obtain one relation
between the two traces at the interface: according to [LR10, Eq. (2.67)], we have

syl S 1P jotllo + Rllwblls + B2 lyo(uls )l + B2 [y (uls )]0 + h2| D, vt Vj g =0+ 05 (4.46)
together with the following relation between the two traces [LR10, Eq. (2.68)]:
(1= Opr(a")) yo(uy ;) = Opr(b)71(u's ;) + GY, (4.47)

where a! € S% and bl € S}l have for principal part respectively

1.—
N - 1

ap = - (Mﬂ_z) ,and b1, = (Xw_z>
Pj — P en=0+ Pj —Pj

where p;-’i are the roots of pfp’j (i.e. pz’i = (qu_l)*pl’i with p* described in Lemma 3.6) and ¥ € €>°(T*(R"))
is compactly supported and equal to one on a neighborhood of the support of x ER T The remainder G
(coming from the Calderén projector method) satisfies [LR10, Eq. (2.69)]:

)

z,=0*1

Gyl 5 (IPL oo + Bllebly + R21Ds, ot o) - (4.48)
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Let x € €(T*(R"™)) satisfy the same requirements as ¥ with ¥ equal to one a neighborhood the support of
X. Since b’ | does not vanish in a neighborhood of supp(y), one can introduce a parametrix for Opy(b'), say
Op7(e), with e € SL, satisfying

Opr(e) Opr(b') = Opr(R) + R, Re€h™¥ ;>
Applying this parametrix to (4.47) gives the estimate
(s o S houle D+ Gl + OnhY (I + Do th, _oilo), N €N, (4.49)

Here, we have used the trace formula (1.23) together with

N(uz ;) = Opr () (s ;) + (1= Op7(R) Ob7 (x5 ) =0+ ) Dl o

EhoWL™
+ (1= Op7 ()P, OPT (x5 =0 ) ¥y g (4.50)

Eh®W L™

We now use the second equation in the transmission conditions (TC, ;), which with (4.45) yields

1 1 1 1
h§|70(ulg,j)|1 < h2lyo(ulg ;) + hi‘efﬁjh +hz]0% ;1
1 1
< || ©,j j”O +h||vTH1 +h‘2‘D 0+|0 +h2|959,j|1 +h2|9%,j‘1‘

Tn J (2
This estimate together with (4.48) and (4.49) provides an estimate for |'\y1(ufg}’j)|07 which, summed with (4.46)
yields

lulz 111+ 22 o(uls )y + B2 (ule o S 1P j0lllo + R[Sl + k2| Dy, o) Vj g0t 0

1 1
+ 1125 05 llo + hllojlly + h2| D, v5 o lo+ R0 51+ h2 |05 .

Tn J\ac

This is a local version of (4.44). Patching together on M such local estimates as we did in (4.16)-(4.21) yields
(4.44). This concludes the proof of Proposition 4.3. O

4.4 Estimate in the region %

Here, we place ourselves in the region 2, and prove a Carleman estimate for us ;, and consequently for = zwv.
As a consequence of property (3.6) of the weight function (see also (3.16)) and the compactness of [0, X] x
S x [0, 2¢], we remark that in the region %, there exists K7 > 0 such that

(6%90’“)2 — " > min (8m7L<pT)2 -2 > K1 >0 (4.51)

for ¢; sufficiently small (the constant ¢; is used in the deﬁnition of the microlocal regions in (3.22)).
Making use of the Calderén projector technique for P! ., and standard techniques to prove Carleman esti-

mates for PJ ;, we obtain the following partial estimate.

QOJ’

Proposition 4.4. Suppose that the weight function ¢ satisfies the properties listed in Section 3.1. Then, for all
o > 0, there exist C > 0 and hg > 0 such that, for all0 < § < &g and 0 < h < hg, v/" € €2((0, Xo) xS x [0, 2¢))
and v°® € €°((0, Xo) x S) satisfying (3.9), we have

52
B2 | +h(1+ 35 ) [E2v],, o+ [} + A2, Exv],, o+l

< C(IBG"I3 + R I + h(E + B+ [Pt I3 + B2 o' + B4 D, ol o3
52 T I S
1O+ 0L + bl + RIO3IS). (4.52)
and

IE2' I} + hEzv]y, —o+ T + Al D2, Ezvly —o+ 3

S h2 T, T T
S C(IIPile%+h2l|le?+h4\Dxnvfx,L:o+|3+h3lv [t + 5e (IPeVTIIG + A2 el1)
T h3 S
RO + RO + 555 O3 F)- (4.53)
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Proof. The function ug ; satisfies (TC, ;), with @ = 2. On the “I” side, the roots configuration described in
Lemma 3.6 (and represented in Figure 3b) allows us to apply the Calderén projector technique as in [LR97,
LR10]. Since both roots are separated by the real axis we only obtain one relation between the two traces at
the interface: according to [LR10, Eq. (2.67)], we have

by sl S 1P jvtllo + hllwblly + B2 o (ulye )l + h2 v (uly ;)]0 + h?| Dy, 0! Vg, ot |0 (4.54)
together with the following relation between the two traces [LR10, Eq. (2.68)]:
(1- OPT(al)) WO(U{OZ,J‘) = Opr(b)m (U{%‘J) + G, (4.55)

where a! € S% and b € S}l have for principal part respectively

l,—
_ |
ap = - (Xl—i-j_l—> ,and 0L, = <X1+_z—>
Py Pj Tn=0+ Pj Pj

where pé * are the roots of pcp ; (e pé o+ ((Z);l)*pl * with p"* described in Lemma 3.6) and ¥ € €>°(T*(R"™))
is equal to one on a neighborhood of the support of x & F|n =0+ and equal to zero in a neighborhood of

, (4.56)

z,=0*1

((677)°9) N {n = 0 = { (w0, &5 (): €0, "6 (&5 ()n); (30,903 0,m) €Y},
The remainder G5 (coming from the Calderén projector method) satisfies [LR10, Eq. (2.69)]:

IGLI, <h 2 (|| L vtllo + Rllvh]lL + hﬂDmn%lx _0+|0) (4.57)

On the “r” side, we apply the Carleman method to the operators P ;. With the properties of the weight
function of Section 3.1, and in particular by (3.18), and by Lemma 2 in [LR95] we then have

hlluty 5|+ Re (h8"(uly ;) + h* (Datly j + Liuly janmors Loty 5y, o1 ) ) S IPptly 53, (458)

for h sufficiently small, where L} € 2}, Lj € U9-. The quadratic form %" is given by

T _ 28$n()0; T, =01 Bf 71 (w) . (1/1) T
BT () = (( Bll’ 0 Bg) <%(w)),<%1)(w)> . supp(¥) C (0, Xo) x U; x [0,2¢),  (4.59)

where By, By’ € 27, B} € 9%, with principal symbols o(B}) = o(B]’) = 2q{7j|%204r and o(Bj) =
T : T —1\* r —_
,28mngojq27j|%=0+ with g ; = (cbj ) q, k=1,2.
Observe that we have
|((Datty ; + Liuly Diwamor Lty 51, - ), | S I I + Iouly )R- (4.60)

Thanks to the transmission conditions (TC, ;) at the interface and the trace relation (4.55) on the “I” side,
we shall be able to express 7; (uf_;f]) from ’yo(u%J) on the “r” side. This will allow us to turn %" into a
quadratic form operating on yo(u'y ;) only. We first formulate (TC.’J») in the following manner:

Yo(uly J)= WO(UEX )+ efﬁf’,j — 0%,

! (uffg) P::,j (’YO(U%,J‘) - 9?@”,3‘) - 5’71(’“?&;') + k’)’o(ugx,j) — éh (4.61)

hzc

Uy ;= ’Yo(“y,]) 0% ;-

Let x € €°°(T*(R")) satisfy the same requirements as ¥ with x equal to one a neighborhood the support
of X. Since the principal part b ; does not vanish in a neighborhood of supp(¥) (see (4.56)) one can introduce
a parametrix for Opy(b'), say Opy(e), with e € SI, satisfying

Opr(e) Opr(b') = Opr(X) + R, R h®UL™.
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Note that the principal part of the parametrix e is given by o(e) = ¥ <p§’+ — péf_)l R Applying this
z,=0

parametrix to (4.55) gives

Opr(e) (1 — Opr(a')) yo(uly ;) = OpT ()11 (uly ;) + Rm(uly ;) + Opr(e)Gh

=n(uly ;) + RiDy, v oo+ Rovy o, +Op7(e)Gy,  (4.62)

J\:c
with Ry € h°W> and Ry € h>*W >, since

Y (uly ;) = Opr(X)n(uly ;) + (1 — Opr (X ))OPT(Xf,J)Dznvé‘znzw

Eh>ow;>
+ (1= Op7(X)[Da,, OpT(X2,)] V5, v

Ehoo W

and

Ryi(uly ;) = ROpT(x2,j) D, v}y, o+ + R[Da,, Op7 (X 25)] V], o
—_———

ER=T L™ 5 P
Using the first relation of (4.61) to replace fyo(ulg’j) by yo(u'y ;) in (4.62), we obtain
Opr(e) (1 - OPT(al)) (70(“?{ j) + afﬁfj - %j)
=7 (U.lfz’g) + RlDwnU;m L+ Rovj‘x o+ T Opr(e)GY. (4.63)

Now, replacing (4.63) in the second equation of (4.61) yields the following relation between the two traces of

Uy
T 56] s l r 665 s pr
5’71(“5,3') = (h i C P¢ g — Opr(e) (1 — Opr(a )) + k)’Yo(fo,j) hi P %5
— Opr(e) (1 - Opr(a)) (0% ; — %) — G1 + Opr(e)Gh
+RaDa, v, oy + Rovh oy
This equation can be written under the form
71 (uly ;) = Tsv0(uy ;) + Gs (4.64)
where
1 56; s l
D= (h@'cg P% ;= Opr(e) (1= Opr(a) + k), (4.65)
and with (4.11) and (4.57) the term G5 can be estimated as
|Gslo < h|9 Slo+165 ol + (6 + R)vi[ + 65 ;lo
A (1L jolllo + BlloS Il + A1 Da, vt .lo) (4.66)
where we have used the trace formula (1.23) and
Py 0% = Pg; OpT(xz 5) 05
—_—————
evy
In supp(x), from (4.56) the symbol o5 of X reads
g (=i ek ith r € 5% + hSY 467
os =0 — TPy P +k)+r, withre€dSy+hSr. (4.67)
J

where functions are evaluated at the interface, i.e. z, = 0T.

30



Using (4.64) in (4.59), we can now write " (u’y ;) as

- -~ 200,95, —o+ BT\ (Zon(uly ;) +G3\ (Tsn(uly ;) +Gs
& (UQ”]) - Tf r " ) 7
: B; By Yo(uly ;) Yo(uly ;) 0
( o(uly 70(“?&“,3‘))0 +4Re (&Cnap;‘zn20+2570(u%7j), Gg)o (4.68)
+ (B{’yo(ugj) G3) + (B{/G?)”}/O(U%’j))o +2 (8wn<p§|xn:0+G3,G3)0,
with
s = 2550:, 5, _o+Bs + X581 + Bi'Ss + B (4.69)
The following lemma makes use of condition (4.51) that describes the smallness of the region 2.
Lemma 4.5. Let &5 be the symbol of 5. We have X%&g € S%)—. Moreover, in supp(X), for hg > 0
sufficiently small, we have
h2
h? + 62

We refer to Appendix C.7 for a proof.
Let x € €°(T*(R™)), be equal to one on a neighborhood of SUPP(Xﬁ”,j\mnzm) and such that x is equal to

s > Co >0, 0 < h < hy.

one on a neighborhood of supp(x). We then write

=55t s+ Collean €)= 0, s = (s
N2 200 =se T s = w2 1 g2 00X + Colléo, X): 16 =73 520

With Lemma 4.5, we have s5 > Co((£,£’))? and observe that s; € S%—. The Garding inequality yields, for hg
sufficiently small and 0 < h < hg,

~ Col(60,€)?) (1 = ).

S r r 62 r
Esro(uly ) 0wy o = C(1+ 25 ) oluly ) = OnhV 5, o R, (4.70)

as supp(rs) Nsupp(xz,;) = 0.

We now estimate the other terms in the expression (4.68). Using the Young inequality, we have, for all € > 0,
|(Bivo(uy ;), Ga) | + [(BY'G3,v0(u'y ) | + 2| (8%<p§|xn=0+G3, Gg)ol
< 52 s 2 h’2 2
S 6(1 + ﬁ) Yo (u'y ;)7 + (1 + m) |Gslp- (4.71)
For the remaining term in (4.68), we have

5, . .
4| Re (9,05, _pu Zor0(uly 1), Gs) | S (P2 00 Dlo + Poluy )l ) Galo,

according to (4.65) and (4.67). Taking x as above, we can write

PZ0(uly ) = Pg; Opr(X) Y0(ue ;) + P (1= Op7(X) Op7 (X2 5) 0, _ot- (4.72)
cvy €hoow ™

Using the Young inequality, for all € > 0, N € N we obtain

62
4‘Re(6wnap§|gg Zsv0(y), G3) ‘<5(1+ )|70( )2+ |G3|O+50N62hN\vj| LB @

Combining (4.70) and (4.68) together with (4.71) and (4.73) gives, for ¢ sufficiently small and ¢ < dy,

(1+ 25 ) holuly )} S B"(uly ;) + Gal} + COnh™ g, 1R
Finally, turning back to the Carleman form at the boundary (4.58), and using (4.60), we obtain, for all N € N,
for hg sufficiently small and 0 < h < hy,

T 52 T
Blluty 513+ (1 + 35 ) oy I S 11P5 0513 + hlGald + CubNs oo 3+ B2y )13
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Using (4.64), (4.65), (4.67) and (4.72) to estimate |y1(u%y ;)|o in terms of |yo(u'y ;)[1, we obtain

(o S (149 ) holuy ) +1Gslo + Oxh¥1og .o

Then, replacing |G3|o by its estimate (4.66) gives, for hg sufficiently small and 0 < h < hy,

T ks 52 ks
Blluty 513 + Bl (uly ) + (1 + 75 ) ho(uly )l

S|P + R[S IIF + h(6% + B*)|vS 13 + |1 PL 051G + h2([0511T + h* Dy, vl

®,J JHO ®,J J”O I\ —0+|0

+ ﬁw;j% + 10, ;17 + hIOL ;1T + RO 415, (4.74)

using the trace formula (1.23). This is a local version of (4.52). Patching together on M such local estimates
as we did in (4.16)-(4.21) yields (4.52).

