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Further investigation on the dynamic compressive strength enhancement of concrete-like 

materials based on split Hopkinson pressure bar tests  

Part I: Experiments 
M.Zhang1

,
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1 State Key Laboratory of Explosion Science and Technology  
Beijing Institute of Technology, Beijing 100081, P.R.China 

2 School of Mechanical, Aerospace and Civil Engineering  
The University of Manchester, PO Box 88, Manchester M60 1QD, UK 

 

Abstract: Effects of the inertia-induced radial confinement on the dynamic increase factor (DIF) 

of a mortar specimen are investigated in split Hopkinson pressure bar (SHPB) tests. It is shown 

that axial strain acceleration is unavoidable in SHPB tests on brittle samples at high strain-rates 

although it can be reduced by the application of a wave shaper. By introducing proper measures of 

the strain-rate and axial strain acceleration, their correlations are established. In order to 

demonstrate the influence of inertia-induced confinement on the dynamic compressive strength of 

concrete-like materials, tubular mortar specimens are used to reduce the inertia-induced radial 

confinement in SHPB tests. It is shown that the DIF measured by SHPB tests on tubular 

specimens is lower than the DIF measured by SHPB tests on solid specimens. This paper offers 

experimental support for a previous publication [Li and Meng(2003), Int. J. of Solids and Struct., 

40, 343-360], which claimed that inertia-induced radial confinement makes a large contribution to 

the dynamic compressive strength enhancement of concrete-like materials when the strain-rate is 

greater than a critical transition strain-rate between 101 and 102 s-1. It is concluded that DIF 

formulae for concrete-like materials measured by split Hopkinson pressure bar tests need to be 

corrected if they are going to be used as the unconfined uniaxial compressive strength in the 

design and numerical modelling of structures made from concrete-like materials to resist impact 

and blast loads. 

 

Keywords: concrete-like materials, split Hopkinson pressure bar, dynamic increasing factor, 

compressive strength, experimental study 
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1. Introduction 
The dynamic increase factor (DIF), defined as the ratio of the dynamic strength to the 

quasi-static strength in uniaxial compression, has been widely accepted as an important parameter 

to measure the strain-rate effect on the compressive strength of concrete-like materials. Numerous 

experiments have been performed using various experimental techniques to characterize the DIF 

of concrete-like materials at strain-rates from 100 to 103 s-1. A critical review was given by 

Bischoff and Perry (1991) to compare DIFs of concrete and mortar specimens from experiments 

conducted between 1910 and 1990. It clearly demonstrated the increase of DIF with strain-rate for 

concrete and mortar specimens although great discrepancies were observed due to differences in 

material and dimensions of the specimen and the method used in testing and measurement. 

Among all available testing methods for dynamic compressive strength of concrete-like 

materials, the split Hopkinson pressure bar (SHPB), proposed originally by Kolsky (1949), has 

been used widely to measure the DIF of concrete-like materials at strain-rates between 101 to 103 

s-1 since the 1980s. Based on studies of the applications of the SHPB to the dynamic behaviours of 

some metals and polymers, Davies and Hunter (1963) proposed an optimum dimension for the 

SHPB specimen, i.e. sDL ν3
2
1/ =  where sν  is Poisson’s ratio and L  and D  are the 

length and the diameter of the specimen, respectively, in order to reduce the effects of inertia and 

friction on the measured dynamic stress in the specimen. Such optimal dimension is also adopted 

in SHPB tests for concrete-like materials (e.g. mortar, concrete, geo-material, ceramic etc.) [e.g. 

Grote et al (2001)]. However, researches have suggested that inertia effect cannot in general be 

cancelled by adjusting specimen geometry [Gorham et al (1984, 1992), Gorham(1991, 1992)], 

which indicates that the inertia effect need to be checked carefully at high strain-rates, especially 

in SHPB tests for brittle materials where large diameter specimens are used. Based on SHPB tests, 

DIFs of concrete-like materials have been studied extensively to obtain many empirical formulae, 

represented by CEB formula [Comite Euro-International du Beton (1993)] for concrete. It is 

interesting to note that all experimental data on the variation of DIF with strain-rate clearly 

demonstrate the existence of a critical transition strain-rate, beyond which the dependence of DIF 

on strain-rate becomes significant. This transition strain-rate varies in different testing set-ups, i.e. 

