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ACCESSING THE COHOMOLOGY OF DISCRETE GROUPS

ABOVE THEIR VIRTUAL COHOMOLOGICAL DIMENSION

ALEXANDER D. RAHM

Abstract. We introduce a method to explicitly determine the Farrell–Tate cohomology of
discrete groups. We apply this method to the Coxeter triangle and tetrahedral groups as well
as to the Bianchi groups, i.e. PSL2(O) for O the ring of integers in an imaginary quadratic
number field. We show that the Farrell–Tate cohomology of the Bianchi groups is completely
determined by the numbers of conjugacy classes of finite subgroups. In fact, our access to
Farrell–Tate cohomology allows us to detach the information about it from geometric models
for the Bianchi groups and to express it only with the group structure. Formulae for the numbers
of conjugacy classes of finite subgroups have been determined in a thesis of Krämer, in terms
of elementary number-theoretic information on O. An evaluation of these formulae for a large
number of Bianchi groups is provided numerically in the appendix. Our new insights about their
homological torsion allow us to give a conceptual description of the cohomology ring structure
of the Bianchi groups.

1. Introduction

Our objects of study are discrete groups Γ such that Γ admits a torsion-free subgroup of
finite index. By a theorem of Serre, all the torsion-free subgroups of finite index in Γ have
the same cohomological dimension; this dimension is called the virtual cohomological dimension
(abbreviated vcd) of Γ. Above the vcd, the (co)homology of a discrete group is determined by its
system of finite subgroups. We are going to discuss it in terms of Farrell–Tate cohomology (which

we will by now just call Farrell cohomology). The Farrell cohomology Ĥ
q
is identical to group

cohomology Hq in all degrees q above the vcd, and extends in lower degrees to a cohomology
theory of the system of finite subgroups. Details are elaborated in [8, chapter X]. So for instance
considering the Coxeter groups, the virtual cohomological dimension of all of which vanishes,
their Farrell cohomology is identical to all of their group cohomology. In Section 2, we will
introduce a method of how to explicitly determine the Farrell cohomology : By reducing torsion
sub-complexes. This method has also been implemented on the computer [11], which allows us
to check the results that we obtain by our arguments. We apply our method to the Coxeter
triangle and tetrahedral groups in Section 3, and to the Bianchi groups in Sections 4 through 6.

In detail, we require any discrete group Γ under our study to be provided with a cell complex
on which it acts cellularly. We call this a Γ–cell complex. Let X be a Γ–cell complex; and let ℓ be
a prime number. Denote by X(ℓ) the set of all the cells σ of X, such that there exists an element
of order ℓ in the stabilizer of the cell σ. In the case that the stabilizers are finite and fix their
cells point-wise, the set X(ℓ) is a Γ–sub-complex of X, and we call it the ℓ–torsion sub-complex.
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For the Coxeter tetrahedral groups, generated by the reflections on the sides of a tetrahedron
in hyperbolic 3-space, we obtain the following. Denote by Dℓ the dihedral group of order 2ℓ.

Corollary 1 (Corollary to Theorem 12.). Let Γ be a Coxeter tetrahedral group, and ℓ > 2 be a

prime number. Then there is an isomorphism Hq(Γ; Z/ℓ) ∼= (Hq(Dℓ; Z/ℓ))
m
, with m the number

of connected components of the orbit space of the ℓ–torsion sub-complex of the Davis complex

of Γ.

We specify the exponent m in the tables in Figures 2 through 5.
Some individual procedures of our method have already been applied as ad hoc tricks by

experts since [28], usually without providing a printed explanation of the tricks. An essential
advantage of establishing a systematic method rather than using a set of ad hoc tricks, is that
we can find ways to compute directly the quotient of the reduced torsion sub-complexes, working
outside of the geometric model and skipping the often very laborious calculation of the orbit
space of the Γ–cell complex. This provides access to the cohomology of many discrete groups for
which the latter orbit space calculation is far out of reach. For the Bianchi groups, we give an
instance of constructing the quotient of the reduced torsion sub-complex outside of the geometric
model in Section 4.

Results for the Bianchi groups. Denote by Q(
√
−m), with m a square-free positive integer,

an imaginary quadratic number field, and by O−m its ring of integers. The Bianchi groups are
the groups PSL2(O−m). The Bianchi groups may be considered as a key to the study of a larger
class of groups, the Kleinian groups, which date back to work of Henri Poincaré [20]. In fact,
each non-co-compact arithmetic Kleinian group is commensurable with some Bianchi group [18].
A wealth of information on the Bianchi groups can be found in the monographs [13], [12], [18].
Krämer [17] has determined number-theoretic formulae for the numbers of conjugacy classes of
finite subgroups in the Bianchi groups, using numbers of ideal classes in orders of cyclotomic
extensions of Q(

√−m).
In Section 5, we express the homological torsion of the Bianchi groups as a function of these

numbers of conjugacy classes. To achieve this, we build on the geometric techniques of [22],
which depend on the explicit knowledge of the quotient space of geometric models for the Bianchi
groups — like any technique effectively accessing the (co)homology of the Bianchi groups, either
directly [26], [31] or via a group presentation [5]. For the Bianchi groups, we can in Sections 4
and 5 detach invariants of the group actions from the geometric models, in order to express them
only by the group structure itself, in terms of conjugacy classes of finite subgroups, normalizers
of the latter, and their interactions. This information is already contained in our reduced torsion
sub-complexes.

Not only does this provide us with exact formulae for the homological torsion of the Bianchi
groups, the power of which we can see in the numerical evaluations of Appendices A.1 and A.2,
also it allows us to understand the rôle of the centralizers of the finite subgroups — and this is
how in [21], some more fruits of the present results are harvested (in terms of the Chen/Ruan
orbifold cohomology of the orbifolds given by the action of the Bianchi groups on complexified
hyperbolic space).

Except for the Gaussian and Eisenstein integers, which can easily be treated separately [26],
[22], all the rings of integers of imaginary quadratic number fields admit as only units {±1}.
In the latter case, we call PSL2(O) a Bianchi group with units {±1}. For the possible types of
finite subgroups in the Bianchi groups, see Lemma 18 : There are five non-trivial possibilities.
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In Theorem 2, the proof of which we give in Section 5, we give a formula expressing precisely
how the Farrell cohomology of the Bianchi groups with units {±1} depends on the numbers of
conjugacy classes of non-trivial finite subgroups of the occurring five types. The main step in
order to prove this, is to read off the Farrell cohomology from the reduced torsion sub-complexes.