Let us now conclude the proof on the “1” side. The trace equation (4.62) yields
Ity lo < holuly ) +1Gsl + CxBN (1Da,0 o+ 0, i)
< holuly ) + 105 510+ 16% ;11 +1Ghly + OnbY (IDa, vl oo+ Iod, i), NeN,
after using the first relation of (4.61).
Using this last inequality, together with Estimates (4.74) on [yo(u% ;)|1, Estimate (4.57) on |GL1, (4.54),

and the first transmission condition in (4.61), we finally obtain, for kg sufficiently small, and 0 < h < hy,

luly 4115 + Rlyo(ulye ;I + Rl (uly ))I3

5 ||P<lp,jvj||0+h2||vj||l+h4‘D$n J\z 0+|(2) 62+h2 (” ©,j j‘lo‘i’hz”UTH ) +h3|7f;|%
h52 T2 T2 ! 2 h3
+ 52+h2|9“”j 0+h|9%]"1 +h|9%]’ 1T 52 h2| |
This is a local version of (4.53). Patching together on M such local estimates as we did in (4.16)-(4.21) yields
(4.53). O

4.5 Estimate in the region &

Here, we place ourselves in the region & (high frequencies), and prove a Carleman estimate for us ;, and
consequently for Z¢v. Using in this region the ellipticity of P} ; and the Calderén projector technique for both

P;,4 and P!

;> We obtain the following partial estimate.

Proposition 4.6. Suppose that the weight function ¢ satisfies the properties listed in Section 3.1. Then, for all
o > 0, there exist C > 0 and hg > 0 such that, for all0 < § < dg and 0 < h < hg, v/* € €2((0, Xo) xS x [0, 2¢))
and v® € €>°((0, Xg) x S) satisfying (3.9), we have

126013 + BEsv]t o1} +hIDz, Zsvt _o. 13
< C(IIPQUTI\O + B[V + h Do, vy, o+ [6 + I Pp0'lI5 + B2 1012 + R Do, vy, o+ fo
+ BN* 3 4 BIOL IR + BIO 3 + hl6LJ3). (4.75)

Proof. The function us ; satisfies (TC, ;), with @ = &. On each side, the roots configuration described in
Lemma 3.6 (and represented in Figure 3c) allows us to apply the Calderén projector technique as in [LR97,
LR10]. Since both roots are separated by the real axis we only obtain one relation between the two traces at
the interface: according to [LR10, Eq. (2.37)], we have

luZ ;s S UBL 0] Mo + Allo] | + A2 lvo(uf Dl + k2w )lo + B2 Da,of o (476)

together with one relation between the two traces [LR10, Eq. (2.38)]:

(1-0pr(a™) 20(l,) = Opr(p™m k) + G- (4.77)
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In this last expression, a’' € S% and b7 € 57_-1 have for principal part respectively

=
VA I Pj Y/ ~ 1
o = (X Tt 7/17—> , and by = (X Tt 717—>
Pj Pj =0+ Pj Pj

where p;-’i are the roots of pfp’j (i.e. pz’i = (qu_l)*pl’i with p* described in Lemma 3.6) and ¥ € €°°(T*(R"))
is equal to one in the neighborhood of the support of X& |z, =0+ with support in

, (4.78)

T,=01

(((b]—l)*g) N {‘rn = 0} = {(x()’¢](y)a€07td¢;l(¢J(y))n)v (‘TanaO;gOan) € g}

The remainder G;/l satisfies

GI S hE (IPL 0l o + Bllo) | + 12 Da, 0l o) (4.79)

The principal part of b7 satisfies
b/ = C{(6,€) ™" in supp(),
Tt

as p; ' and p/ b are tangential symbol of order one such that p/ b p;/l’7 does not vanish in a neighborhood
of supp( ). Let X € € (T*(R™)) satisfy the same requlrements as Y with ¥ equal to one a neighborhood the
support of ¥. We can introduce parametrices for Opy(b7'), say Op7(e’), with e/ € S1, satisfying

Opr(e”) Opr(b7) = Opr (%) + B", R’ € h>w7™.
Note that the principal parts of the parametrices e/t are given by o(e”) = ¥ (p;.'/”‘*' — p;/“_)‘ L
x,=0
Applying these parametrices to (4.77) and arguing as in (4.50) give
OpT( ) (1 — OpT( )) ’Yo(ué/aj) 71(uéaj) + R/l Tw J/l‘ o+ + Ro/lv]'/l|xn:0+ —+ 0137‘((371)(;'2/17 (480)

with RZ’,R;L € h>°W>°. This yields the following estimate of 'yl(u;/lﬁj), in terms of 7 (uzo 4

\71(uéa])|ow|fyo(ugj)\1+|G/l|1+CNhN <|Drw U7 o 0+|0+|vj o 0+|0> N eN. (4.81)

On the other hand, replacing ug ; in the first equation of (TC, ;) by its expression in the second equation
of (TC, ;) gives

cs ~
6= P35 (0w 5) = 0 5) = b (1 (uls 5) + B (s 5) = kol ) + G )
J
Using (4.80) and the first equation of (TC, ;), this yields
Qsv0(uis ;) = Gs, (4.82)
with
cs
Q5 = 0-2P3; +h(k = BOpr(e") (1 - Opr(a’)) - Opr(e) (1 - Opr(a)) ), (4.83)
ic;
and
C; S T' T T,,T T T
Ga = 6355+ WGy = hB(RID,, 07 oo+ Ryvl o+ Opr(e')Gy)

- h(PJ Dyt oo+ Byl +Opr(e)Gh + Opr(e!) (1 - Opr(a)) (0%, — 0 ;). (4:84)
Here, we introduce a class of pseudo-differential operators adapted to the operator 25 in order to perform
uniform estimates in the singular limit 6 — 0. On the tangential phase-space W = T*(R"), we define the

order function

J|I

é
A2 = m<(§07£l)>2 5+ h<(§0a§ )>7
associated with the metric, ,
_ niz o, 140, €l
agw = |d($0,$ )‘ + <(§0’£/)>2 )

33



Lemma 4.7. The order function A is admissible, i.e., slowly varying and temperate.

We refer to Appendix C.8 for a proof. For a review of these notions see [Hor79] or [Hor85a, Sec. 18.4-5)
or the recent monograph [Ler10, def. 2.2.4 and 2.2.15]. Thanks to the previous lemma, we can define a proper
Hoérmander-class calculus. We now prove that 25 is elliptic in this class.

We set
p=0 ]pw+h(k BRoyt - %o t).

We have (6 + h) " lws € ST(A?, gw). With (4.78) we see that
Qs — Op7(ws) € oW + B*UY C (h+ 0)Vr(hA?/{(&0,€)), gw). (4.85)
From the definition of k in (4.10) this gives

S

Im(ws) = —6 Re(p} ;) — h(0s, ¢, + B0y, " +xIm(pt + 8ol ™))
5 o e Py 0 Pj g, =0+ 20 j |, =0+ T XHL; P )
J
In this expression, we have
Re(p,) > C{(€0,€))* on supp ¥, (4.86)

by Proposition 3.5 (see also the localization of Char(P;Vj) on Figure 4). Next, in the region where y = 1 we
have

1 B _
r L r, L+ _ L, +_ o
o |y, —gr + B0, 05, _oo +Im(p " + By ™) = 2 Im(p;" — py ™) + 5 m(ej T =)
> C((60:€)), (4.87)

as O, ¢/ - =-1 Im(pé—’+ + p;f_) and with Lemma 3.8. Estimates (4.86) and (4.87) yield
lws| > C(6 + h)A?,

in the region where ¥ = 1. There, the symbol (§ + h)~lws is elliptic in the class S7(A?, gi). Hence, there
exists | € S7(A~2, gw) (with principal part j(wé_l) such that

Op7(1)(8 + h)~' Op7(Qs) = Opr(X) + R, Re€hTUr™,

by (4.85), for some X € €">°(T*(R")) equal to one on a neighborhood of supp(xe,;,, _o+) and such that X is
equal to one on a neighborhood of supp(x).

Applying this parametrix to Equation (4.82) gives

Yo(ul ;) + Ryo(ul ;) + Rv} = Opr(1)(6 + h)"1G3, (4.88)

|z, =01
with R € h>*W > and R= Opr(x —1) OpT(ng’]‘I _o+) € KW

We estimate

| Op7(1)(0 4+ h) ' Gl = | Opr(((€0,€"))) OpT(1)(8 + h) ™' G3]o,
with

Op7({(&,€))) Opr(1)(6 + h)~* ((<(£o,§ ) 1

5+ h)A2’gW) - ‘I’T(W’QW)

We thus obtain, as Opr (m) is a Fourier multiplier,

10pr0)(3+ W) *Galr <[ Ov7 (577 7)o,

With (4.84), this yields
|Op7 ()8 +h)~'G3h
h
< |PS% .07, . B
SIPE 0811+ 00 (g, ey 7

|Rl Tn ]‘ 0+|0+|R J‘CE 70+|0+|G£‘1+|Gl2|1+

)G+ IRIDa o+ B, oo

il +
:
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As we have

‘OpT( ——1G1lo,

h N
@ e i) Gl < S

and with (4.11), (4.79), and the trace formula (1.23), using also P; ; € U2, gives

|Opr(1)(0 4+ )Gl S b1y +hF (1P 507 llo + Blles s + A2, 5, _q.h)

% (” ©,J j||0+h’||vjl|1+h2|D”ﬁn ]\z 0+|0) +|9;,j|1+|6 j|1+|®<pj|0

With (4.88), the transmission conditions (TC, ;), and (4.80) that gives v, (uj Ji ;) as a function of yo(u gz i ;) (thanks
to the Calderén projectors), we obtain

h? Wo(ugj)|1+h |71(Ugj)|0§h il + 1Py, ]Ho+hHUT||1+h2|DMUm _o+lo

+1PS 05 llo + Rlfofll +121Da, 0 oo+ BE16% 51+ R 160, 50+ 21O o

Injecting these estimates in (4.76) we obtain a local version of (4.75). Patching together on M such local
estimates as we did in (4.16)-(4.21) yields the result. O
4.6 A semi-global Carleman estimate: proof of Theorem 1.2

In this section, we explain how we can patch together the four microlocal estimate of Propositions 4.1, 4.3, 4.4
and 4.6, to obtain a global Carleman estimate in a neighborhood of S, and prove Theorem 1.2.

First, let us introduce some notation. We set
BT (w) := h|wjs, =0+ [T + 7| Da, wja, =0+ [5,
RHS” (w) := ||P/tw||§ + h*[[w][} + h*[ Dy, )z, o+ 5,
Ry := h|O%[5 + h|0L|7 + h|0L]7.
This allows us to formulate concisely the four microlocal estimates of Propositions 4.1, 4.3, 4.4 and 4.6.
240" (|7 + BT(E4v") < RHS"(v"), (4.89)

- - 52 T, T T T
ehlEe! |3 + eBT(Egv") S (1+ o) (ICPL0TI3 + bt Da, o, _gx 3 + b7

+eRHS! (v)) +| (h? + 6%)|[Egv" |17 | + | eh(h? + o |US|1\+€RH+E |a7|0. (4.90)

|Ezv" | + BT(Ezv") S RHS"(v"), (4.91)

|Z2#0!|? + BT(E£0') < RHS'(v') + RHS" (v") + Ry. (4.92)
ehl|E2v" |2 + e BT(E2v") < e RHS(v7) + & RHS'(v)) + [ eh(h? + 62)[v® |2‘+€—|9T\0+5R97 (4.93)
|22 0!||2 + BT(Ex0') < RHS' (v)) + h3|v*|2 + 2h2 RHS" (v") + Ry. (4.94)

260”2 + BT(Egv7) < RHS' (o)) + RHS’“(M) + h3v*|? + Ry. (4.95)

To derive the final Carleman estimate we need to sum together these microlocal estimate and many terms in
the r.h.s. need to be “absorbed” by those in the l.h.s.. This is a standard procedure usually making use of the
powers of the parameter h in front of these terms and by choosing h sufficiently small. Note, however, that some
powers of h are critical here so that the related terms (in frames) in the right hand-sides cannot be “absorbed”
directly. To overcome this problem, we have multiplied the two concerned equations by a small parameter € > 0
whose value is independent of h and §.