30 s-1 in CEB formulae [Comite Euro-International du Beton (1993)], 63.1 s-1 in Ross’s 

publications [Ross et al (1989, 1995, 1996), Tedesco and Ross(1998)] and 266 s-1 in Grote et 

al.(2001).  
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Based on a numerical study, Li and Meng(2003) demonstrated that the significant increase of 

DIF with strain-rate beyond the transition strain-rate is mainly due to the inertia-induced radial 

confinement effects. The dependence of the compressive strength of concrete-like materials on 

radial confinement had already been shown in confined quasi-static tests and strength models (e.g. 

Drucker-Prager model) and confined dynamic tests and analyses [e.g. Chen and 

Ravichandran(1997), Nemat-Nasser and Horii(1982), Huang et al.(2002), Huang et al.(2003)]. It 

was pointed out in Li and Meng(2003) that the misinterpretation of the confinement enhancement 

as the strain-rate enhancement in a SHPB test leads to non-conservative design or analysis of a 

concrete structure against impact or blast loading. It should be noted that a similar point of view 

has been indicated in other publications [e.g. Brace and Jones (1971), Gorham (1989), Gorham 

(1991), Bischoff and Perry (1991), Donze et al.(1999), Field et al.(2004)]. Forrestal et al.(2007) 

recently suggested a method to investigate the effect of the axial strain acceleration on the 

additional axial stress and radial confinement in a brittle cylindrical sample, which further support 

the previous findings on SHPB tests of concrete-like materials in Li and Meng(2003). The radial 

stress induced by axial strain acceleration in an elastic cylinder is given by [Forrestal et al.(2007)] 

( )
( ) [ ] ( )tbr zrr

022'

18
23 ερ
ν
ννσσ &&−

−
−

−==                                       (1) 

where b  is the radius of the cylindrical specimen, ν  and ρ  are the Poisson’s ratio and the 

density of the specimen material, respectively; )(0 tzε&&  is the axial strain acceleration in the 

specimen. Equation (1) shows that the radial stress is influenced by two factors, i.e. the radius of 

the specimen and the axial strain acceleration in the specimen. The maximum radial stress occurs 

at the centre of the cross-section of the cylinder and reduces to zero on the outer surface of the 

cylinder according to a parabolic function. Unfortunately, the effect of the radial confinement on 

the measurement of DIF of concrete-like materials in dynamic compressive tests has been largely 

ignored by the users of the DIF data and formulae, which were derived mainly from SHPB tests. 

Many recent publications still employ DIF data and formulae as the dynamic compressive 

strength in uniaxial stress state to define the strain-rate effect on the compressive strength of 

concrete-like materials in corresponding constitutive models [e.g. Barpi(2004), Tham(2006), 

Katayama et al(2007), Polanco-Loria et al(2008)]. Similar recommendations also appeared in 

recent concrete model (K&C model) in LS-DYNA Version 971. The applications of the 
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misinterpreted DIF in the design and numerical simulation may cause significant increase of the 

predicted impact or blast resistance of structures made from concrete-like materials, and thus, lead 

to dangerous non-conservative design or assessment of these structures against impact and blast 

loads. 

In the present paper, experimental evidences based on SHPB tests on solid and tubular mortar 

specimens are given to demonstrate the correlations between the representative axial strain-rate 

and the axial strain acceleration in a SHPB test on concrete-like material. A tubular specimen is 

introduced in order to reduce the inertia-induced radial confinement, and thus, demonstrate the 

influence of the inertial-induced radial confinement on DIF in SHPB tests, which further confirms 

the findings in Li and Meng(2003). Experiments are described in Section 2, which is followed by 

data analyses in Section 3 and discussion and conclusions in Sections 4 and 5. 

 

2. Descriptions of Experiment 
2.1. SHPB set-up  

Series of experiments of solid and tubular specimens with different diameters (37mm, 50mm 

and 74mm) were tested at various strain-rates from 50 to 400 s-1 on a SHPB system (Fig.1). A gas 

gun was used to shoot the striker bar. The velocity of the striker bar, which is controlled by gas 

pressure, is measured by two parallel light gates and an electronic time counter. The signals from 

the strain gauges on the incident and transmitted pressure bars are amplified and then recorded by 

a transient recorder. Wave shaper is used in order to reduce the stress non-equilibrium in 

specimen. 