Krämer’s formulae express the numbers of conjugacy classes of the five types of non-trivial
finite subgroups in the Bianchi groups, where the symbols in the first row are Krämer’s notations
for the number of their conjugacy classes:

λ4 λ6 µ2 µ3 µT

Z/2 Z/3 D2 S3 A4

Recall that we can express the homology in degrees above the virtual cohomological dimension
of the Bianchi groups by the two Poincaré series — for ℓ = 2 and ℓ = 3 — in the dimensions
over the field with ℓ elements, of the homology with Z/ℓ–coefficients of PSL2 (O−m),

P ℓ
m(t) :=

∞∑

q > 2

dimFℓ
Hq

(
PSL2

(
O−m

)
; Z/ℓ

)
tq,

which have been suggested by Grunewald. Further let P b (t) := −2t3

t−1 , which equals the series

P 2
m(t) of the groups PSL2 (O−m) the reduced 2–torsion sub-complex of which is a circle. Denote

by

• P ∗
D2

(t) := −t3(3t−5)
2(t−1)2 , the Poincaré series over dimF2 Hq (D2; Z/2)− 3

2 dimF2 Hq (Z/2; Z/2)

• and by P ∗
A4

(t) := −t3(t3−2t2+2t−3)
2(t−1)2(t2+t+1) , the Poincaré series over

dimF2 Hq (A4; Z/2)−
1

2
dimF2 Hq (Z/2; Z/2) .

In 3-torsion, let P
b b

(t) := −t3(t2−t+2)
(t−1)(t2+1)

, which equals the series P 3
m(t) for the Bianchi groups

the reduced 3–torsion sub-complex of which is a single edge without identifications.

Theorem 2. For all Bianchi groups with units {±1}, the homology in degrees above their virtual

cohomological dimension is given by the Poincaré series

P 2
m(t) =

(
λ4 −

3µ2 − 2µT

2

)
P b (t) + (µ2 − µT )P

∗
D2

(t) + µTP
∗
A4

(t)

and

P 3
m(t) =

(
λ6 −

µ3

2

)
P b (t) +

µ3

2
P

b b
(t).

Our method is further applied in [6] to obtain also the Farrell cohomology of SL2 (O−m).

Organization of the paper. In Section 2, we introduce our method to explicitly determine
Farrell cohomology: By reducing the torsion sub-complexes. We apply our method to the Coxeter
triangle and tetrahedral groups in Section 3. In Section 4, we show how to read off the Farrell
cohomology of the Bianchi groups from the reduced torsion sub-complexes. We achieve this
by showing that for the Bianchi groups, the reduced torsion sub-complexes are homeomorphic
to conjugacy classes graphs that we can define without reference to any geometric model. This
enables us in Section 5 to prove the formulae for the homological torsion of the Bianchi groups in
terms of numbers of conjugacy classes of finite subgroups. We use this to establish the structure
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of the classical cohomology rings of the Bianchi groups in Section 6. Krämer has given number-
theoretic formulae for these numbers of conjugacy classes, and we evaluate them numerically in
Appendices A.1 and A.2. Finally, we present some numerical asymptotics on the numbers of
conjugacy classes in Appendix A.3.

Acknowledgements. The author is indebted to the late great mathematician Fritz Grunewald,
for telling him about the existence and providing him a copy of Krämer’s Diplom thesis. Warmest
thanks go to Rubén Sánchez-Garćıa for providing his implementation of the Davis complex, to
Mike Davis and Götz Pfeiffer for discussions on the Coxeter groups, to Oliver Braunling for a
correspondence on the occurrence of given norms on rings of integers, to Nicolas Bergeron for
discussions on asymptotics, to Philippe Elbaz-Vincent and Matthias Wendt for a very careful
lecture of the manuscript and helpful suggestions, and to Graham Ellis and Stephen S. Gelbart
for support and encouragement.

2. Reduction of torsion sub-complexes

LetX be a finite-dimensional cell complex with a cellular action of a discrete group Γ, such that
each cell stabilizer fixes its cell point-wise. Let ℓ be a prime such that every non-trivial finite ℓ–
subgroup of Γ admits a contractible fixed point set. We keep these requirements on the Γ–action
as a general assumption throughout this article. Then, the Γ–equivariant Farrell cohomology

of X, for any trivial Γ–module M of coefficients, gives us the ℓ–primary part Ĥ
∗
(Γ; M)(ℓ) of the

Farrell cohomology of Γ, as follows.

Proposition 3 (Brown [8]). Under our general assumption, the canonical map

Ĥ
∗
(Γ; M)(ℓ) → Ĥ

∗

Γ(X; M)(ℓ)

is an isomorphism.

The classical choice [8] is to take for X the geometric realization of the partially ordered
set of non-trivial finite subgroups (respectively, non-trivial elementary Abelian ℓ–subgroups)
of Γ, the latter acting by conjugation. The stabilizers are then the normalizers, which in many
discrete groups are infinite. And it can impose great computational challenges to determine a

group presentation for them. When we want to compute the module Ĥ
∗

Γ(X; M)(ℓ) subject to
Proposition 3, at least we must get to know the (ℓ–primary part of the) Farrell cohomology
of these normalizers. The Bianchi groups are an instance that different isomorphism types can
occur for this cohomology at different conjugacy classes of elementary Abelian ℓ–subgroups, both
for ℓ = 2 and ℓ = 3. As the only non-trivial elementary Abelian 3–subgroups in the Bianchi
groups are of rank 1, the orbit space Γ\X consists only of one point for each conjugacy class of
type Z/3 and a corollary [8] from Proposition 3 decomposes the 3–primary part of the Farrell
cohomology of the Bianchi groups into the direct product over their normalizers. However, due
to the different possible homological types of the normalizers (in fact, two of them occur), the
final result remains unclear and subject to tedious case-by-case computations of the normalizers.