Note that these three atypical terms are the reason for the introduction of the microlocal region % (compare
with the microlocal regions used in [LR10]). In fact, the microlocal region .% acts as a buffer: as .# is an elliptic

region for both the operators P;/l, it provides terms in the l.h.s. of the associated microlocal estimates of better
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quality than those obtained in the regions ¥ and 2 (compare the powers of h in the Lh.s. terms of these
estimates).
Observe that the property xe + x2 + x.# + x¢ = 1 implies, see Section 3.6,

Eyj+Ez,;+Ez;+Es; = (i(x0,y)
As a consequence of the definition of the operators Z,, ¢ = &, %, .7, 9, given in (3.24)-(3.25), this yields
Ee+Ex +Zg +Eg = C(x0). (4.96)

We now treat the three atypical terms and use the small parameter ¢.
As supp(v®) C (g, Xo — ag) X S (see the statement of Theorem 1.2 and Section 3.3), with (4.96), and using
the transmission conditions (3.9), we have

v® = (Mt = Egv® + Egv® + Egv° + Egv’
= Eg’ul — Eg@fp + Egg?}l — Egefa + Egvl - Eg@fp + BEgv” — Eg@@, at T, = 0r.
Hence, for § < §p and h < hy we can estimate the two atypical terms concerning v° in (4.90) and (4.93) as
ehd?|v*|2 < eh|Egv! |2 + eh|Exv! |2 + ch|E20' |3 4 eh|Egv"|? + cRy.

When summing all the estimates (4.89)-(4.95) together and taking ¢ sufficiently small, the four terms eh|Zgv!|?,
eh|Zxv! |3, eh|Z#0!|2, eh|Z4v" |3 can be “absorbed” by the Lh.s. of (4.95), (4.94), (4.92), and (4.89) respectively.
The remaining atypical term is in (4.90):

e(h* +8)|Zgzv"|I} S ellZgzv |11

We choose a function ¢* € €2°(0, Xg) such that (* = 1 on a neighborhood of (ag, Xog — ag), ¢! = 1 on a
neighborhood of supp(¢*) and 0 < ¢* < 1. Since supp(v"”) C (g, Xo — ag) x S x [0, 2¢), we have

Eyzv" = B4z (Ey +E7)0" +Egz (1 — B¢ —Ez)(M" (4.97)
From Proposition B.14 and Proposition B.10, the principal symbol of the operator Z¢ (1 — Z¢ — Z#)¢* is
CPxez (11— CMxg +x2))¢" = Cxez (1 - (xg + x2))¢" =0

since x¢ + x# = 1 on supp(x«#) by (4.12). We thus have Zgz(1 — E¢ — E)¢* € h¥' (M.), so that (4.97)
gives

e(h? +6%)|Egz v | S ellEgv” [ + el Ezv" (1T + eh® [0 |11,

When summing all the estimates (4.89)-(4.95) together and taking e sufficiently small, the two terms e||Zgv"||2,
e|E#v"||? in this expression can be absorbed by the l.h.s. of (4.89) and (4.91), respectively. This is possible
since in these two estimates are obtained in elliptic regions yielding better powers in h.

Now, if we sum all the partial estimates (4.89)-(4.95), and handle the atypical terms as explained above, we
obtain

[E4v" |7 + BT (Egv") + h||Egv'|] + BT(Egv') + |E2v" |} + BT(E#v") + 220
+BT(E2v") + h||E2v"[; + BT(E2v") + [|E20'|} + BT(E2') + [|Esv” |7 + BT(Esv”)

T T 62 T, T S T 62 T
S RHS(v") + RHS'(0) + (14 55) KPR I + B2 |0 [F 4 B2 Dy vl oo 6 + Ro + - 10508, (4.98)
Using supp(v”) C (ap, Xo — o) x S x [0,2¢) and (4.96), we can write
o7 < I+ I s + IE 0% s + IZs0 1,

together with
‘U|ﬁn:o+|l < |Egv\ﬁn:0+|1 + |E?U\Qn:o+|l + |EQ"U|L:0+|1 + |E€U|Qn:0+|1a

and

‘DwnU|Q,L:o+|O < |Dana¢U|ﬁn:0+|o + |Dxn53ﬂ’|ﬁ”:0+ ‘0 + ‘DwnEffﬁﬁ”:m ‘0 + ‘DwnEgU|Q7L:0+|O~
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These three inequalities together with (4.98) give

Bl 3 + Bt i} 4 BIDs, vt i 13
62 YA YA
S PG + W20 |E + b Da, vy, o+ I + (1 + h—)HCP VIl + 1P

+ W21+ P Dy, vl o+ |5 + W20} + Ry N |9 15,

Taking 0 < h < hg with hg sufficiently small in this expression gives

T, T 52 T,
IR + R,y WD, ol o3 S P I3+ IS8 + L+ S5 [Pz I3 + By + 0z

Recalling the definitions of v/t = e¥ /l/hw%, F;/’, QZZ, O, (see Section 3.3 and Equation (3.3)), and observing
that we have

Y. 0 i n Y "
e/ Dyl < 1D (7 ) o+ 102" 0 o

and similar inequalities for the norms at the interface {x,, = 07}, we can “absorb” the zero-order terms in (3.3),
which concludes the proof of Theorem 1.2. O

5 Interpolation and spectral inequalities

5.1 Interpolation inequality

Here, we prove the result of Theorem 1.4. We shall start by proving a local version of the interpolation inequality
at the interface. In fact, the inequality we prove is local in (zg,x,) but global on S. Here, we closely follow
the geometrical setting of [LR10]. As in Section 3 we use local coordinates where the interface is given by
{z, = 0}, in a small neighborhood [0, Xo] x V.. We choose a point zg € (a1, Xo — a1). We also pick ag such
that 0 < ag < a7 to be used for the application of the Carleman estimate of Theorem 1.2.

We define the following anisotropic distance in R?:

dista (a0, @), (bo, bn)) = (alao — bol? + an — ba|?) T, a > 0.

We fix z, € R% . Then, for (zo,2,) € [0, Xo] x R and & > 0, we set

—dist ((xo, xn), (20,2,)) if 2, >0,
—diste ((zo, K2n), (20, 2n)) if 2, <O0.

’l/)(l‘o, xn) = {

We shall also consider ¢ as a function on V,, x .S x R. We note that ¢ is continuous across the interface {z, = 0}
and that

8xn¢(x07$n) (In Zn)( ($Oamn))71 if &, > 0,
O, W(x0, Tpn) = K(KTy — zn)(w(mo,xn))_l if z, <0,

which yields 0., 9|, 0~ = K0z, Y|z, =0+ We also have

Duo (20, T0) = o — 20) (Y (0, 20)) . (5.1)

Let us check that the associated weight function ¢ = e*¥ satisfies the properties listed in Section 3.1.

According to Remark 3.3, it suffices to check that 1 satisfies properties (3.6) and (3.7) possibly with different
constants. In fact, we work in a sufficiently small neighborhood V' =V, x V.+ of {25} x S x {0} which does not
contain (zo,y, z,) for all y € S, where V,, is a neighborhood of zy in (a, Xo — ap) and 0 < &’ < ¢, so that Vi
does not vanish in V. First fixing « sufficiently small, we see that Property (3.6) is satisfied. Second, note that
|zo — 20| is bounded. Hence, from (5.1), we can choose the parameter « sufficiently small to have |0,,%| small
as compared to inf |9, 1|, so that (3.7) is satisfied. Level sets for the function ¢ are represented in Figure 6.

The Carleman estimate of Theorem 1.2 then follows, with the weight function .

We choose 0 < s < s and 0 < 0 < ¢’ such that

—{(33079,3%) |$0—Zo|<81,yES |xn|<U}CV
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>

(ZO7 Y, 0 Tp

Figure 6: Level sets for the weight functions ¢ and ¢ = e in (zg, 2,,) coordinates. The manifold S > y can be
represented normal to the drawing. The Carleman estimate of Theorem 1.2 can be applied in a region V' close
to {20} x S x {0} (represented with a dashed line).

\j

Tn

Figure 7: Neighborhoods around the point of interest for the proof of the interpolation inequality.
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We also set
U= {(x07y7xn); |1'0 - ZO‘ <81, Y &€ Sa |xn| < U} C u/'

We now choose r1 < 1} < re < 9¥(20,0) < rh < rg <4, such that

C1 = {(0,y,n) € R XS xR (0, 20) =11}
and  C} = {(z0,¥, ) € R x S x R; 9(z0,wn) = 14}

satisfy C; N {z, < 0} CU, Cy N{x, > 0} NU # 0, which is equivalent to having
(20 % 51,0) = —(ws? + 22)7 < 1y,

and finally C4NU’ C {z, < o}. We illustrate these choices in Figure 7. We set R; = "7, R = M, j=1,2,3.
Following [LR95], we introduce

Vi = A{(wo,y, zn) €U’s 75 <t(x0,0) <75}, j=1,2,3.
and we further set

Viiss = {(anyaxn) eU; rll < ¢($0,$n) < TS}’ V1/—>3’ = {(anyaxn) S ul; r < ”(ﬁ(xo,ﬂfn) < rlg}
Wy = V3 U (Vi \ U).

The region W3 is represented shaded and stripped in Figure 7. With the choices we have made above, the region
W3 is contained in {z,, > 0} and is finitely away from the interface R,, x S = {z,, = 0}. For 59 € (0,51) we
also choose Wy = Vo N {(x0,y, 2n); |To — 20| < S0, y € S} € U. The region W contains {zo} x S x {0} and is
represented shaded in Figure 7.

Now that the geometrical context is set, we can state a local interpolation inequality in the neighborhood
of {20} x S x {0}.

Lemma 5.1. For all 6o > 0, there exist C > 0 and vg € (0,1) such that for all § € (0,8p) we have

e

18 —v
el vy + 62 0 s v o) < CIUIEG <u||H1<W3> +[|(— 22, + 45)7]

for all0 <v <y and U = (u,u®) € K3.

This inequality can be read as the “observation” of the local I} norm of U in the neighborhood W5 of any
strip {20} x S x {0} by the H' norm of u in a neighborhood away from the interface and the K$ norm of
( - 0% + A5)U

)

Proof. We choose x € €2°(U’) independent of y € S such that y is equal to one on Vj:_,3 and vanishes outside
V{_ 5. Then V,, 5, x vanishes outside V| _, 5 \ V1.3 which is the stripped region in Figure 7.
For U = (u,u®) € K}, we set

Bu := —(8%0 + AC)U < LZ((O, Xo) x QU Qg)
BsU = —(89230 + A )u® — %((c@xnu)‘zn:m — (c@xnu)wnzof) € L2((0, Xg) x S),

and recall that u, —o- = u® = u|y, —o+. Setting W = (w,w?®) with w = xu and w* = x|;,—ou®, we have
Bw = xBu+ F, inU
B*W = 1(6xBU+©) inUNS,
Wi, =0~ = W =Wy, —o+ MUNS,

where

F=[-(03, + A, xlu
e = 5[_(630 + Acs)a X]us - (C|;cn,=0Jr — Clz,=0— )6a:,LX|xn:0Us~

Using the density result of Corollary 2.6, the Carleman estimate of Theorem 1.2 can be applied to W =
(w, w®):

hlle?Mw||§ + B2 eV ay sl + hle? M w|F + B[/ Vo 5w

SR (R? + 8%)||e?/"xBul|3 + h* (h* + 6%)[[e?/" F||3 + h352|e?/"xB*U 3 + h’|e?/"O3. (5.3)

39



Note that © is supported in Vi N{z,, = 0} and in this set e?/" < ¢F1/"_ Similarly, F is supported in Vi \Viriss
and in this set e®/" < efs/h. Moreover, the operators [—(92, + A.), x] and [—(92, + Acs), x] are of order one.
We thus have

e?/ " Fllo S e/ Mfull g wy) + €M ulla vy S €M ull gy + U (5.4)

€700 < e/ (81’1 (vigaa=op) + [0 L2 (vin e =0p)) -
11
Using the trace formula together with § < 4245 in this last inequality, we obtain
€70l < e/ (8% | (0, x0)x8) + lullrsan ) S € Uy (5.5)

We also have

le*/"xBullo S e™/" | Bull ey < /" (= 02, + 45)U] o’ (5:6)
and
5% |e?/PxB Uy < 6% ™/ B U L2z —op) S eRg/hH (-2 + A(;)U‘ " (5.7)
Concerning the Lh.s. of (5.3), we have e#/" > e¢f2/" and y = 1 on W, so that, using § < do,
Bl Mwll3 + Be?/"V gy oy w0]3 + BJe# Mu 3 + B2/,
2 B ul| B gy + BP0 00 (3 (s =0 (5.8)

Using (5.4)-(5.8) in (5.3), we thus obtain,

h3efiz/h (HuHHl(Wz) +0% |uS|H1(W2ﬁ{wn:0}))

gh@%ﬁmw@+w%mqu—ﬁw+hﬂm@+wmmq%g) (5.9)
Fixing some Ry € (R}, Ry), we have hzef2/h > eRa/h for all 0 < h < hg. Thus, (5.9) becomes
R 1o ' Ih /
oRa/h (HUHHI(Wg) +02|u’ |H1(W20{zn:0})> < M/t U1 + €R3/h(H( - 92+ A5)UH)CQ + ||u||H1(W3)).