 

Fig.1 The schematic diagram of a SHPB set-up 

Transient 
Recorder 

Bridge & amplifier 

Transient Recorder Data processing system 

Strain gauge 

Light beam 

Striker

Input bar Output bar Specimen 

Sensor 

Absorption bar 
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2.2 SHPB specimen 

The SHPB specimens are made of mortar which is a mixture of cement, water and medium fine 

sand. The mass ratio of the three materials is 533:302:1600. Typical solid and tubular specimens 

are shown in Fig.2. Dimensions of the specimen are shown by the specimen code, e.g. a specimen 

with code LT-aa-bb-cc-dd contains following information, (i) if T=S, it is a solid cylinder with 

outer diameter “aa”, length “bb”, inner diameter “cc”=“00” and testing number “dd”; (ii) if T=H, 

it is a tubular cylinder with outer diameter “aa”, length “bb”, inner diameter “cc” and testing 

number “dd”. “L” is a letter used for internal reference. The quasi-static mechanical properties of 

the mortar are given in Table 1. 

          

(a) Solid SHPB specimen               (b) Tubular SHPB specimen 

Fig.2 Typical solid and tubular SHPB specimens 

 

Table 1 Mechanical properties of mortar 

Specimen 
diameter (mm) 

Density 
ρ（kg/m3） 

Unconfined uniaxial 
Compression strength 
fc (MPa) 

Young’s modulus 
E (GPa) 

Poisson’s ratio 
μ 

74.0 2179.0 44.9 17.2 0.19 
37.0 & 50.0 2116.0  51.0  23.1  0.19  

 

Typical signals obtained from strain gauges on incident and transmitted bars are shown in Fig.3. 

A thin rubber ring is used as the wave shaper. A wave shaper has two functions: (i) the 

achievement of stress equilibrium and (ii) the achievement of nearly constant strain-rate (i.e. 

nearly zero axial strain acceleration) in the SHPB specimen. The first requirement is satisfied by 

increasing the rise time of the input pulse through a wave shaper. But the second requirement is 

not satisfied in the present SHPB tests although the use of a wave shaper generally reduces the 

axial strain acceleration in the mortar specimen in SHPB test. The design of a proper wave shaper 

to meet the nearly constant strain-rate requirement is not always straightforward because it is 
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strongly depends on good matching between the dynamic properties of the wave shaper material 

and the tested material as well as their geometrical dimensions [e.g. Frew et al(2002)]. It will be 

shown in Section 3 that the axial strain acceleration increases with strain-rate in the present SHPB 

tests. Typical incident stress pulses obtained at different impact velocities in the present SHPB 

tests are shown in Fig.4. The duration of the incident stress pulse is nearly a constant determined 

by the length of the striker. However, the amplitude of the incident stress pulse increases linearly 

with the impact velocity of the striker, as shown in Fig.5. The incident stress pulse can be 

expressed by Eqs.(2, 3) using data-fitting method, i.e. 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+
−⋅

+
⋅= −

−
−

−
12
274

12
120

1

11
1

1
tti

ee
σσ                                      (2) 

where t  (in μs) is time. iσ  is the amplitude of the incident stress, which increases linearly with 

the impact velocity of the striker, iv  (in m/s) , i.e.  

9.76.20 −= ii vσ  for 37mm SHPB                                 (3a) 

and  

0.162.9 −= ii vσ  for 74mm SHPB.                              (3b) 

Equations (2) and (3) are only suitable for the present SHPB system and will be used in the 

companion numerical analysis in Li et al.(2009). 
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Fig.3 Typical strain gauge signals obtained from incident and transmitted pressure bars when 

wave shaper is applied 
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Fig.4 Typical incident stress pulses for different impact velocities 
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Fig.5 Variations of the incident stress amplitude and the impact velocity of the striker for 

37mm and 74mm SHPBs 
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Fig.6 Recovered specimens after SHPB test 

The recovered specimens after SHPB tests are shown in Fig.6. Spalling fragments and the 

longitudinal cracks are observed in the recovered specimens. The spalling fragments are almost 

axisymmetrically formed from the outer surface toward the centre of the specimen. An intact core 

is left if the specimen is not totally smashed, which implies that the central part of the specimen 

can resist large compressive loads. 

The voltage signals measured in each SHPB test are processed according to the 3-wave 

formulae [Gray III (2000)] to obtain the variations of the engineering stress, strain and strain-rate 

with time as well as the engineering stress-strain relation. The formulae show that stress 

equilibrium in the SHPB specimen in each SHPB test is satisfied. Values of the dynamic 

longitudinal compressive strength at various strain-rates are obtained. These will be further 

discussed in Section 3. 