In contrast, in the cell complex we are going to develop, the connected components of the orbit
space are for the 3–torsion in the Bianchi groups not simple points, but have either the shape
b b or b . This dichotomy already contains the information about the occurring normalizer.

Definition 4. Let ℓ be a prime number. The ℓ–torsion sub-complex of the Γ–cell complex X
consists of all the cells of X the stabilizers in Γ of which contain elements of order ℓ.
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We are from now on going to require the cell complex X to admit only finite stabilizers in Γ,
and we require the action of Γ on the coefficient module M to be trivial. Then obviously only

cells from the ℓ–torsion sub-complex contribute to Ĥ
∗

Γ(X; M)(ℓ). We are going to reduce the
ℓ–torsion sub-complex to one which still carries the Γ–equivariant Farrell cohomology of X, but
can have considerably less orbits of cells, can be easier to handle in practice, and, for certain
classes of groups, leads us to an explicit structural description of the Farrell cohomology of Γ.
The pivotal property of this reduced ℓ–torsion sub-complex will be given in Theorem 7.

Condition A. In the ℓ–torsion sub-complex, let σ be a cell of dimension n − 1, lying in the
boundary of precisely two n–cells τ1 and τ2, the latter cells representing two different orbits.
Assume further that no higher-dimensional cells of the ℓ–torsion sub-complex touch σ; and that
the n–cell stabilizers admit an isomorphism Γτ1

∼= Γτ2 .

Where this condition is fulfilled in the ℓ–torsion sub-complex, we merge the cells τ1 and
τ2 along σ and do so for their entire orbits, if and only if they meet the following additional
condition. Let ℓ be a prime number, and denote by mod ℓ homology group homology with
Z/ℓ–coefficients under the trivial action.

Condition B. The inclusion Γτ1 ⊂ Γσ induces an isomorphism on mod ℓ homology.

Lemma 5. Let X̃(ℓ) be the Γ–complex obtained by orbit-wise merging two n–cells of the ℓ–torsion
sub-complex X(ℓ) which satisfy Conditions A and B. Then,

Ĥ
∗

Γ(X̃(ℓ); M)(ℓ) ∼= Ĥ
∗

Γ(X(ℓ); M)(ℓ).

Proof of Lemma 5. Consider the equivariant spectral sequence in Farrell cohomology [8]. On
the ℓ–torsion sub-complex, it includes a map

Ĥ
∗
(Γσ; M)(ℓ)

d
(n−1),∗
1 |

Ĥ
∗
(Γσ ;M)(ℓ)

// Ĥ
∗
(Γτ1 ; M)(ℓ) ⊕ Ĥ

∗
(Γτ2 ; M)(ℓ) ,

which is the diagonal map with blocks the isomorphisms Ĥ
∗
(Γσ; M)(ℓ)

∼=
// Ĥ

∗
(Γτi ; M)(ℓ) ,

induced by the inclusions Γτi →֒ Γσ. The latter inclusions are required to induce isomorphisms
in Condition B. If for the orbit of τ1 or τ2 we have chosen a representative which is not adjacent
to σ, then this isomorphism is composed with the isomorphism induced by conjugation with

the element of Γ carrying the cell to one adjacent to σ. Hence, the map d
(n−1),∗
1 |

Ĥ
∗

(Γσ ;M)(ℓ)

has vanishing kernel, and dividing its image out of Ĥ
∗
(Γτ1 ; M)(ℓ) ⊕ Ĥ

∗
(Γτ2 ; M)(ℓ) gives us the

ℓ–primary part Ĥ
∗
(Γτ1∪τ2 ; M)(ℓ) of the Farrell cohomology of the union τ1∪τ2 of the two n–cells,

once that we make use of the isomorphism Γτ1
∼= Γτ2 of Condition A. As by Condition A no

higher-dimensional cells are touching σ, there are no higher degree differentials interfering. �

By a “terminal vertex”, we will denote a vertex with no adjacent higher-dimensional cells and
precisely one adjacent edge in the quotient space, and by “cutting off” the latter edge, we will
mean that we remove the edge together with the terminal vertex from our cell complex.

Definition 6. The reduced ℓ–torsion sub-complex associated to a Γ–cell complexX which fulfills
our general assumption, is the cell complex obtained by recursively merging orbit-wise all the
pairs of cells satisfying Conditions A and B; and cutting off edges that admit a terminal vertex
together with which they satisfy Condition B.
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Theorem 7. There is an isomorphism between the ℓ–primary parts of the Farrell cohomology

of Γ and the Γ–equivariant Farrell cohomology of the reduced ℓ–torsion sub-complex.

Proof. We apply Proposition 3 to the cell complex X, and then we apply Lemma 5 each time
that we orbit-wise merge a pair of cells of the ℓ–torsion sub-complex, or that we cut off an
edge. �

In order to have a practical criterion for checking Condition B, we make use of the following
stronger condition.

Here, we write NΓσ for taking the normalizer in Γσ and Sylowℓ for picking an arbitrary
Sylow ℓ–subgroup. This is well defined because all Sylow ℓ–subgroups are conjugate. We use
Zassenhaus’s notion for a finite group to be ℓ–normal, if the center of one of its Sylow ℓ–subgroups
is the center of every Sylow ℓ–subgroup in which it is contained.

Condition B’. The group Γσ admits a (possibly trivial) normal subgroup Tσ with trivial mod ℓ
homology and with quotient group Gσ; and the group Γτ1 admits a (possibly trivial) normal
subgroup Tτ with trivial mod ℓ homology and with quotient group Gτ making the sequences

1 → Tσ → Γσ → Gσ → 1 and 1 → Tτ → Γτ1 → Gτ → 1

exact and satisfying one of the following.

(1) Either Gτ
∼= Gσ , or

(2) Gσ is ℓ–normal and Gτ
∼= NGσ(center(Sylowℓ(Gσ))), or

(3) both Gσ and Gτ are ℓ–normal and there is a (possibly trivial) group T with trivial mod ℓ
homology making the sequence

1 → T → NGσ(center(Sylowℓ(Gσ))) → NGτ (center(Sylowℓ(Gτ ))) → 1

exact.

Lemma 8. Condition B’ implies Condition B.