Finally, optimizing w.r.t. to h as in [Rob95] we obtain the sought local interpolation inequality. O

Away from the interface, the K§ norms, s = 0,1 coincide with the usual H* norm, and similar local
interpolation inequalities as (5.2) are proven in [LR95, Lemme 3 page 352]. Now that we have obtained the
interpolation inequality (5.2) at the interface, we can apply the procedure described in [LR95, pages 353-
356] (propagation of smallness) and prove the sought global interpolation inequality (1.13). See [LZ98, Proof of
Theorem 3] to obtain the term ||0,,u(0, z)| £2(w) in the r.h.s. of (1.13). This concludes the proof of Theorem 1.4.
O

5.2 Spectral inequality

From the interpolation inequality proven in Theorem 1.4, we now deduce the uniform spectral inequality of
Theorem 1.5. Recall that &5 ; = (e5,;, e§7j), j € N, denotes a Hilbert basis of H? composed of eigenfunctions of
the operator As associated with the positive eigenvalues ps5; € R, j € N, sorted in an increasing sequence. We
denote by Il; , the spectral projector over the eigenfunctions associated with eigenvalues lower than u, i.e.,

H[;”uy = Z (Y, (%J)Hg (505’3', Y € Hg

Hs, 5 S

The proof of Theorem 1.5 is classical. Yet, we have to make sure that all the constants involved do not depend
upon the parameter §.
First we take some Y5 = (ys,v5) € Il5 ,HY, and apply the interpolation inequality (1.13) of Theorem 1.4 to

—1
2

Us = (us, ul) = A > sinh(zgA2)Ys,
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defined with the classical functional calculus for self-adjoint operators®.
We notice that we have ( — 02, + As)Us =0, Us(0,2) = 0 and [|0z,us(0, %)l 22() = |¥sll22(w)- Concerning
the Lh.s. of the interpolation inequality (1.13), we have

U111y > 105120001y = 1Us 11220y - aar 42) = Xl{ 1Ay sinh(xo A )Ys]30dro
Xozon A_% : % 12 2
=) [5 smh(moA(;)H&#] HL(Hg)HY‘SHHgde
> e Y5y > CXo, 00)¥5 3, (5.10)

since ¢~ 2 sinh(xot2) > 2 for ¢t > 0. Now, concerning the r.h.s. of the interpolation inequality (1.13) we have
2 2 31712 2 . 2 172 2
[Usliy = 101y + 143 Uslizg + 100, Usllzg = 1 (10513 + 143 UslEg + 100, Uslieg) dro (5:1)

Let us estimate the three terms in this expression. First, we have,

IN

Xo 2 Xoa=h 3 2 2
11Ul 3gdoo < T 145 * sinb(ro A )5, 2y V5 g

IN

Xo
1 (e ™) ¥ 3

< X3PV,
since t~ 2 sinh(xot%) < zge®oVH for 0 < t < p. Second, We have
TIPS S Koo . 3 2 2
({ 145 Us|l3odao < ({ | sinh(z0 AZ s,z (30) Y5 13,0 do
X0 owoun 2
< g e=7o “dmoHYgHHg
2Xo /B 2
< Xoe HY6||Hg,
together with
Xo 2 Xo 3 2 Ko 2 2X, 2
({ H@xOU(;HHgde = g ||cosh(:c0A§)Y5||Hgdzo < g e IO‘/ﬁdeHY&HHg < Xpe 0\/’7||Y5||Hg.
Using the last three estimates in (5.11), together with (5.10), the interpolation inequality (1.13) yields
1—vg
Willag < C(Xo, an) (X VP Yillag ) sl o,
Finally, for dy > 0, there exists C' > 0 such that for all 0 < § < §p and p € R, we have

X, 1zv0
Vallag < Ce™ 50 VPlyslroqy, Yo = (vs,43) € s uHS.

This concludes the proof of Theorem 1.5. O

A Derivation of the model

Here, we (formally) derive the model (1.4) studied in the main part of this article. We use the notation of the
beginning of Section 3. In a small neighborhood of the interface S we use normal geodesic coordinates

F:S %[22 =V,
(y,zn) = F(y, zn).

5Note that if As is not invertible, i.e. 0 € Sp(As) (this occurs if  has no boundary), the following analysis can be done with
As + 1d in place of Ag. Theorem 1.2 and Theorem 1.4 remains valid for this operator. The spectral inequality proven for As + Id
implies the same inequality for Ag.
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Figure 8: Local geometry of a three-layer model near the interface S = {x,, = 0}. The inner layer, V;, shrinks
to zero as § goes to zero.

In such coordinates the metric reads

_( 9 O

and the type of elliptic operators we consider,— div, ¢V, take the form —d,, cd,, — div® ¢V*. The interface S
is given by {z, = 0}.
Let § € (0,4¢). We consider three regions in V. as represented in Figure 8.

Vi={-2e<u,<-6/2}, Vo={-6/2<u,<d/2}, Vo={0/2<um, <2}

With three coefficients ¢, ¢!, ¢ we have in mind the following parabolic problem:

Oz —divy(V,27) = f7  in (0,T) xV;, j=1,0,2, (A.1)
along with the natural transmission conditions at x, = % and z,, = f%, given by the continuity of the solution
and the continuity of the flux:

e g = Foaeefr Zrng = mae (A.2)
and
(claznzl)‘zn}% = (c()(‘9mnz())un:737 (coaznzo)‘zn:% = (028%22)|zn:%. (A.3)

We now wish to describe the present three-region model as the thickness § of the inner region, Vj, becomes
asymptotically small. This implies some approximation. Resulting approximate models can be very usefull in
practice as one is in need of effective models.

We introduce the mean values of z° and f° in the normal direction z,

s 192 . 192
z (y) == f z (yaxn)d‘rn and f (y) = g f ! (yvxn)dxrm yes.
—5/2 —6/2

Keeping in mind that § is meant to be asymptotically small, we first make the following approximation.

Assumption A.1. The diffusion coefficient ¢ does not depend on the normal variable z,,. We set c*(y) =
0
Ay, xy).

Under this assumption, using the transmission conditions (A.3), we have

1o 0 09 L0 107 0 0
FPly== /[ (@z —divy(c"Vyz ))dazn = 0p2° —div®(c®V?®2%) — = [ 0,,¢ 0y, 2 dxy
§ —5/2 4 —46/2
s 1 S(S\TS 8 1 0 0 0 0
= 0p2® — div’ (c*V*2®) — S((C 00,2 )jg,=3 — (00,2, :_g)
= 0,2° — div*(c*V°2®) — %((623%22)‘%:% - (claxnzl)lxn:,g). (A4)
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This provides a first transmission condition between z!' and z? that involves the function z°. For the problem
to be closed, we need two additional transmission conditions.

We begin with a first-order approximation of the system. Yet we show that it cannot be used for the purpose
of modeling controllability properties of the original system. We then lower the degree of our approximations
and obtain the model studied in the main part of this article.

A.1 A first-order model

Using the transmission conditions (A.2)—(A.3) we write

6/2
2(y,6/2) — 2"y, —0/2) = 2°(y,6/2) = 2°(y, —6/2) = [ 00,2 (y,2n)dzy,
—5/2
5/2

7L6.'L' 0 777/:| R
PO, 2 (Y 2n)] o+ T

(02,2°(y,6/2) + 02, 2°(y, —6/2)) + Ry
4

" 2(y) (¢*(9,0/2)9:,2(y,6/2) + ! (y, =0/2)0s, 2 (y. =0/2)) + Ry,

—

N >,

with Ry = — ff/;/z xn&%nzo(y,xn)dwn.

A second set of transmission conditions is needed. With two integrations by parts we write

) 1 9/2 0
20) =5 ] L),
-5/2
§/2 §/2 .2
1 0 sj2 1 [a2? 0 192 af 5 o
) [anZ (y733n)] -8/2 5 |: 2 0z, 2" (Y, Tn) 75/2+ 5—6f/2 2 8«7%2 (y, 2p)dn
Lo 0 g 0 0 12 ad o o
=5 (%4 8/2) +2°(9, 6/2)) = < (00,2°(4:8/2) = 0:,2°(y. =6/2)) + 5 | 0% 2 (y.wn)day
2 8 d 52 2 7"
1
=3 (z*(y,0/2) + 2" (y, —6/2)) + R,
with
] 0 0 102 o) 0
Ry = —— (axnz (y75/2) _aznz (y7 _6/2)) + 5 f 7”896 z (y’x")dx”
8 0522

We now make the following assumption on the variations of z¥ with respect to x,,.
Assumption A.2. We have |82 2°(y,z,)| < C uniformly in §, (and x,, andy € S).
We then find that R; = O(§2). Observe that we have
02, 2°(y,6/2) — 0y, 2°(y, —6/2) = 6;/22 8gnzo(y,xn) dz, = O(9).

We then find that Ry = O(6?).
At first order in 6 we thus obtain

22(y7 6/2) - zl(ya _5/2) = 26% (62(y7 6/2)axnz2(y7 6/2) + Cl (yv _5/2)axn21(y7 _5/2))
s 1 2 1 ) (A5)
2(y) = 5 (#%(4,0/2) + 2'(y. —9/2)) -
As § is small we consider that z! and 2? are defined on {z,, < 0} and {x,, > 0} respectively. We thus write
2, —o+ and 29y, 2%, _; in place of z%(y,d/2) and (€8x, 2)(y,0/2) and similarly 2y —o- and c'0p, 2, _o-
in place of z*(y,—4/2) and (c?8,,2%)(y, —6/2). We obtain the following model:

02— divg Vg2l = f1 in (0,7) x Qy, j = 1,2, (A-6)
and
0,25 — divs(csvszs) = f54 %((c2awn22)|_r":0+ - (Claasnzl)lrcn:O*)
2 =12 o +2h o) (A.7)
2o~ e = e (00 D + (00,
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in (0,7) x S.
For the study of the controllability of such a parabolic model we wish to investigate the unique continuation
properties of the associated elliptic problem:

—div, V2l =1 in(0,T)xQj, j=1,2, (A.8)
and
—div*(c*V®z%) = f* 4+ $((¢?02,,2%) |5 =0+ — (¢'02,, 2 )10, =0~ )
2° = 5(2, —o+ + 4, —0-) (A.9)
z\zzn:m - Z|1xn:0* = 50 (202, 2%) 5, =0+ + (€' 00, 2") =0~ )
n (0,7) x S.

Note that unique continuation holds for the original problem. This is an important property that we wish to
see preserved in this approximation process. Here, we show that there are instances for which eigenfunctions of
the elliptic operator in the approximate model (A.8)—(A.9) vanish on one side of the interface. These eigenmodes
are then invisible for the observability of the parabolic system (A.6)—(A.7) ruining any hope of controllability.
This is similar to the situation described in Section 1.3.3.

Let us consider the following two-dimensional example : Q = R/(27Z) x (—m,7) is the cylinder endowed
with a flat metric. For consistency with the notation of Section 3 we use (y,x,) as the coordinates in €, with
periodic conditions in y. We define the interface as S = {z,, = 0} = R/(27Z) x {0}, so that ; = {z,, < 0} and
Oy = {CL’n > O}

Proposition A.3. Let c® and c' be constant functions such that ¢® = rct with r > 1. For any 8y > 0, there
exist 0 < 6 < &g, et € €°(Q), e* € €(S), A > 0 such that

1
—div, c'Vyel = X! in Q, —div¥(c*Vie®) + g(clﬁwnel)mn:of =Xe’ in S, (A.10)
and ) 5
e = 56‘1%:0,, _ellmn:of = ﬁ(clawnel)m:of, in S, (A.11)
and e|1xn:—7r = 0. Hence (e',¢e%,0) is an eigenfunction of the elliptic operator in (A.8)—(A.9) associated with

the eigenvalue X\, for Dirichlet boundary conditions (in x, ).
Proof. We choose k € N such that (r — 1)k > 1. For p € (0,1) we set
1
B 1 2 pcos(pu)
5) = <r(<r gy u2)> sin(um)

As g vanishes for p = 1/2 and lim,_,;- g(p) = —o0, there exists p9 € (1/2,1) such that g(uo) = —1. We then
set

0=2 (r ) ’ a= 2
(=R =) ) ~ sinpor)’
For any given dy we can have 0 < § < dg by choosing k sufficiently large. We have

]
Opo cos(pom) _ (A.12)
2r sin(pom)
We now set
e(y)=e™, ey, x) = asin (po(zn +m)e*(y), —m <z, 0.
We have 6‘1@":77T = 0. Hence the Dirichlet boundary condition is satisfied at z,, = —.
We have —c! (97 + 03, )e' = Xe® with A = ¢'(k? + 4§). Observing that 8%6‘11n:0_ = apg cos(pgm)es we find
—c*0%e® + 1c@w el oo =ct (rk2 4 2Ho cos(uoﬂ))es =c (Tk2 + 2 Cos(uoﬂ'))es
Y 5t lzn=0 ) 0 sin(uom)
4
=c! (rk2 — 5—2)63 =t (rk2 — ((T — l)k2 — Mo))es = Xe’,

by (A.12) and the value we have assigned to §. We have thus obtained (A.10).
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We now compute, using (A.12) and the value we have assigned to «,

L

o
— 1 S __ S
3Clen=0- = §sm(po7r)e =e°.

Using (A.12) we also compute

0 Cos(,umr))es _o.

) .
loyo- + 55(€ D€ w0~ = asin(uom) (1+ po (o)

2cs
We have thus obtained (A.11). O

A.2 A zero-order model

The lack of unique continuation of the previous (elliptic) model makes us consider a simpler model. We make
a lower-order approximation and we show how to formally obtain the model studied in the main text of this
article.

Neglecting the first-order terms in ¢ in (A.5) we find

2(y,0/2) = 2 (y, —6/2) = 2°(y).

As 671(8,,2°(y,0/2) — 05, 2°(y, —6/2)) = O(1) we cannot neglect this term in (A.4). Proceeding as above
we thus obtain the following model

Oz —divy V2l = 7 in (0,T) x Q, j=1,2,
and

2 — .5 — 41
Z|xn=0+ == Z\xn=0*7

{ Opz" — div®(c*Viz%) = f* + %((CzaﬂﬂnZQ)hcn:OJr - (Clawnzl)\:cn:(ﬁ)
in (0,7) x S.

B Facts on semi-classical operators

B.1 Results for tangential semi-classical operators on R%, d > 2

Semi-classical operators are defined in Section 1.4. Here, we provide the properties that we need in the main
text.
The composition formula for tangential symbols, b € S7*, b' € S7*, is given by

(b#V)(z,¢) = 2rh) "D [f e TV hy(2 ¢ 4 7 RV (2 + 1, 2q,C R) dE dr!