 

3. Data analysis 

3.1 Axial strain acceleration 

The instantaneous average strain-rate in the specimen is obtained based on one-dimensional 

elastic stress wave theory  

( ) ( ) ( ) ( )1 2

0 0
s i r t

v t v t ct
l l

ε ε ε ε
−

= = − −&

 .                                  (4) 

The variations of strain-rate with time for solid specimens tested on a 74mm diameter SHPB at 

different impact velocities are shown in Fig.7. The figure shows that strain-rate during the 

effective loading period cannot be treated as a constant, especially when the impact velocity is 

increased to achieve high strain-rate. The gradient of the strain-rate curve in Fig.7, i.e. the axial 

strain acceleration, increases with impact velocity. Since the DIF measured in each SHPB test is 
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associated with a representative strain-rate, it is necessary to give a clear definition of such 

representative strain-rate used in SHPB tests. Usually, such representative strain-rate is defined as 

the mean value of the strain-rate over the loading period [e.g. Grote et al.(2001)]. Since mortar is 

a type of brittle material and most of the loading period is in the elastic deformation stage, the 

mean strain-rate during the loading period in a SHPB test is less relevant to the compressive 

failure of the specimen than the strain-rate at the failure point. Therefore, the strain-rate at the 

failure point, i.e. the end of the strain-rate curve in Fig.7, is used as the representative strain-rate 

in a SHPB test in the present paper. However, linear correlations between the strain-rate at the 

failure point and the mean strain-rate are revealed for all SHPB tests in the present study, e.g. 

Fig.8 for 74mm diameter SHPB tests on solid specimens.    
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Fig.7 Variations of strain-rate with time for solid specimens tested on 74mm SHPB at different 

impact velocities 
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Fig.8 Correlation between the failure strain-rate and the mean strain-rate for 74mm SHPB tests 

on solid specimens 

The axial strain acceleration is defined by  

d
dt
εε =
&

&&
                                                           (5) 

Although the axial strain acceleration is not a constant during the loading period, its variation with 

time near the failure point is very small, and therefore, the representative axial strain acceleration 

in the following discussion is determined as the mean value of the axial strain acceleration over 

the time duration of 10 sμ  before the failure point on the strain-rate curve. It is found that the 

representative axial strain acceleration increases with the strain-rate at the failure point, as shown 

in Figs.9 to 11 where variations of the axial strain acceleration with strain-rate are given for solid 

and tubular SHPB specimens with 37mm, 50mm and 74mm outer diameters, respectively.  

It is shown that axial strain acceleration increases with the increase of strain-rate. Axial strain 

acceleration is related to the accelerated radial expansion (i.e. the radial inertia) of the specimen 

material, which introduces the radial stress distribution (i.e. the radial confinement) in the 

cylindrical specimen. Figures 9-11 indicate that the axial strain acceleration is almost independent 

of specimen type, i.e. whether the specimen is tubular or solid, for a given diameter of the SHPB 

specimen. However, due to the existence of the free inner surface in the tubular specimen, the 

radial confinement in the tubular specimen introduced by the axial strain acceleration is less that 

that in a solid SHPB specimen for a given specimen diameter. 
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Fig.9 Correlations between the axial strain acceleration and strain-rate in solid and tubular SHPB 

specimens with 37mm outer diameter. 
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Fig.10 Correlation between the axial strain acceleration and strain-rate in solid and tubular 

specimens with 50mm outer diameter. 
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Fig.11 Correlations between the axial strain acceleration and strain-rate in solid and tubular 

specimens with 74mm outer diameter. 
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Fig.12 Correlations between the axial strain acceleration and strain-rate in solid specimens with 

37mm and 74mm outer diameters 

 

Figure 12 gives the axial strain acceleration in solid specimens with different diameters. It is 

shown that the axial strain acceleration in specimens with a large diameter is greater than that in 

specimens with a small diameter.  