For the proof of ( B’(2) ⇒ B), we use Swan’s extension [30, final corollary] to Farrell coho-
mology of the Second Theorem of Grün [14, Satz 5].

Theorem 9 (Swan). Let G be a ℓ–normal finite group, and let N be the normalizer of the center

of a Sylow ℓ–subgroup of G. Let M be any trivial G–module. Then the inclusion and transfer

maps both are isomorphisms between the ℓ–primary components of Ĥ
∗
(G; M) and Ĥ

∗
(N ; M).

For the proof of ( B’(3) ⇒ B), we make use of the following direct consequence of the Lyndon–
Hochschild–Serre spectral sequence.

Lemma 10. Let T be a group with trivial mod ℓ homology, and consider any group extension

1 → T → E → Q → 1.

Then the map E → Q induces an isomorphism on mod ℓ homology.

This statement may look like a triviality, but it becomes wrong as soon as we exchange the
rôles of T and Q in the group extension. In degrees 1 and 2, our claim follows from [8, VII.(6.4)].
In arbitrary degree, it is more or less known and we can proceed through the following easy steps.

Proof. Consider the Lyndon–Hochschild–Serre spectral sequence associated to the group exten-
sion, namely
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E2
p,q = Hp(Q; Hq(T ; Z/ℓ)) converges to Hp+q(E; Z/ℓ).

By our assumption, Hq(T ; Z/ℓ) is trivial, so this spectral sequence concentrates in the row q = 0,
degenerates on the second page and yields isomorphisms

(1) Hp(Q; H0(T ; Z/ℓ)) ∼= Hp(E; Z/ℓ).

As for the modules of co-invariants, we have ((Z/ℓ)T )Q
∼= (Z/ℓ)E [19], the trivial actions of

E and T induce that also the action of Q on the coefficients in H0(T ; Z/ℓ) is trivial. Thus,
Isomorphism (1) becomes Hp(Q; Z/ℓ) ∼= Hp(E; Z/ℓ). �

The above lemma directly implies that any extension of two groups both having trivial mod ℓ
homology, again has trivial mod ℓ homology.

Proof of Lemma 8. We combine Theorem 9 and Lemma 10 in the obvious way. �

Remark 11. The computer implementation [11] checks Conditions B′(1) and B′(2) for each
pair of cell stabilizers, using a presentation of the latter in terms of matrices, permutation
cycles or generators and relators. In the below examples however, we do avoid this case-by-case
computation by a general determination of the isomorphism types of pairs of cell stabilizers for
which group inclusion induces an isomorphism on mod ℓ homology. The latter method is to be
considered as the procedure of preference, because it allows us to deduce statements that hold
for the whole class of concerned groups.

3. Farrell cohomology of the Coxeter tetrahedral groups

Figure 1. Quotient of the
Davis complex for a trian-
gle group (diagram reprinted
with the kind permission of
Sanchez-Garcia [25]).

Recall that a Coxeter group is a group admitting a presentation

〈g1, g2, ..., gn | (gigj)mi,j = 1〉,
where mi,i = 1; for i 6= j we have mi,j > 2; and mi,j = ∞ is
permitted, meaning that (gigj) is not of finite order. As the Coxeter
groups admit a contractible classifying space for proper actions [10],
their Farrell cohomology yields all of their group cohomology. So in
this section, we make use of this fact to determine the latter. For
facts about Coxeter groups, and especially for the Davis complex,
we refer to [10]. Recall that the simplest example of a Coxeter
group, the dihedral group Dn, is an extension

1 → Z/n → Dn → Z/2 → 1,

so we can make use of the original application [32] of Wall’s lemma
to obtain its mod ℓ homology for prime numbers ℓ > 2,

Hq(Dn; Z/ℓ) ∼=





Z/ℓ, q = 0,

Z/gcd(n, ℓ), q ≡ 3 or 4 mod 4,

0, otherwise.

Theorem 12. Let ℓ > 2 be a prime number. Let Γ be a Coxeter group admitting a Coxeter

system with at most four generators, and relator orders not divisible by ℓ2. Let Z(ℓ) be the

ℓ–torsion sub-complex of the Davis complex of Γ. If Z(ℓ) is at most one-dimensional and its

orbit space contains no loop nor bifurcation, then the mod ℓ homology of Γ is isomorphic to

(Hq(Dℓ; Z/ℓ))
m
, with m the number of connected components of the orbit space of Z(ℓ).
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The conditions of this theorem are for instance fulfilled by the Coxeter tetrahedral groups;
we specify the exponent m for them in the tables in Figures 2 through 5. In order to prove
Theorem 12, we lean on the following technical lemma. When a group G contains a Coxeter
group H properly (i.e. H 6= G) as a subgroup, then we call H a Coxeter subgroup of G.

Lemma 13. Let ℓ > 2 be a prime number; and let Γσ be a finite Coxeter group with n 6 4
generators. If Γσ is not a direct product of two dihedral groups and not associated to the Coxeter

diagram F4 or H4, then Condition B′ is fulfilled for the triple consisting of ℓ, the group Γσ and

any of its Coxeter subgroups Γτ1 with (n− 1) generators that contains ℓ–torsion elements.

Proof. The dihedral groups admit only Coxeter subgroups with two elements, so without ℓ–
torsion. There are only finitely many other isomorphism types of irreducible finite Coxeter
groups with at most four generators, specified by the Coxeter diagrams

A1 A3 A4 B3 B4 D4 H3

• b b b b b b b b 4 b b b b b4 b

b

b

b b
b 5 b b

on which we can check the condition case by case.

A1. The symmetric group S2 admits no Coxeter subgroups.
A3. The symmetric group S4 is 3–normal; and its Sylow-3–subgroups are of type Z/3, so they

are identical to their center. Their normalizers in S4 match the Coxeter subgroups of
type D3 that one obtains by omitting one of the generators of S4 at an end of its Coxeter
diagram. The other possible Coxeter subgroup type is (Z/2)2, obtained by omitting the
middle generator in this diagram, and contains no 3–torsion.