)l /
=—=)> %60 b(z, ¢ h) OV (2,¢' h) +ry, 7Ty € RN SPTTN (B.1)
|lal<N :
where
_'hN 1 (N)1— N-1 o
ry = (2( f:)(()il) ST (N)( alS) JfemETae (2, ¢ + 7 h) OSY (2 + st zq, ¢’ h) dt'dT'ds,
i la|=N0 )

and yields a tangential symbol in S?*m/.

If s,m € R and b € S7 we then have the following regularity result:

|A% Op7(b)ull L2 ey < AT ™ ul| 2ray,  u € F(RY).

We now consider the effect of change of variables.

Theorem B.1. Let Z' and Z!. be open subsets of RY"! and let k : Z' — Z'. be a diffeomorphism. Ifb(z,(', h) €
S7, and the kernel of Op7(b) has its support contained in K x R x K x R, with K compact of Z' then the
function

e~ HnGED Y Opr(b)elnED Vg 2t = k() € Z,

0 if 2 ¢ Z!, (B2)

be(2, 24, h) = {
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is in ST, and the kernel of Opr(b,) has its support contained in k(K) x R x (K) x R, and
(k ®1d)* Op7(be)u = Opr(b) ((kr ® Id)*u), ue . (RY). (B.3)

For b, we have the following asymptotic expansion

be(r(2'), 24, ' ) = T w (D) (K(2"), 20, C' ) € WN/255 N2, (B.4)
with
T n(b)(K(2), za, ' h) = ZN (_Z’Th')‘alag,b(z’,zdﬁﬁ(z’)’(',h)@ffd(ﬂa(ﬂ)(’)/h o (B.5)
a< :
where p,(t") = k(2') — k(") — K' (") (¥’ = 2').
A proof is provided in Appendix C.9. In particular we find that
be(K(2'), 24, ¢ h) = b(2', 20, k(") ¢ ) + hr(2, 24, ¢, h), with 7 € hS ™, (B.6)

The principal symbol thus transforms as the regular pullback of a function defined in phase-space (see Sec-
tion 1.4.3).

Lemma B.2. Let a € ST be such that the kernel Kj(z,t) = Ky ., (2, t") ® 6(24 — ta) of Op7(a) is such that
Kh,zy(2',1") vanishes if |2 —t'| < n for some n > 0. Then a € h>*SF™.

Proof. We write, as an oscillatory integral,

1

= CRC CISDL S

’Chvzd (Zlv t,) =

Let x € ¢>~(R%!) be such that x(z') = 0 if |2/| < 2 and x(z/) = 1 if |2/| > 5. Then Ky, (,¥') =
x(z" = t)Kh 2, (7, t'). Hence, x(z' —t')a(z,¢’, h) is an amplitude for Opr(a). The asymptotic series providing
the associated symbol, which is in fact a(z,(’, ), is [GS94]

—)lelpo
e, ¢) ~ 5 CL T 0 (=~ a0 )

[e3%

t'=z""

Because of the support of x the result follows. O

B.2 Semi-classical (tangential) operators on a manifold

In the present article, we consider semi-classical operators that act on both the z¢ and y variables, 2y € (0, Xp)
and y € S.

Let X be a manifold of the form (0, X() x S x R. We denote by (xg,y,z,) a typical element. We also set
X" = (0, Xp) x S. By abuse of notation we shall also call ¢; the map Id ®¢; ® Id (resp. Id ®¢;) on R x U; x R
(resp. R x Uj); see Section 1.4.3 where the diffeomorphisms ¢;, j € J, are defined.

We recall the definition of a tangential semi-classical symbol in an open set O C R,

Definition B.3. We say that a(z,(’,h) € ST(O x R¥71) if, for any y € €°°(0), xa € ST(R? x RI71).
We also recall the definition of tangential semi-classical symbols and operators on a manifold.

Definition B.4. 1. Let m € R, j € J, and a € €>(T*((0, Xo) x U;) xR). We say that a € ST (T*((0, Xo) X
Uj) x R) if, (¢7') a € ST((0, Xo) x U; x R x R).

2. Let a € €°(T*(X’) x R). We say that a € SP(T*(X’) x R) if, for all j € J, ajp-(0,x0)xv;)xr €
Sm(T*((0, Xo) x Uj) x R).

Definition B.5. An operator A : €2°(X) — €°°(X) is said to be tangential semi-classical on X of order m € R
if:

1. Its kernel is of the form

Kh(m07yv$n; ‘%Oa gvi'n) = ’Ch,zn (»To,y;if?o,@) ® 5(xn - j/'n)
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2. Tts kernel is regularizing outside diag(X’ X X) in the semi-classical sense: for all x, ¥ € €2°(X’) such that
supp(x) Nsupp(x) = 0 we have

X(x07 y))%('%07 ?J)Kh,wn (x07 Y3 '%07 g) S %OO(X/ X X/)a
and for all N,a € N, and for any semi-norm g on ¢°° (X’ x X”) there exists C' = Cy 5. N.a,q > 0 such that

sup q(x(zo, ¥)X(20,9)0% Kn.a, (0, y;20,3)) < ChN. (B.7)

Tn€
3. Forall j € J and all A € €>°((0, Xo) x U;), A € €2°((0, Xo) x U;), we have
SR 3 ue (¢51) (A @1d)Adi (A @ Id)u
in W2 (R™L).
In this case, we write A € W2 (X).

Note that we shall often write A and X in place of A @ Id and A ® Id respectively.
We set

h*®S7((0, Xo) x U; x R x R") = NmN AV SEN((0, Xo) x U; x R x R™),
€

W0, X0) x Uy x R) = ) WYU((0, Xo) x Uj xR),
€

Remark B.6. The first two points of Definition B.5 in fact state that the semi-classical wave front of the kernel
of the operator is confined in the conormal bundle of the diagonal of X'. As a consequence, A maps &”(X) into
2'(X) [H6r90, Theorem 8.2.13]. We also note that the same properties hold for the transpose (resp. adjoint)
operator. If moreover A is properly supported then

A:CX(X) 5 C2(X), €F(X) = E2X), &WX)—=EX), 2(X) - 2'X), (B.8)
continuously, and the same holds for ¢ A.

Observe that tangential semi-classical differential operators naturally satisfy all the properties listed above.
Proposition B.7. If A € W} (X), for all j € J, there exists aj(xo,x, xn;60,&") € ST((0, Xo) x U; x R x R™)
such that for all A € €2°((0, Xo) x Uj), A € €°((0, Xo) x U;) we have

(671) 24952 — Opr (((67) N)ay)A € K=U7=(R" x R).
Moreover, a; is uniquely defined up to h>S->°((0, Xo) x f]j x R x R™).

We refer to Appendix C.10 for a proof. We say that a; is the (representative of the) local symbol of
A (modulo ~*°S7>°) in the chart (0,Xo) x U; x R. We find that the symbol of (qu_l)*/\AczS;f)\ is given by

((qﬁj_l)*)\) aj#j\ modulo A2 S7>(R™ x R x R"), from the previous proposition. The symbols (a;);e; follow

the natural transformations when going from one chart to another.

Proposition B.8. If U; N Uy, # 0, we introduce
Ui =0;(U;NU,) CU;  and Uy = ¢ (U; NUR) C U
Let A € V(X)) with aj as given in Proposition B.7, we have
N om—N/2 g n
akl(O,Xo)Xﬁk,jXR — T‘i’jka(ajl(O,Xo)xUj,kXR) eh ST ((O,Xo) X Ul@j xR xR )

We refer to Appendix C.11 for a proof. The notation Ty, n is defined in (B.5). The open sets UjJ@ and f]k,j
are represented in Figure 2.
As a consequence, only considering the first term in the sum defining 7, n(a;), we observe that the principle

part of a; defined on (0, Xo) x U; x R x R” transforms as a function on 7*(X’) x R through a change of variables.
Let A € U(X) and let aj, j € J, be representatives of the local symbol (class) given in the local chart by
Proposition B.7. We set a = >_, ; ¥;¢ja; and find

a— ¢ia; € WU (T*((0,Xo) x U;) X R).

This defines a modulo hS; ™ (T*(X') x R).
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Definition B.9. We define the principal symbol of A as the class of a in SP(T*(X’) x R)/hS7 (T (X’) x R)
and we denote it by o(A).

Proposition B.10. Let A € VI (X), B € \1177—"/ (X) be both properly supported. Then AB € \l'$+m/(X) and (a
representative of ) its local symbol in any chart (Uj, ¢;) is given by a;#b; with the notation of Proposition B.7.
In particular, we have 0(AB) = o(A)o(B).

We refer to Appendix C.12 for a proof.
The following natural result is a consequence of what precedes.

Corollary B.11. If A € V(X) and B € \Il$/ (X) are both properly supported then the commutator [A, B] €
h\I/77'—L+ml_1(X) and 2{c(A),o(B)} is (a representative of) its principal symbol.

With the Sobolev norms defined in Section 1.4.3 we have the following result.

Proposition B.12. Let A € \I"%—(X) be properly supported, £ = 0,1. Let K be a compact set of X'. Then there
exist L, a compact of X', and C > 0 such that for all u € €°(X") with supp(u) C K we have

0orl ifl=0,

AWy —o) C L and |(Auw), —olk < C ith k —
supp ((Au)z,—o) and |(Au)|z, —olk lulorr — wi {0 Fl—1

We refer to Appendix C.13 for a proof. The norms in the proposition are those defined in (1.21).

B.3 A particular class of semi-classical operators on M

In this section, we prove that the operators Z, defined in (3.24), @ = &, .%,¥, %, are tangential semi-classical
pseudo-differential operators on M. We also establish some properties of their symbols.
Let ¢° € €>°(0, X) that satisfies (° = 1 on a neighborhood of (ag, Xo — ap) and 0 < ¢° < 1. We set

C]Q(x(% Y, Jf”) = go(x0)¢] (y)
For all j € J, we choose @O € €((0, Xo) x U;) with 5]0 =1 in a neighborhood of supp((¢;1)*(§)).
Let p € S7(M?). We define, for some j € J, p; = 5]0 (qb;l)*p and Q = ¢ OpT(pj)(¢;1)*§;).
Lemma B.13. We have Q € V(M ). Moreover, denoting by qi (a representative of ) the local symbol of Q
in the chart Uy, we have
1. ¢ = pj#(((b;l)*g;)) mod h>®SF2(R™ x [0,2] x R™) and q; can be chosen such that supp(q;) C
supp(ff) x R™ x [0,2¢] € U; x R™ x [0, 2¢];
2. qp =0 ifU; N U, = 0;
3. qr = Ty, ,~n(g;) mod hN/zAS’;-n_N/Q(R” x [0,2¢] x R™) for all N € N and supp(gx) C ¢x(U; NU;) xR™ xR
ifk#j and U; N U, # 0.

Proof. Let us first check that @ € W(M). The definition of Q first yields supp(Kq,n) C ((O,Xo) x Uj x
[0,2¢])%. Then, for A € €2°((0, Xo) x U;), A € €2°((0, Xo) x U;), we have

(671)"2Qe5A = ((67) ") Opr(ps) ((671)°¢0) A € W (R™ x [0, 2¢]),

and the symbol of this operator is (((b;l)*)\) #pj#((qb;l)*cjo)x. According to Proposition B.7, this yields
qj = pj#(qu_l)*CJQ mod h>*S7(R™ x [0,2¢] x R™). The local representation ¢; can be chosen with compact
support in U since p; = @0 (aﬁj_l)*p and supp(f?) C U;. As a consequence, the first point is fulfilled.

Taking now A and A such that supp(\) N supp(gb;f;\) = (), we find (gZ)j_l)*/\qu;f;\ € U (R™ x [0,2¢]), so
that the kernel of ) satisfies (B.7). Next, we take k € J, k # j and A € €°((0, Xo) x Ug), A € €°((0, Xo) x Ug)
and compute ((b,:l)*Ang,tS\.

If U; N Uy = 0, this is the null operator and the second point is satisfied. If U; N Uy # (), we take

° j\j € ¢2°((0, Xo) x (U; NUg)) such that j\j =1lon supp(cz);f;)) N supp(A)
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. A§1), )\§2) € 6°((0, Xo) x (U; NUy)) such that )\;1) = )\52) =1 on supp(¢f) N supp(¢LA).

We have
(611) 2QaiA = ((6:)"A) (630) Q(o5) " (@) A2
where
Q= ((67")3) Oprm) (671 ON?)

The kernel of the operator Q has a compact support and we can hence apply the change of variables Theorem B.1.
According to Formula (B.4) the symbol of the operator (qﬁ;l)*)\Qqﬁ,’;)\ is given by

(¢k1)*A#T¢jk,N(((¢j1)*Xj) #p; # ((¢j1)*c§?A§2>)) # (o)A
mod hN/2S0 N2 (R7 5 [0, 2¢] x R™)

Combining the definition of Ty, ~, the composition formula, and the definition of ¢; we find this symbol to be

(6) N Toyeow (03 # (677) Q) #3 mod A28 Y/2(R1 [0, 2] x R
= (¢1;1)*>‘ # T¢jk,N(Qj) # A mod hN/ZS$7N/2(Rn X [0, 28] x R™),

because of the supports of 5\j, )\;1) and )\5-2). This proves the third point. Finally, we obtain Q € W(M,),
which concludes the proof of the lemma. O

Proposition B.14. Let P =Y., ¢% Opr(p;)(¢;") Y with p; = (§(¢;") . Then, we have P € U (M)
and its principal symbol is o(P)(x,&0,n) = (°(z0)p(x,&0,n). Moreover, in each chart Uy, there exists a (repre-
sentative of the) local symbol of P supported in supp(C¢;p).