Therefore, in SHPB tests, it is expected that the DIF from tests on tubular specimens is less 

than that from solid specimens while the DIF from tests on solid specimens with small diameter is 

less that that from solid specimens with a large diameter. This will be discussed in Section 3.2. 
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3.2 About dynamic increase factor (DIF) 

3.2.1 DIFs for solid and tubular specimens 

Figures 13 to 15 give the variation of DIF with strain-rate for solid and tubular specimens with 

outer diameters of 37mm, 50mm and 74mm. The data is presented using both logarithmic and 

linear scales. It shows that the DIFs from SHPB tests on solid specimens are consistently larger 

than those from SHPB tests on tubular specimens when they have same outer diameter. This 

becomes more significant when strain-rate is increased. The dependence of the SHPB test results 

on the dimensions of the specimen observed in this study can be explained qualitatively by 

inertia-induced radial confinement, which is reported quantitatively in the companion paper by Li 

et al.(2008). 
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(b) 

Fig.13 Variation of DIF with strain-rate for 37mm solid and tubular specimens  
(a) strain-rate with logarithm scale, (b) strain-rate with linear scale  
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Fig.14 Variation of DIF with strain-rate for 50mm solid and tubular specimens  

(a) strain-rate with logarithm scale, (b) strain-rate with linear scale  
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(b) 

Fig.15 Variation of DIF with strain-rate for 74mm solid and tubular specimens  

(a) strain-rate with logarithm scale, (b) strain-rate with linear scale DIF 
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Fig.16 Percentage reduction of DIF 

 

Figure 16 shows the variation of the percentage reduction of DIF with strain-rate for different 

series of SHPB tests where the percentage reduction of DIF for SHPB specimens with a given 

outer diameter is defined as ( ) 100×− solidtubularsolid DIFDIFDIF . It is shown that the percentage 

reduction of DIF increases with strain-rate consistently. When the outer diameter of the SHPB 

specimen is 74mm, the percentage reduction of DIF for specimens with larger inner diameter (i.e. 

45mm) is much greater than that for specimens with smaller inner diameter (i.e. 30mm).  

 

3.3 Discussion 

Figure 17 compares DIFs of different concrete-like materials from other SHPB tests. Since DIF 

is a non-dimensional quantity, the dependencies of DIF on strain-rate in Fig.17 do not show 

obvious differences for different concrete-like materials. However, the influence of the specimen 

diameter on the DIF of the tested material still exists, as shown in Fig.17, i.e. DIFs obtained for 

specimens with larger diameter are consistently greater than those obtained for specimens with 

smaller diameters. 
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Fig.17 DIFs of concrete-like materials obtained for different diameters of SHPB specimens 
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Fig.18 Variation of the normalized quasi-static compressive strength with the length-diameter 

ratio of the specimen in different experiments. 

 

Another issue which may need further discussion is the effect of the length-diameter ratio 

( DL /=λ ) on the uniaxial compressive strength of concrete-like materials. Figure 18 clearly 

demonstrates such an effect in quasi-static compressive tests, which supports the requirement of 

λ=2.0 in standard quasi-static uniaxial compressive test. In most SHPB tests, the range of λ is 

between 0.3 and 1.0, which inevitably will contribute to the increase of the radial confinement in 

the tested specimen. The factors which may influence the dynamic enhancement of the 
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compressive strength of a concrete-like material include the length-diameter ratio, the diameter of 

the specimen, axial strain acceleration and the friction on the end surfaces of the specimen in 

addition to the possible existence of the real strain-rate sensitivity of the concrete-like material. 

With the decrease of length-diameter ratio, the stress state in the specimen will be changed from 

uniaxial stress state to uniaxial strain state. Bischoff and Perry (1991) also commented that the 

height-width ratio of the specimen as well as its overall size could affect the crack pattern by 

influencing end boundary effects and thus affect the maximum strength and deformability of the 

tested specimen. Meng and Li (2003) investigated the effect of frictional coefficient by numerical 

simulation and showed that the coefficient of friction has greater influence on the lateral 

constrains for a shorter specimen than a longer specimen. Further investigations on the DIF in 

concrete-like materials will be presented in a companion paper by Li et al.(2009) based on 

numerical simulation. 

 

5. Conclusions 

A series of experiments of solid and tubular cylindrical mortar specimens were performed in a 

SHPB system. Correlations between the axial strain acceleration and strain-rate are established 

and related to the influence of radial confinement on DIF of the concrete-like materials. It shows 

that the DIF of concrete-like materials may be greatly enhanced by the inertia-induced radial 

confinement, which is unavoidable in many SHPB tests on brittle specimens. Therefore, it is 

necessary to conduct corresponding numerical simulations to correct the pseudo strain-rate effects 

on DIF obtained from SHPB measurements. These conclusions are applicable to concrete-like 

materials in the range of strain-rate between 100 and 103 s-1.  
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