A4. The Coxeter subgroups with three generators in the symmetric group S5 are D3 × Z/2
and S4, so we only need to consider 3–torsion. The group S5 is 3–normal; the nor-
malizer of the center of any of its Sylow-3–subgroups is of type D3 × Z/2. So for the
Coxeter subgroup S4, we use the normalizer D3 of its Sylow-3–subgroup Z/3; and see
that Condition B′(3) is fulfilled.

B3. We apply Lemma 10 to the Coxeter group (Z/2)3 ⋊ S3, and retain only S3, which is
isomorphic to the only Coxeter subgroup admitting 3–torsion.

B4. The Coxeter subgroups with three generators are of type S4, Z/2 × D3, D4 × Z/2 or
(Z/2)3 ⋊ S3, thus for the three of them containing 3–torsion, we use the above methods
to relate them to D3. The Coxeter group (Z/2)4 ⋊S4 is 3–normal; its Sylow-3–subgroup
is of type Z/3 and admits a normalizer N fitting into the exact sequence

1 → (Z/2)2 → N → D3 → 1.

D4. From the Coxeter diagram, we see that the Coxeter subgroups with three generators are
(Z/2)3 and S4. So we only need to compare with the 3–torsion of S4. For this purpose,
we apply Lemma 10 to the Coxeter group (Z/2)3 ⋊ S4.

H3. The symmetry group Icos120 of the icosahedron splits as a direct product Z/2 ×A5, so
by Lemma 10, we can for all primes ℓ > 2 make use of the alternating group A5 as the
quotient group in Condition B′. The primes other than 2, at which the homology of A5

admits torsion, are 3 and 5. So now let ℓ be 3 or 5. Then the group A5 is ℓ–normal;
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and its Sylow-ℓ–subgroups are of type Z/ℓ, so they are identical to their center. Their
normalizers in A4 are of type Dℓ. From the Coxeter diagram, we see that this is the only
Coxeter subgroup type with two generators that contains ℓ–torsion.

The case where we have a direct product of the one-generator Coxeter group Z/2 with one of
the above groups, is already absorbed by Condition B′. �

Proof of Theorem 12. The Davis complex is a finite-dimensional cell complex with a cellular
action of the Coxeter group Γ with respect to which it is constructed, such that each cell
stabilizer fixes its cell point-wise. Also, it admits the property that the fixed point sets of
the finite subgroups of Γ are acyclic [10]. Thus by Proposition 3, the Γ–equivariant Farrell
cohomology of the Davis complex gives us the ℓ–primary part of the Farrell cohomology of Γ.
As the 3–torsion sub-complex for the group generated by the Coxeter diagram F4 (the symmetry
group of the 24–cell) and the 3– and 5–torsion sub-complexes for the group generated by the
Coxeter diagram H4 (the symmetry group of the 600–cell) as well as the ℓ–torsion sub-complex
of a direct product of two dihedral groups with ℓ–torsion all contain 2–cells, we are either in the
case where the ℓ–torsion sub-complex is trivial or in the case in which we suppose to be from
now on, namely where Γ is not one of the groups just mentioned. Then all the finite Coxeter
subgroups of Γ fulfill the hypothesis of Lemma 13, and hence all pairs of a vertex stabilizer
and the stabilizer of an adjacent edge satisfy Condition B′. By the assumptions on Z(ℓ), also
Condition A is fulfilled for any pair of adjacent edges in Z(ℓ). Hence, every connected component
of the reduced ℓ–torsion sub-complex is a single vertex. From recursive use of Lemma 13 and
the assumption that the relator orders are not divisible by ℓ2, we see that the stabilizer of the
latter vertex has the mod ℓ homology of Dℓ. Theorem 7 now yields our claim. �

Let us determine the exponent m of Theorem 12 for some classes of examples.
The Coxeter triangle groups are given by the presentation

〈 a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = 1 〉 ,
where 2 6 p, q, r ∈ N and 1

p
+ 1

q
+ 1

r
≤ 1.

Proposition 14. For any prime ℓ > 2, the mod ℓ homology of a Coxeter triangle group is

given as the direct sum over the mod ℓ homology of the dihedral groups Dp, Dq and Dr.

Proof. The quotient space of the Davis complex of a Coxeter triangle group can be realized as
the barycentric subdivision of an Euclidean or hyperbolic triangle with interior angles π

p
, π

q
and

π
r
, and a, b and c acting as reflections through the corresponding sides.
We obtain this triangle by realizing the partially ordered set (where arrows stand for inclu-

sions) of Figure 1. The whole Davis complex of the Coxeter triangle groups is then given as a
tessellation of the Euclidean or hyperbolic plane by these triangles. The quotient space of the
ℓ–torsion sub-complex then consists of one vertex for each of the dihedral groups Dp, Dq and Dr

which contain an element of order ℓ. Theorem 7 now yields the result. �

3.1. Results for the Coxeter tetrahedral groups. Consider the groups that are generated
by the reflections on the four sides of a tetrahedron in hyperbolic 3-space, such that the images
of the tetrahedron tessellate the latter. Up to isomorphism, there are only thirty-two such
groups [12]; and we call them the Coxeter tetrahedral groups CT (n), with n running from 1
through 32.
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Name
Coxeter
graph

3−torsion
subcomplex quotient

reduced 3−torsion
subcomplex quotient

Hq(CT (m); Z/3)

CT (1) b b b4 b4
(Z/2)3 ⋊ S3b bD3 bS3 × Z/2 •D3 Hq(D3; Z/3)

CT (2)

b

b

b b
4

4
(Z/2)3 ⋊ S3b bD3 b(Z/2)

3 ⋊ S3 •D3 Hq(D3; Z/3)

CT (3)
b b

bb

4

4

S4

b b

D3

b (Z/2)3 ⋊ S3

bD3

b (Z/2)3 ⋊ S3

•D3 Hq(D3; Z/3)

CT (7) b b b4 b6
bD3

b (Z/2)3 ⋊ S3

bD6
b D6 × Z/2

•D6 • D3 (Hq(D3; Z/3))
2

CT (8)

b

b

b b

D3
b b

S4

b
D3

b
S4

b D3

bD3
b D3 × Z/2

•D3 • D3 (Hq(D3; Z/3))
2

CT (9)

b

b

b b4

bD3
b (Z/2)3 ⋊ S3

bD3
b (Z/2)3 ⋊ S3

bD3
b D3 × Z/2

•D3 • D3 • D3 (Hq(D3; Z/3))
3

CT (10) b b b b6

S4

b b
D3

b D3 × Z/2

bD3
bD6

b D6 × Z/2

•D6 • D3 (Hq(D3; Z/3))
2

CT (11)

b

b

b b
6

D3
b b

D3 × Z/2
b D3

b D6 •D6 • D3 (Hq(D3; Z/3))
2

CT (12)

b

b

b b

six copies of • D3 six copies of • D3 (Hq(D3; Z/3))
6

CT (13)

b

b

b b6 b D6
b D3

b D3

bD3
b D3 × Z/2 •D6 • D3 • D3 • D3 (Hq(D3; Z/3))

4

Figure 2. 3–torsion sub-complexes of the Coxeter tetrahedral groups CT (1)
through CT (13), in the cases where they are non-trivial.