Proof. According to Lemma B.13, in the chart Uy, the local symbol of P is
pr#t(0r ') G+ ;kT(,)jk,N(pj#(asj‘l)* 7)) mod hN/2S7NA®™ x [0,2:] x R") (B.9)
J

for all N € N. According to the composition formula (B.1) and the definition of 7}, ~ (B.5), the principal part
of this local representation is

pelo!) @+ 2 (03)" (na(67)')
J
= Qo) pi + > (05) G (e51) pey
J
= ((6e")p) = (@2)°¢) = (o) p-

jeJ

since Y, ; (7 = (7, defined in Section 3.6. Moreover, for every N € N, the expression (B.9) is supported in

the support of (gzﬁ,:l)*p. This property can be preserved by a representative of the asymptotic series N — +o0.
This concludes the proof of the proposition. O

With the Sobolev norms introduced in Section 1.4.3 we have the following natural result.
Lemma B.15. Let P be as in Proposition B.1/ and let v € €°°(My) and set u; = OpT(pj)(¢;1)*C?U, Then
we have
[1Pvlle S 22 lluslle,  [(P)jg,=o+le S 22 |y, —g+le, €=0,1.
jeJ Jje€J
Proof. We treat the case of norms in all dimensions. We have Pv = ZjeJ ¢ju;. Then

[1Polle < 52 léjujlle-
jeJ

We then conclude with Lemma 1.9. O
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C Proofs of some technical results

C.1 Proof of Lemma 1.8

Let (g;); be a family of smooth functions on S with supp(g;) C Uj and >, 9; = g > C > 0in S. We
set M, (u) = 3_; |(¢;1)*gju|ﬂr(]]§n—l). It is sufficient to prove that |(¢;1)*fju|”r(]1§n—l) < CM,(u) for some
constant C' > 0.

We set g; = g;/g which forms a partition of unity. We have

[(6;1) " fiuler@ny < Xk: 1(651) Fidwul ser @ny

Next we write

1(6;1) figwulsern1y < CUei ") Fignul e n-1)

as ¢ is a ¢°°-diffeomorphism between ¢;(U; N Uy) and ¢ (U; N Uy). Introducing g, € 6°°(Us) such that
gr = 1 on supp(gx) we find

|(¢;1)*fj§kubw(ﬂan—l) < C|(¢;1)*fj§7k 9/ 9 ulser@mn-1y
=Cl(o;) (£i91/9) (95") (g96u) |ser rn—1)
< ') (gw) | s (re1y < C" My (u),

as v v(qﬁ,;l)* (fjgk/g) is continuous in 7 (R"~1). The proof is complete. O

C.2 Proof of Proposition 2.2

First we note that in the proof it suffices to consider the operator As + AId for A sufficiently large, in place of
As + AId. An inspection of the proof that follows also shows that a piecewise €' regularity of the coefficients
c and a €' regularity of ¢° is sufficient to prove the result.

We consider a finite open covering (O;); of Q together with a subordinated partition of unity > y 0; =1
that satisfies moreover, if O; NS # 0,

1. we can choose local coordinates in O; such that S is given by {z,, = 0}.
2. 8779j|s =0, i.e. 6; is flat at .S in the normal direction to S.

The result of Proposition 2.2 is clear away from S by standard elliptic regularity theory. We thus place
ourselves in O = O; such that O; NS # (. With 6 = 6; we set v = 0z and v® = 0z° and V = (v,v®). From (2.3)
we have

IVl S 1F e (C.)
The result will be achieved if we prove

> v lr20n0) + 02 (v m2(0ns) S I1F [Ine, (C.2)

i=1,2

uniformly in §.
We write ¢V v = ¢(Vy0)z + c(Vyz). If ¢ € HJ(O) we then have

Vg, Vo) 120y = (c(Vgh) 2, V) 12 o) + (c(Vg2)0, Vi) 12 o)
=- _:21:2 (vg(dvge)'z)vlp)ﬂ(ongi) + (cVyz, vg(‘gw))w(o) — (e(Vg2V40), w)LZ(o) ]

with an integration by parts using that 9,0,s = 0.
Similarly for ¢* € H}(O N S) we have

(V0% V) 12 0ng) = — (VI (VP0)2%),0%) 12 0ns) + (°V72%, V2 (00%)) 120ns)
—((V°2°V?®0),4°) 12 (0ns) -
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Considering the weak problem (2.2) satisfied by Z we thus obtain
(cVgu, vg¢)L2(o) +0(c*Vo0®, Vs?/fs)m(()ms) + A(v, 1//)L2(o) +0A (v, ¢S)L2(0ms)
= (¢7 w)LQ(O) + 5 (¢Sa ¢5)L2(0ms) ) (CS)

for U = (¢, 9%) € H}, where ® = (¢, ¢*) € L? x L? with

Pla;, = (— Vg(c(V40)z) — c(V42V40) + 9f)|Qi, i=1,2

@° = =V?(c*(V?®0)z°) — *(V?°2°V?0) + 0 f°,
and by (2.3) we have

@Ml < 1 E N0

We now make a local change of variable in O such that S becomes {z,, = 0}. The weak problem that (v, v?®)
satisfies takes the form

chklawkvawlwdm—i—éz [ i i0x, 0" o dx—l—)\fowz/)dx—l—)\é f Bu*Y” dx

kl ONS
= [agpdr+5 [ B¢ de, U= (y,9°) € H;, (C.4)
0 ons
where 7, ; is a sum with &,/ running over {1,...,n} and Z/k,l is a sum with k,! running over {1,...,n —1}.

The functions o and 3 originate from the Jacobians. The functions ¢, ; are piecewise ¢! with a discontinuity
across the interface S and the functions cj ; are %*'. Note that v € H}(O) and v* € HY(O N S) with their
supports finitely away from 90O.

We now use the Nirenberg translation method. Let h be parallel to S. Define Dy, by Dp(p) = (p(x + h) —
p(z))/|h|. Observe that D_j,(Dyv) € H}(O) and D_p(Dyv®) € HE(O N S) for |h| sufficiently small and set
) = D_p(Dyv) and ° = D_p(Dpv*). As (D fif2) = fi(x + h)Dp fa + (Dp f1) f2 this yields

i 1 (x + 1) 0, Dpvdy, Dpvde + 6 Z c,;_’l(x + h)Oy, Dpv® 0y, Dpv° dx
k10 k1l ONS

+ A [alz+h)|Dpol*de+ X5 [ B(x+ h)| Dy’ de
o ons

+ 3 [(Dnp )00, 000, Dpvda + 85 [ (Dpcj, )0, v° 0y, Dy0® da
k,l O k,l ONS

+ A f(Dha)thde +0A f (Dhﬁ)vthES dxr
o ons

= fOéd)D_h(Dhﬁ) de+9 [ ﬁqﬁsD_h(Dh@S) dx.
ons

Q

We note that

J (D )02, 000, Dpvda + 63" [ (Dpcj )0, v° 0y, Dp0° d
k,l O k,l ONS
A

)

+ A [(Dra)vDpode + 6N [ (DpB)v°Dpv® dx
o) ons
S IV DRV 31 -

If p € Hg(O) with its support finitely away from the boundary O then |Dy(p)|r2(0) < |Vplr2(0) for |h]|
sufficiently small [Bre83, Proposition IX.3]. We thus have

J a6D_(DyT)da+6 | B D_n(Di") d| 5 |[@lag | DnV g
n

We thus find
lax(Drv, Dpo)| S (Va2 + 12020 DRV 30z S (@130 1 DRV (13-
uniformly in 4, using (C.1). The coercivity of ay gives

DRV N0y S I1F ll3g-

S
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For k € {1,...,n} and ¢ € €>°(0), we choose h in the direction of the z; coordinate, I € {1,...,n —1}. we
then have

| (@e0 0 Do) 20y | = | (D0 0,9) 1200y | < IDRV sl S I o 46] 2.

As the Lh.s. converges to | (9y,v, 92,¥) 2(0) | we obtain that 92 . ve L?and

TRX)

107, 2 vllze S I Fllag, (k1) # (n,n)

Similarly for k € {1,...,n — 1} and ¢* € €°(0O N S), we choose h in the direction of the z; coordinate,
le{l,...,n—1}. We have

1 s s 1 s s s s
82| (02,0, D-n¥®) 12 ons) | = 02 | (D0, v, %) p20nsy | < 108V a2 ¥ M2 S I Fllasgll9°]l 2
and we obtain 92, , v* € L*(0) and moreover

6 H mkwlv ||L2(O) 5 HF”Hga k7l € {1,...,%— 1}

From (C.4) observe now that (in a weak sense) we have in ;N O, i = 1,2,

1
Boo=- (T Oncuduvtadt @0~ Aav).
(k,D)#(n,n)

It follows that 97 vjo, € L*(€;) and

i=1,2,

2
Tn

which concludes the proof. O

C.3 Proof of Proposition 2.3

An inspection of the proof shows that is sufficient to assume that c is piecewise €™, ¢® is €™1! and that
S is of class €™ *t2. We proceed by induction. The case m = 0 is treated in Proposition 2.2. Let mgo > 0.
Assume the result is true for 0 < m < mg — 1 and flo, € H™(£;), i = 0,1, and f* € H™(S). We thus have
Z = (z,2%) € H™T(Qy U Q) x H™T1(S) with

Z 210, L rmo+1 (0, + 8712 frmo1(s) S Z i |l o (20 + 2 [ £2 1m0 (5) = Nomo (F).

=1

We use the same partition of unity 6, j = 1,..., NV, as in the proof of Proposition 2.2. Since the result is known
away from S by standard elliptic regularity theory. We thus place ourselves in O = O, such that O; NS # 0.
With 0 = 0; we set v =6z and v® = 0z° and V = (v, v®). With the notation of the proof of Proposition 2.2 we
obtain after a local change of variables

S J O, 00n b dx+ 6% [ 0,0 Dp, 0 dx—|—/\f0wz/)dx—|—6/\ [ Bvy° dx
k,l O k, ONS ons

= [agpda +5 [ BeY dr, (C.5)
O ons

for U = (¢,¢°) € H}, where >k, 1s asum with &, [ running over {1,...,n} and E/k,l is a sum with %, [ running
over {1,...,n—1}. We have v € H™T1(O) and v* € H™T1(ONS) with their supports finitely away from 9O
and ® = (¢, ¢°) is such that

2 N iadlmmo@y + 02167 amo(s) S Nmo (F)-
=1,

The functions ¢, ; are piecewise €™ 1! with a discontinuity across the interface S and the functions cj , are
G | |
For j=1,...,n—1, if ¥ is chosen such that

Y =0y, W =0,,00  with (§,9°) € (€2°(0) x €2°(S N 0)) NH,
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as we have 9,,v0, € H'(Q;) and 8,,v° € H*(S), we find

S [ €102 00 dr + 8 [ 02, 000000 du + A [ adp,vbde + 0N [ B0,,0°0 da
k1O : k1 ONS : lo} ons

:fNde-i—é f (;NSS%dx,
10) ons

with

~ L
.;2 1810 | rmo-1(0,) + 6|0 Hrmo-1(5) S Nimo (F).

The induction assumption then yields®

1 S
) Haxjv\m H™ot+1(Q,;N0) +942 |awjv |Hm0+1(sn0) S Nmo(F)- (C-G)

i=1,

From (C.5) we have in ©Q; N O, in a weak sense, i = 1,2,

1
8§nv = ( " 1)752( )amkgkli?mv + ad + (0x, € ) O, U — )\av).

Yet, as v, € H?(£;), this also holds in L?(€;). We thus conclude that 92, v, € H™ (£; N O) and

102 v, lzmo (2) S Nano (F),

by (C.6). This concludes the proof. O

C.4 Proof of Lemma 3.6

The proof we give extends that of Lemma 3 page 480 in [LR97]. We drop the “7” notation here since the
same argument holds for both cases. We have p, = &2 + 2i(9,,¢)é, + g2 + 2iq1. We set o € C such that
a? = (0z,0)? +q2+2iq1. Then the imaginary parts of the two roots of p,, are —9,, p+Re(a) and have opposite

signs if and only if |Re(a)| > |0z, ¢|- We note that

(Im(2%))?

A 2 A% —
|Re(z)| > < Re(z%) > Az

zeC, (C.7)
with a similar equivalence in the case of equalities on both sides. Substituting « for z, and |9, ¢| for A, we thus
obtain that the imaginary part of the roots have opposite signs if and only if > 0, as u = g2 + ¢3/(02, 0)%.
In the case u = 0 only one of the roots is real and the imaginary part of the second one is of the opposite sign
of 0;, ¢. In the case pu < 0 both imaginary parts of the roots have the same sign equal to the opposite sign of
Oz, -

If we have Im(p™) > Cy > 0 and Im(p~) < —Cj then |Re(a)| > |0s, ¢| + Co and by (C.7) we obtain

2
s, )2 + @2 = Re(0?) > (10x Co)2 =
( nSO) + g2 e(a )—(‘ nsp‘—’— 0) (|a:cn§0|+00)2
which gives

1 1

Conversely, let us assume that u > C7 > 0. Note that for all M > 0, there exists R > 0 such that [£] + 7], >
R = |Re(a)| > M. Actually, we have

Im(a?)?

2y _ a2
Re(a®) — M~ + e

>0

for |&] + |nlg > R = |Re(a)| sufficiently large, which yields |Re(a)| > M. Taking now M = |0,,¢| + C, we
obtain |Im(p®)| > C.

6The induction assumption is applied to the local form of the elliptic problem here, i.e., (C.5).
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p > Cy are in a compact set K. Then, ming | Im(p*)| is reached. Finally, 4 > C; implies |Im(p*)| > C > 0 as
Im(p™) does not vanish if 4 > 0. This concludes the proof of the first part of the lemma.

It suffices to take |o| + 7|y < R, xo € [0,Xo], zn € [—2¢,2¢]. The variables (zo,y,zn,&0,n) such that

We now address the last point of the lemma. Let 0 <! < L <inf+ |02, | and let H = L? —?. We consider
the region { > —H}. In this region we have

2 1 1
S 2 25 (12 _ 2 a1 —12_ (9 2 2 N

Since p = g2 + ¢3/(0x,, ¢)? we then have gz + (0., ¢)? > 12 — ‘l%f which by (C.7) yields | Re(a)| > 1. We conclude
by observing that [p* — p~| > [Im pT™ — Im p~| = 2| Re(a)|. O
C.5 Proof of Lemma 3.8

We follow the notation of the proof of Lemma 3.6 above and we drop the “7,” notation here since the same argu-
ment holds for both cases. We choose a € C such that o = (8, 0)* + g2 + 2iq1 = r(z,&0,n) — (@, Oy p, dyp) +
2i7(z, €0, M, Oy, dyp) which yields the roots to be —id,, ¢ +ia. We set Ay = (1 + &3 + |n\3)% € SL(M?%) and
write (a/A7)? = 11 + 12 with

1
= Lfo,n) and 1 = ( - T($7ax090»dy§0> + Qif(xafo,ﬂ, 89:0907 dy(p))

2 N

To prove the first result, i.e., ypT € S%—(Mi), it suffices to consider Ay large, as we already know that the two
roots are smooth in supp( x). Note that there exists L > 0 such that |v1| > 2L, and |vs| < L for Ay large, say
A7 > Ry. In this region we have Re (a?/A%) > v — |Re(vz)| > L. In particular,

Re(a/A7r) > C > 0. (C.8)

If A\ > Ry, we have thus obtained that (a/A\7)? remains away from a neighborhood of the branch R_ for the
complex square root and we may thus choose a/ A7 = F((a/A7)?) with F' = ¢°°(C). Since (a/A7)? € SH(M?),
it follows from Theorem 18.1.10 in [Hér85a] that ai/ A € S$(M?), for Ay > Ry, and it yields the first conclusion.
Let Cy > 0 and let us place ourselves in a region {u > Cp}. By Lemma 3.6 we have Im(p™) > C > 0

and Im(p~) < —C. By (C.8), we obtain |Im(p*)| > CAy. Since Im(p*) — Im(p~) = 2Re(a), and since
[Tm(p™) — Im(p~)| > C, we obtain the final result with (C.8). O

C.6 Proof of Lemma 4.2
Using (3.24) We have

Opr(x9.5) (67 ") (;Zazv” = (¢; ") By ;Eqz0".
We then write
Opr(x2.5)(6;") Zgzv” = (¢; 1) By 0" — (¢; ') Sy (1 — Zgz 0"

Note that ug ; = (¢;1)*Eg7jvr by (4.1). We have Zg ;(1 — E¢z) € h®W,°(My) as their local symbols in

every chart have disjoint supports by Proposition B.14, because of the supports of ¢ and ¥«2. This concludes
the proof. ]

C.7 Proof of Lemma 4.5

Here, all functions are evaluated at the interface, i.e. z,, = 07. From (4.67) we have
o5 = 5((;0) +7

with

~(0 r " )5
65" =200, 25l05|” + 447 ; Re(0s) — 2(0s,95)d5 ;
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and 7 € %S%)’— + 5527 + hS%—7 according to the definitions of Y5 in (4.69), of o5 in (4.67), and BY, B}’, B}
in (4.59). Observe that 262};72}#5;0) € S% and that the remainder satisfies

2

. h

since ((£0,¢’)) < C in supp(R)-
Now, let us produce a lower bound for the symbol 620). Recalling the definition of u" in (3.12), denoting

ZINE g . 0cl o
pj = (¢] 1) p"and 9 = TPy, WE find

~ 2 . 4
55" = 2 (00, )10 P k2 + 3
T 5 T T 2 T

=20y, ¥} (’(19 - P§-+ +k)/B+ Q1,j/8wn<ﬂj| - Mj)

> 20,65 ((1m (0 + i~ 8)/8) — i),

Re(ﬁ - p§’+ + k’)(ﬁ,j - 2(@“@;)(15,]‘

since 9y, ¢7 > C >0 and ¢j ; is real. We hence have

S

oct _
Im(—ﬂ+p§’+ —k) = hcjl Rep], + (ImpéfJr —Impéf )/2+ B0, 95,
J

as (4.10) gives —Imk = 0,,, <p§- + B0, ¢} and the properties of the roots of the polynomial le given in (3.10)

yLeld O, gaé» = f(Im pé’+ + Im pé"*)/Q. The first point of Lemma 3.6 gives Im p§’+ —Im pllj’f > 0, and we thus
obtain

since in the present region, Re(p; j) is positive elliptic by Proposition 3.5 and the form of (3.11). Using condition
(4.51), i, (9p,07)” — i = K1 > 0 we find

2 172
~(0) P(OK
5" = 20,05 gt K:).

This, together with (C.9) concludes the proof. O

C.8 Proof of Lemma 4.7
Let X = (z0,2,&,&") € W and X = (i, 7, &,E') € W. If

gW,X(X o X) _ |(£L’07£L'/) . (.’EQ,CZ’I)F + |(£07£/) — (5075/”2 2

CRIR

then, for r sufficiently small, we have C~! < éggggg; < C for some C' > 0. As a consequence, we obtain

Ccl< ﬁgg < C with h,d > 0 arbitrary. Hence A is slowly varying.

Next, we have

{(€0,€))° S (0,60 (1 + (&0, €") = (€0, €N

so that = o
AX - = -
) <+ 160.€) — (€. 8)) S (14 g (X - X)),
A(X)
for h,& > 0 arbitrary. Here ¢, denotes the dual metric on W, g%, = ((&,¢&"))?|d(xo, 2')|? + |d(&0,&')|?. Hence,
the order function A is temperate, which concludes the proof. O
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C.9 Proof of Theorem B.1: change of variables for semi-classical operators
Here we consider operators on the whole space R™ of the form
a(z, Dy, 7) = u(z) = [[ €V a(x, &, uly)dyde, d¢ = (2m) "dE, (C.10)
where a(x,&,7) is smooth in z and £ and satisfies for some m € R,
020¢a(e, &, 7)| < Capn™ 71, 2 =724 1gfP, 721 (C.11)

We say that a € S(u™). We shall prove a change of variables formula for this kind of operators. We choose
this form of operator to make use of parts of existing proofs. Operators of the form (C.10) are also called
semi-classical.

We recall that the semi-classical operators we consider in the main part of the article, i.e., with a small
parameter h, can be put in the form (C.10). In fact, with a(x, &, h) € S™, we write

op(a)u(z) = (2rh) ™" [[ ¥ Ma(z, &, Byu(y)dydE = [f €' alw, hE, hyu(y)dyd,
and we have [020; a(z, h¢, h)| < hlPI(hg)™ =181, With 7 = 1/h we find
020¢ 7™ alw, he, B S 71+ fel frym IS VL

Hence, the symbol h="a(x, h&, h) satisfies (C.11).
Theorem B.1 is the translation for semi-classical tangential operators with a small parameter h of the
following theorem.

Theorem C.1. Let X and X, be open subsets of R™ and let k : X — X, be a diffeomorphism. If a € S(u™)
and the kernel of a(x,D,,T) has compact support in X x X then the function

ax(y,n,7) = {Siw(w)ma(xaDzyT)eiM(w)’n) Z;Z ;;f’) € X, (C.12)
is in S(u™), the kernel of a,(x, D, T) has compact support in X,; X X, and
(aw(x, Dy, 7)) 0 k = a(x, Dy, T)(uo k), ue€.S (R"). (C.13)
For a,, we have the following asymptotic expansion
ax(k(xz),n,7)— > (7;)!@ 5?a(x,tn(:z:)’n,T)@?ei<pz(y)”7>|y:$ € S(umfNﬂ), (C.14)

a<N

where pg(y) = k(y) — k() — &' (z)(y — ).

Note that p,(y) vanishes at second order at = and that the terms in the series are in S(p™~1%1/2). In fact the
order of each term in the asymptotic series (C.14) is explained by the following result that we shall use below.

Lemma C.2. We can write Gz‘j‘e“”m(y)’”) as a linear combination of terms

[T (@ =y, pai()n) T1 (057 pa(y), mhette=m,
JET JjeET

for some matriz-valued function py;, j € TUJ, with o] > 2 if j € T, k = |Z| and £ = |Z| + |T| such that
E<{<|a|l and ¢ < ‘O‘l%k In particular, 8§ei<”m(y)’">|z:y’ < Cu(n)?.

Proof. We note that 0;' (ei<pz(y)”7>) can be written linear combination of terms of the form

=W T (0% p,(y),m),  with Y o[ =lal, p<lal, |og|>1.
1<i<p 1<i<p

Weset Z={1<j<p; |a;] =1} and J ={1 <j <p; |a;| > 2}. We have |Z| +|J| = p < || and moreover
la| > |Z| + 2|T|, which gives |Z| + |J| < (la| + |Z])/2. As p.(y) vanishes at second order at y = = we obtain
0y pz(y),m) = (x — y, ps,j(y)n) for some function p, ; if j € T. O

o6



Proof of Theorem C.1. Let the kernel of a(x, D,,7) be supported in K x K, K C X, compact. In particular
a(z,&,7) =0 if z ¢ K. Let ¢ € €°(X) be such that ¢ = 1 in a neighborhood of K, and ¢ € €°(X) be such
that ¢ = 1 in a neighborhood of supp(¢). Here, we follow the proof of Theorem 18.1.17 in [Hér85al, and we
first obtain that for 7 fixed formula (C.13) holds for a, given by (C.12). Moreover a, is smooth w.r.t. z and §
and we have

ax(k(2),€) = ¢p(a) [[ v OTRWI=R DM g (2 ¢ 7)P(y)dydE, € X. (C.15)

It thus remains to prove that a, € S(u™) and that the asymptotic representation (C.14) holds.
For the proof we shall distinguish two regimes: 7 < || and 7 2 |n|. We thus introduce w € €2°(R) such
that w =1 in a neighborhood of 0 and set

(@0, 7) =w(r/n)ax(k(),n,7),  Y2(z,n,7)=(1-w)(7/(n)ax(k(x),n,7).
We shall prove the following two propositions below.

Proposition C.3. We have v1(z,n,7) € S(u™) and

—i)lel ,
e 7) =~ wlr/ ) 5 S Oale el g -y € SV (g

Proposition C.4. We have vo(x,n,7) € S(p™) and

—)lel _
(e~ (- w)r/n) ¥ T oga(a, sy mage -0, € SN, (1)
a<N :
With these two results the proof of Theorem C.1 clearly follows as x is a diffeomorphism. O

We shall need the following result in the course of the proofs, which is the counterpart of Proposition 18.1.4
in [Hor85a] for semi-classical symbols.

Lemma C.5. Let a;(z,§,7) € S(u™), j € N, with mj — —oo as j — oo. Let a(x,&,T) be smooth with respect
to x and £ such that for all a, B for some C' > 0 and v depending on o and 3

|8§‘8§a(z,§,7’)| <Cup’, z,£eR" 712>1. (C.18)
Assume there is a sequence v — —oo such that

la(z,&,7) = > aj(z,&,7)] < Cep™, z,6€R", 172>1, (C.19)

i<k
then a € S(u™), m =supmy, and a(z,&§,7) —>_; 4 a;j(z, &, 7) € S(u™r), with m}, = max;sy m;.
The proof of lemma C.5 is similar to that of Proposition 18.1.4 in [H6r85a]. It is left to the reader.
Proof of Proposition C.3. We have

n(z,n,7) =w(r/n)a.(k(z),£)
= w(r/(n)¢(x) [[ e'evOTHRW =DM g ¢ 1) p(y)dydE, x € X. (C.20)

Let Cy be such that max(|x/(y)], |s'(y)*]) < Co. Setting (&) = [ e/FW)M =€) §(y)dy, one obtains through
a non-stationary phase argument [Hor85a, page 82]

26| < Ox(1+el+1) ™, iFIe] < 22 orfe] > 2Col. (c21)

Let then x(£) € €°(R") be equal to 1 if (2Cy)~t < |¢| < 2Cy and equal to 0 if |£] < (4Cp)~! and let us write
Y1 = Il +IQ with

Li(w,n,7) = w(r/(n)(w) [ 0O TEW MDD a(z € r)d(y)(1 = x)(E/Inl)dyd €
= w(r/(n)g(x)e” "W [ a(z, & )& 0) (1 — x)(E/In)dE,
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and

I = w(r/(n)d(x) [ 7w OH DM (2 € 7)G(y)x (& /In])dyd €
w(r/(m)g(x)we” ) [ eelemu sl iennll o, we, 1) d(y)x (€)dyd€,  w = |n|-
With (C.21) and as 7 < || here we find

\Iy(z,m,7)| < Cnlw(r/m)] (7 +1E)™ (L +[¢] + ) =N HFm™de, N eN.

which gives

(2, 7)| < Onlw(r /)] [(In] + €)™ (L + €] + ) =NV FrHtEmdeif m >0,
T Onlw(r /) ED™ (L4 €]+ )T A, i m < 0.
In any case we find
1

I (2,1, 7)] < Cly |(lf(+7/|7<7’|7)>N| <l Vg VEN (C.22)

For the term I, we first write
I = w(r/(n))$(x)we @ [f eielnltn)n/) =W oz, w¢, 7)d(x + y)x(§)dyde, w = n|.

to apply the stationary-phase result of Theorem 7.7.7 in [H6r90], which yields for k > n:

(.n.7) — w(r/0)6(a) T (0,8} (0D a6, 7V + DX(O, o o)