Proposition 15. For all prime numbers ℓ > 2, the mod ℓ homology of all the Coxeter tetrahe-

dral groups is specified in the tables in Figures 2 through 5 in all the cases where it is non-trivial.

Proof. Consider the Coxeter tetrahedral group CT (25), generated by the Coxeter diagram b b

bb

4
.

Then the Davis complex of CT (25) has a strict fundamental domain isomorphic to the barycen-
tric subdivision of the hyperbolic tetrahedron the reflections on the sides of which generate
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Name
Coxeter
graph

3−torsion
subcomplex quotient

reduced 3−torsion
subcomplex quotient

Hq(CT (m); Z/3)

CT (14) b b b6 b6
bD6

b D6 × Z/2

bD6
b D6 × Z/2

b D3 •D6 • D6 • D3 (Hq(D3; Z/3))
3

CT (15) b b b b6
bD3

b D3 × Z/2

bD3
b D3 × Z/2

b D6 •D6 • D3 • D3 (Hq(D3; Z/3))
3

CT (16)

b

b

b b
D3

b b

S4

b D3

bD3
b

S4 b D3 b D3 •D3 • D3 • D3 (Hq(D3; Z/3))
3

CT (17)
b b

bb

6 6 •D6 • D6 • D3 • D3 •D6 • D6 • D3 • D3 (Hq(D3; Z/3))
4

CT (18)
b b

bb

4 4 (Z/2)3 ⋊ S3b bD3 b(Z/2)
3 ⋊ S3

(Z/2)3 ⋊ S3b bD3 b(Z/2)
3 ⋊ S3

•D3 • D3 (Hq(D3; Z/3))
2

CT (19) b b b4 b5
(Z/2)3 ⋊ S3b bD3 bIcos120 •D3 Hq(D3; Z/3)

CT (20)

b

b

b b
5

S4

b b

D3

b Icos120

bD3

b Icos120

•D3 Hq(D3; Z/3)

CT (21)
b b

bb

5 5 Icos120 b b
D3

b Icos120

bIcos120 b
D3 b Icos120

•D3 • D3 (Hq(D3; Z/3))
2

CT (22) b b b b5
Icos120 b b

D3

b D3 × Z/2

bIcos120 b
D3 b D3 × Z/2

•D3 • D3 (Hq(D3; Z/3))
2

CT (23)
b b

bb

5
S4

b b
D3

b Icos120

bD3

bS4
b

D3

b Icos120

•D3 Hq(D3; Z/3)

CT (24) b b b5 b5
Icos120 b b

D3

b Icos120 •D3 Hq(D3; Z/3)

CT (25)
b b

bb

4
S4

b b
D3

b (Z/2)3 ⋊ S3

bD3

bS4
b

D3

b (Z/2)3 ⋊ S3

•D3 Hq(D3; Z/3)

CT (26)
b b

bb

4 5 Icos120 b b
D3

b (Z/2)3 ⋊ S3

bIcos120 b
D3 b (Z/2)3 ⋊ S3

•D3 • D3 (Hq(D3; Z/3))
2

CT (27)

b

b

b b5

bD3
b Icos120

bD3
b Icos120

bD3
b D3 × Z/2

•D3 • D3 • D3 (Hq(D3; Z/3))
3

Figure 3. 3–torsion sub-complexes of the Coxeter tetrahedral groups CT (14)
through CT (27).
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Name
Coxeter
graph

3−torsion
subcomplex quotient

reduced 3−torsion
subcomplex quotient

Hq(CT (m); Z/3)

CT (28) b b b5 b6
bD3

b Icos120

bD6
b D6 × Z/2 •D6 • D3 (Hq(D3; Z/3))

2

CT (29)
b b

bb

6 5
bD3

b Icos120

bD3
b Icos120 b D6 •D6 • D3 • D3 (Hq(D3; Z/3))

3

CT (30)
b b

bb

6 4
bD3

b (Z/2)3 ⋊ S3

bD3
b (Z/2)3 ⋊ S3 b D6 •D6 • D3 • D3 (Hq(D3; Z/3))

3

CT (31)
b b

bb

4 4

4

(Z/2)3 ⋊ S3b bD3 b(Z/2)
3 ⋊ S3 •D3 Hq(D3; Z/3)

CT (32)
b b

bb

6 D3
b b

S4

b

D3

b

S4

b D3

b D6

•D6 • D3 (Hq(D3; Z/3))
2

Figure 4. 3–torsion sub-complexes of the Coxeter tetrahedral groups CT (28)
through CT (32).