< Cw(n—k)/Qw(T/<77>) | |Z<:2k S;lg) ‘D (N( + y)x(&)a(z, wé, 7))‘

As 7 S w, and £ is bounded, we observe that
w*(Dga)(z,wé)| S w7 + wlg)™ 1 < (7 +w)™

We also have x(¢) = 1 in a neighborhood of *s’(z)n/w. As ¢ = 1 and ¢ = 1 in a neighborhood of K we thus
obtain

k=n (_;\V i
-72(%7777) - w(T/<77>) z_:o ( I/') <8yv85>V(ez<pz(y)’n>a(x’€7T)’y:m,f:tn’(m)n/w>‘
< CwM PR L) u(r/in) S (r+ ID™ETE, 2 ek

We have thus obtained an asymptotic development in the form of (C.19). As each term in the series is also
a semi-classical symbol, by (C.22) we find that an estimate of the form (C.18) is achieved when no derivation
is applied to 1. Applying partial derivatives w.r.t.  and 1 to 1 (z,n,7) results in a sum of terms with the
same form as (C.20) with additional expressions with at most polynomial growth in 1. The analysis carried out
above also yields an estimate of the form (C.18). With Lemma C.5 this completes the proof . O

Proof of Proposition C.j. We have
Y2, 7) = (1 —w)(7/(n)ax(k(z),§)
= (L= w)(r/(n)o(x) [ v OHEW= DM (3. ¢ 7)(y)dyd e, = € X. (C.23)

This representation is to be understood in the sense of oscillatory integrals, which justifies the manipulations
we perform below.
In the support of (1 —w)(7/{n)) we have 7 = |n|. As p.(y) = k(y) — k() — k' (z)(y — x) we write

vo(@,m, ) = (L—w)(r/(m)o(x) [f ei(“_y’g_t”/(“)’”“(”I(y)’") (,€,7)(y)dyd €
= (L—w)(r/(m)g(x) [ e * 70+ Wa(z, & 4+ '/ (@)n, 7)) dyd €,

which by the Taylor formula gives v, = v2 x + 7y With

YN (@, 7) = 3 1( w)(r/(m) () [[ T WM e e aw, K ()0, T)d(y) dyd¥,

|
la|<N &
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and

A=Y e y0) 4iloe () m) cago i 7
rN=N > [———F——][e ’ W EXOEa(x, 08 + 'K (2)n, T)B(y) dydEdo.

jal=N0 o

Observing that £¥e(#—¥:8) = i‘”"@;ei(x_y@ we find

—i)lel ) ~ )
(e m) = (L= w)(/ o) 2 (T’, JI et 05 ((y)e! =) o alw, ' (2)n, 7) dyd
—i)lel ~ .
= (/o) 3 0 (G O, ofae W )
—)lel )
=(1 —w)(7’/<17>)| §<3N( a)! oy (eHe=WmM)| _ oga(a, s (@)n, T),

for x € K, because of the supports of ¢ and g?) From the properties of p,(x) given in Lemma C.2 each term in
the sum is in S(u™~1%1/2). Similarly we have

«Q —g)N-1
ra(@n ) = (1 w)(r/i)e@N ()Y ¥ % < )}(1)

la|=N f<a \B/ 0 al
x [f e @v8) (0575‘@5@)) (356“”1(”’)’"))85%(:1:, o& + 'K (2)n, ) dyd€do. (C.24)

If we prove that ry < (7 + |n|)t"F1=N/2 if N > m, we then obtain an estimate of the form (C.19). In
particular this yield |yo| < p” for some v € R.

Applying partial derivatives w.r.t. « and n to v2(x,n,7) results in a sum of terms with the same form as
(C.23) with additional expressions with at most polynomial growth in 7. Computing 8;‘8572 we may apply a
similar analysis and find |6§‘6§72| < p¥ for some v € R. We thus have an estimate of the form (C.18). With
Lemma C.5 this will complete the proof.

With Lemma C.2 the remainder term 7y in (C.24) is a linear combination of terms of the form

riv(z,m,7) = (1= w)(r/n)é(x) ({1(1 — )N g(y) le_[j@;‘-"px(y), n)e! Pz

x HI<95 ~ Y. pa,5(y)n) 08 alw, o€ + '/ (x)n, T) dyd€do,
j€

with |a;| > 2if j € J and k = |Z| and ¢ = |Z| 4 |J| such that

E<0<|B<|a| =N, egWT““. (C.25)
Here the function qAS has support in K and is constant on supp(o).
As (@ =y, puj (y)m)e’ ™ = —i0¢, puj(y)m)e' "4 we obtain
1 , R ,
riv(z,,m) =i (1 —w)(r/(n)¢(z) (1= )N e G(y) _Hj(aﬁ"pm(y),n)e“”l’(y)’”)
JjE
x 110 paj(y)m)OF a(w, 06 + ' (2)n, 7) dyd¢do,

JjET
and we may thus write ry as a linear combination of terms of the following form
1 _ R .
r(@m ) = (1 —w)(r/m)e() [ o1 = o)V [ v Gy )p(a, y, m)et = W)

X 8?"”@(90, & + 'K (x)n, T) dydédo,

where |y| = k and p(z,y,7) is a polynomial in n of order ¢ with smooth coefficients.
We note that (€)72(1 +i(,9,))e!* € = ¢i@=v:€)  This yields, for ¢ € N,

(. ) = (1= w)(r/ o) [ (1 = )N e (1 = ide, 0,0 (0 o,y e o= 00

X () 710¢a(w, o€ + 'K/ (x)n, T) dyddo,
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We choose |a| = N > m and ¢ =n + 1. We then have
10¢  az, o€ + 'K (), 7)| < (7 + o€ + K (@)l NPT S 7N
We thus obtain
[ (0, )| < (1= w) (7 /(o)) |[g FrH = NPl g =N,
asm— N —|y] <0 and |n| < 7. Since £ < (N +k)/2 = (N + |v|)/2 this yields
P (,m, 7)| S 7t (NHRD2 < (7 |y I= N2,

as claimed above. This concludes the proof. O

C.10 Proof of Proposition B.7
The proof follows some of the lines of that of Proposition 18.1.19 in [H6r85a]. We fix j € J. We take N, lel,
a locally finite partition of unity of (0, Xo) x U;. For all k,1 € L, we set o5y € S7(R™ x R x R"™) as

Opr(owm) = (¢7') AeAdjA,  where Ap = ¢} Ay

Note that supp(ox) C (0, Xo) x U; x R xR". We define a; := Z/k,l o where 3" denotes the sum over the pairs
k,1 such that supp(A;) Nsupp(Ax) # 0. This sum is locally finite, which gives a; € ST7*((0, Xo) x Uj x R x R™).
For A € €2°((0, Xo) x Uj), A € €2°((0, Xo) x U;) we consider

R=(67") 2052 = ((677)"A) Opr(aj)A = 3 (67) MaAG N - ((6;)\) Opr(a)A.

Note that the sum only involves k, [ such that supp(Ax) Nsupp(A) # 0, supp(S\l) N supp(:\) # (). Hence, the sum
is finite. We find

R= kzl (671 M AGIAA — ((qu‘l)*)\) Opr(a;)A + Ry

where R; is a finite sum of operators in W7*(R™ x R) (and also in W2((0, Xo) x U; x R)) with kernels vanishing
in a neighborhood of the diagonal. By Lemma B.2, we have Ry € h>*W>(R" x R). Moreover, observe that

(671) MeAGAA = ((#71)"A) Opr(ow) ).

We thus have R = R; from the definition of a;.
We now prove uniqueness. Let a; satisfy the same properties as a;. Introducing b = a; — a;, for all
A E %cw((O,Xo) X Uj), AE %COO(((LX()) X U]) we have

((67)"X) Opr (D) € h=w7(R" x ).

Let K be a compact set in (0, Xg) X Uj and we choose A, A such that (d)j_l)*/\ =1lon K and A = 1 on
supp(((bj_l)*)\). The symbol of ((qu-_l)*)\) Op7(b)A is in h*S7°(R™ x R x R™) and is given by

((677)"A)b #A € (671) Ab+ h<S7(R" x R x R")
by the composition formula (B.1). As a consequence, according to Definition B.3, we have

b€ h>®S7>((0, Xo) x U; x R x R™).
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C.11 Proof of Proposition B.8

Let K be a compact set in (0, Xo) x (U; N Uy). Let \, A € £>°((0,X0) x (Uj NUy)) be equal to one on K. We
set A = (6, 1)" N, £ = j, k. We also introduce 4, ;5 , = (¢, 1) " NA¢; A, and find

Ay 50 =Opr(a) mod KU, >(R" xR), with a; = ((qﬁ[l)*A)aZ#S\g, 0=k

The kernel of A, 5 ; (resp. A, 5 ;) has a compact support in ((0, Xo) x Uj,k)Q (resp. ((0, Xp) x U;w-)2). Observe
that we have

1y % *
A,\,J\,k = (¢jk) AA,;\,qujk'
From Theorem B.1, we have for all N € N,
ay — T¢jk,N(&j) S hNS$_N/2(Rn X R x Rn)
Set K, = ¢ (K) and x € °(K},). Since A = A =1 on K, we have
xar = xa mod h™S-(R" x R x R™).
We also have
Xk = T, n(@;) mod ANSTN?(R? x R x R™)
= xTy,,,~(a;) mod hNng*N/Q(R" x R x R™),
because of the form of T, n in (B.5). We thus obtain
X(ar — Ty, n(a;)) € VST V2R x R x RY). (C.26)

As K is arbitrary, (C.26) holds for any y € €>°(Uy, ;). This gives the conclusion according to Definition B.3. O

C.12 Proof of Proposition B.10

Let K4 and Kp j be the kernels of A and B. We shall use the notation of Definition B.5.

As the two operators are properly supported the composition makes sense and AB : €°(X) — €°(X). We
denote its distribution kernel by Kap . (Note that we use the Riemannian structure here to identify function,
densities, and half-densities on X'). We have

KaB.n(xo,y; To, ) = !{fl Ka.n(zo,y; 2o, 1)KB 1w (Z0, U5 T0,9) dio dy

in the sense given at the end of Section 8.2 in [Hor90]. We choose x, X € €>°(X") such that supp(x)Nsupp(x) = 0.
In addition we introduce x such that supp(x) Nsupp(x) = @ and x = 1 on supp(x). We then write
xX(zo, ¥)X (20, §)K aB,n(To, y; L0, 9)
= X(%0,9) !{f/X($07y)f((fﬂmZJ)’CA,h(ﬂﬁo,Z/;iovy)’CB,h(fo’@;i‘o,:&) dzo dy
+

X (o0, y) !{fﬁ(io@)(l — X(&0, 7)) Kan (o, yi Zo, 1)K B,w (L0, §; Zo, §) dEo dij.

We note that in the first sum x(zo, y)X(Z0, §)Ka,n(z0, y; o, 7) is smooth and compactly supported because of
the disjoint supports of the cut-off functions and the regularity of the kernel K4, off the diagonal. In the
second sum X (20, 9) (1 — X(&0,9)) K1 (F0, J; £0,9) is also smooth as supp() Nsupp(l — ) = ) and compactly
supported as Kpg ), is properly supported. Because of (B.8) both terms then yield a smooth function in the
variables x¢,y, Zo,J and estimating derivatives then yields a proper estimate of the form of (B.7).

We now consider j € J and A € €2°((0, Xo) x U;), A € €2((0, Xo) x U;). We set

a = (¢;") AABgI(N).

We then introduce x, x € €°((0, Xo) x U;) such that both x =1 and x =1 on supp(q&}f;\). We write o = + R
with

B=(67") MBS (N, R=(6;") N1 — x0) B} (V).
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Arguing as above we find that the kernel K of R is a smooth function and it satisfies an estimate of the form
sup,, q(Kr) < ChY, for any N € N and ¢ semi-norm on ‘KOO((R" X R)z). Moreover its support is compact.
Hence R € h®WL°(R™ x R).

Next, with y = (¢;1)*X we write

B=(¢;") ;% (d;") B (V).
By Proposition B.7 we obtain a semi-classical tangential operator on R™ x R with symbol
85 = (((7") N ag ) #(X((¢71) X)b; ) #4  mod h=S7=(R" x R),

which belongs to S%’—”m/ (R™ x R). The operator AB is thus in \II”T””J“m’(R” x R).

From the composition formula B.1, because of the supports of ¥ and (q’);l)* x we further obtain

85 = ((67") Mas#bs) J#A  mod hS7(R" x R).

Hence by Proposition B.7 a;#b; is a representative of the local symbol of AB in this chart. O

C.13 Proof of Proposition B.12

The existence of L is only related to the proper support of the kernel of A. We have
|(Aw)|z, —olr = ZJ: \(Qb]-_l)*l/)j(AU)m:ohc-
Let j € J. It suffices to prove that
[(6571) 03 (4w, =oli < Crclulire

We choose a partition of unity >, Uy, = 1, subordinated to the open covering (Uk)kes such that IZJj =1lina
neighborhood of supp(#;). Then supp(ﬁk) Nsupp(¢p;) = 0 for k # j. We then have

bijAu= Y Y Avpu+ v Avju
k#j

The terms in the sum are then associated with properly supported operators with smooth kernels for which the
operator continuity (after restriction to x,, = 0) is clear. To treat the last term we choose A € €°((0, Xo) x U;)

such that A =1 on LN ((O,XO) X supp(zjjj)), and \ € €2 ((0, Xp) x U]) such that A = 1 on K N ((07X0) %
supp <(¢;1)*¢j))> We then have

(67 1) 5 Avhu = (¢ ") Mp; A5 A (65 1) hju = B¢ ") hju at z, =0,
with B € W2 (R"!) by Definition B.5. Hence

‘(ij_l)*wj(A?/;ju)lxn:dk S |(¢j_1)*7[)ju‘k+£ S lufkte

by (1.22). O
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