Name and Coxeter graph
5−torsion

subcomplex quotient
reduced 5−torsion

subcomplex quotient
Hq(CT (m); Z/5)

CT (19),
b b b4 b5

CT (28)
b b b5 b6

Icos120 b b
D5 b D5 × Z/2 •D5 Hq(D5; Z/5)

CT (20),
b

b

b b
5

CT (22),
b b b b5

CT (23),

b b

bb

5

CT (26),

b b

bb

4 5

CT (27),
b

b

b b5

CT (29)

b b

bb

6 5

Icos120 b b
D5 b Icos120 •D5 Hq(D5; Z/5)

CT (21)

b b

bb

5 5

Icos120 b b

D5

b Icos120

bIcos120 b
D5 b Icos120

•D5 • D5 (Hq(D5; Z/5))
2

CT (24)
b b b5 b5

Icos120 b b

D5

b D5 × Z/2

bIcos120 b
D5 b D5 × Z/2

•D5 • D5 (Hq(D5; Z/5))
2

Figure 5. 5–torsion sub-complexes of the Coxeter tetrahedral groups, in the
cases where they are non-trivial.
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CT (25) geometrically. A strict fundamental domain for the action on the 3–torsion sub-complex
is then the graph

S4
b b

D3

b (Z/2)3 ⋊ S3

bD3

bS4
b

D3

b (Z/2)3 ⋊ S3

where the labels specify the isomorphism types of the stabilizers, namely the dihedral group D3,
which also stabilizes the edges, the symmetric group S4 and the semi-direct product (Z/2)2⋊S3.
The ℓ–torsion sub-complexes for all greater primes ℓ are empty. By Theorem 12, we can reduce
the 3–torsion sub-complex to a single vertex and obtain H∗(CT (25); Z/3) ∼= H∗(D3; Z/3). For
the other Coxeter tetrahedral groups, we proceed analogously. �

The entries in the tables in Figures 2–5 have additionally been checked on the machine [11].

4. The conjugacy classes of finite order elements in the Bianchi groups

The Bianchi groups SL2(O−m) act in a natural way on hyperbolic three-space, which is iso-
morphic to the symmetric space SL2(C)/SU(2) associated to them. The kernel of this action
is the center {±1} of the groups. Thus it is useful to study the quotient of SL2(O−m) by its
center, namely PSL2(O−m), which we also call a Bianchi group. Let Γ = PSL2(O−m). Then any
element of Γ fixing a point inside real hyperbolic 3-space H3

R acts as a rotation of finite order.
Let X be the refined cellular complex obtained from the action of Γ on hyperbolic 3-space as de-
scribed in [22], namely we subdivide H3

R until the stabilizer in Γ of any cell σ fixes σ point-wise.
We achieve this by computing Bianchi’s fundamental polyhedron for the action of Γ, taking as
preliminary set of 2-cells its facets lying on the Euclidean hemispheres and vertical planes of the
upper-half space model for H3

R, and then subdividing along the rotation axes of the elements
of Γ. Let ℓ be a prime number.

It is well-known that if γ is an element of Bianchi group of finite order n, then nmust be 1, 2, 3,
4 or 6, because γ has eigenvalues ρ and ρ with ρ a primitive n–th root of unity and the trace of γ
is ρ+ ρ ∈ O−m ∩R = Z. For ℓ being one of the two occurring primes 2 and 3, this sub-complex
is a finite graph, because the cells of dimension greater than 1 are trivially stabilized in the
refined cellular complex. We reduce this sub-complex with the procedure of [22], which consists
in taking the pairs of edges with a common endpoint such that no further edge is adjacent to
this endpoint, and replacing them together with this endpoint by a single edge.

For the Bianchi groups, we can see an instance of constructing the reduced torsion sub-complex
outside of the geometric model, by constructing the following conjugacy classes graphs. Let ℓ be
a prime number. For a circle to become a graph, we identify the two endpoints of a single edge.

Definition 16. The ℓ–conjugacy classes graph of an arbitrary group Γ is given by the following

construction.

• We take as vertices the conjugacy classes of finite subgroups G of Γ containing elements
γ of order ℓ such that the normalizer of 〈γ〉 in G is not 〈γ〉 itself.

• We connect two vertices by an edge if and only if they admit representatives sharing a
common subgroup of order ℓ.

• For every pair of subgroups of order ℓ in G, which are conjugate in Γ but not in G, we
draw a circle attached to the vertex labeled by G.
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• For every conjugacy class of subgroups of order ℓ which are not properly contained in
any finite subgroup of Γ, we add a disjoint circle.

Theorem 17. Let Γ be any Bianchi group with units {±1} and ℓ any prime number. Then the

ℓ–conjugacy classes graph and the reduced ℓ–torsion sub-complex of the action of Γ on hyperbolic

3–space are isomorphic graphs.

The rest of this section will be devoted to the proof of this theorem. The first ingredient is
the following classification of Felix Klein [15].

Lemma 18 (Klein). The finite subgroups in PSL2(O) are exclusively of isomorphism types the

cyclic groups of orders one, two and three, the Klein four-group D2
∼= Z/2× Z/2, the symmetric

group S3 and the alternating group A4.

Recall the following lemma from [22].

Lemma 19. Let v be a non-singular vertex in the refined cell complex. Then the number n of

orbits of edges adjacent to v in the refined cellular complex X, with stabilizer in PSL2(O−m)
isomorphic to Z/ℓ, is given as follows for ℓ = 2 and ℓ = 3.

Isomorphism type of the vertex stabiliser {1} Z/2 Z/3 D2 S3 A4

n for ℓ = 2 0 2 0 3 2 1
n for ℓ = 3 0 0 2 0 1 2.

Now we investigate the associated normalizer groups. Straight-forward verification using the
multiplication tables of the concerned finite groups yields the following.

Lemma 20. Let G be a finite subgroup of PSL2(O−m). Then the type of the normalizer of any

subgroup of type Z/ℓ in G is given as follows for ℓ = 2 and ℓ = 3, where we print only cases with

existing subgroup of type Z/ℓ.

Isomorphism type of G {1} Z/2 Z/3 D2 S3 A4

normaliser of Z/2 Z/2 D2 Z/2 D2

normaliser of Z/3 Z/3 S3 Z/3.

The final ingredient in the proof of Theorem 17 is the following.

Theorem 21. There is a natural bijection between conjugacy classes of subgroups of PSL2(O−m)
of order ℓ and edges of the reduced ℓ–torsion sub-complex. It is given by considering the stabilizer

of a representative edge in the refined cell complex.

In order to prove the latter theorem, we need several lemmata, and we establish them now.

Lemma 22. Consider two adjacent edges E, E′ of the non-reduced torsion sub-complex. Then

for any representative e of E, there is an adjacent representative e′ of E′ on the same geodesic

line as e.

Proof. Consider the element γ ∈ Γ identifying the end v of e with the origin γ(v) of e′. As E
and E′ are distinct in the orbit space, γ−1 cannot send e′ onto e.
Assume that the stabilizer of v is of isomorphism type Z/ℓZ. Then as the edge γ−1(e′) is point-
wise fixed by Γ, its stabilizer must contain the rotation with axis passing through e. Hence
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γ−1(e′) is adjacent to e and on the same geodesic line.
If the stabilizer of v is of isomorphism type D2, S3 or A4, there are at most two orbits of ℓ–torsion
stabilized edges adjacent to v. So there is an element α in the stabilizer of v such that αγ−1(e′)
is adjacent to e and on the same geodesic line. �

Corollary 23. Any edge of the reduced torsion sub-complex can be represented by a chain of

edges on the intersection of one geodesic line with a strict fundamental domain for Γ in H.

Proof. Consider the chain of edges in the torsion sub-complex that are reduced to the given
edge of the reduced torsion sub-complex. The representatives in H of the edges on this chain lie
on pairwise different orbits because the torsion sub-complex is a sub-complex of the orbit space

Γ\H. Now we start with a representative e for the edge sharing its origin with the reduced edge,
and use Lemma 22 to obtain an adjacent edge e′ on the same geodesic line, representing the
adjacent edge of the torsion sub-complex. We proceed this way, assigning the role of e to e′ and
so on, until we have reached the end of the reduced edge. �

Corollary 24. Any edge of the reduced torsion sub-complex admits only representatives with

stabilizer in the same conjugacy class.

Lemma 25. Let α and γ be elements of PSL2(C). Then the fixed point set in H of α is identified

by γ with the fixed point set of γαγ−1.

Proof. One immediately checks that any fixed point x ∈ H of α induces the fixed point γ(x) of
γαγ−1. As PSL2(C) acts by isometries, the whole fixed point sets are identified. �

Lemma 26. Let v ∈ H3
R be a vertex with stabilizer in Γ of type D2 or A4. Let γ ∈ Γ be a

rotation of order 2 around an edge e adjacent to v.
Then the centralizer CΓ(γ) reflects Hγ — which is the geodesic line through e — onto itself at v.

Proof. Denote by Γv the stabilizer of the vertex v. In the case that Γv is of type D2, which is
Abelian, it admits two order-2-elements centralizing γ and turning the geodesic line through e

onto itself such that the image of e touches v from the side opposite to e (illustration: b
e

b
v

γe
b ).

In the case that Γv is of type A4, it contains a normal subgroup of type D2 that admits again
two such elements. �

Let α be any torsion element in Γ. We construct the chain of edges associated to α as follows.
Consider the edge of the reduced torsion sub-complex to which the edge stabilized by α belongs.
Use Corollary 23 to represent it by a chain of edges on a geodesic line. Now, α is conjugate to
an element γαγ−1 of the stabilizer of one of the edges in the chain. By Lemma 25, the element
γ−1 ∈ Γ maps the mentioned geodesic line to the rotation axis of α. The image under γ−1 of
the chain of edges under consideration is the desired chain associated to α. It is well defined up
to translation along the rotation axis of α.

Lemma 27. Let α be any 2–torsion element in Γ. Then the chain of edges associated to α is a

fundamental domain for the action of the centralizer of α on the rotation axis of α.

Proof. We distinguish the following two cases of how 〈α〉 ∼= Z/2 is included into Γ.
The case b . Suppose that there is no subgroup of type D2 in Γ which contains 〈α〉. Then

the connected component of the 2-torsion subgraph to which any edge stabilized by 〈α〉 belongs,
is homeomorphic to a circle. Choose a first edge e in the chain associated to α. We have an
identification γ between its end and the origin of the next edge e′, and by Lemma 22 we can
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choose it such that the edge stabilizers are conjugate under γ. We can write Γe = 〈α〉 and
Γe′ = 〈γαγ−1〉. By Lemma 25, this gives us the identification γ−1 from e′ to an edge on the
rotation axis of α, adjacent to e because of the first condition on γ. We repeat this step until
we have attached an edge δe on the orbit of the first edge e, with δ ∈ Γ. As δ is an isometry, the
whole chain is translated by δ from the start at e to the start at δe. So the group 〈δ〉 acts on
the rotation axis with fundamental domain our chain of edges. And δαδ−1 is again the rotation
of order 2 around the axis of α. So, δαδ−1 = α and therefore 〈δ〉 < CΓ(α).

The cases b b , b b , b b , . . . Suppose that there is a subgroup G of Γ of type G ∼= D2

containing 〈α〉. If there is no further inclusion G < G′ < Γ with G′ ∼= A4, let G′ := G. Then
the chain associated to α can be chosen such that one of its endpoints is stabilized by G′. The
other endpoint of this chain must then lie on a different Γ–orbit, and admit as stabilizer a group
H ′ containing 〈α〉, of type D2 or A4. By Lemma 26, each G′ and H ′ contain a reflection of the
rotation axis of α, centralizing α. These two reflections must differ from one another because
they do not fix the chain of edges. So their free product tessellates the rotation axis of α with
images of the chain of edges associated to α. �

Lemma 28. Let α be any non-trivial torsion element in a Bianchi group Γ. Then the Γ–image

of the chain of edges associated to α contains the rotation axis of α.

Proof. For α a 2–torsion element, this follows directly from Lemma 27. So we can assume α to
be a 3–torsion element.

The case b b . The non-centralizing reflections of S3, which is associated to the two vertices,
tessellate a geodesic line. Remark that there are exactly three maps Z/3 → Z/3 induced on
the edge stabilizers, given by the three order-2–elements of S3. So, the quotient space by the
centralizer of α must be bigger.

The case b . After finitely many translations, all the edges in the fundamental domain
conjugate to edges on the geodesic line are obtained as images. Hence, the Γ–image contains
the whole geodesic line. �

Proof of Theorem 21. Corollary 24 associates a conjugacy class of type Z/ℓ to each edge of the
reduced ℓ–torsion sub-complex. Conversely, let α and γαγ−1 be conjugate torsion elements
of Γ. We want to show that they stabilize edges representing the same reduced edge. By Klein,
we know that the torsion elements are elliptic and hence fix some geodesic line. Every torsion
element acts as the stabilizer of a line conjugate to one passing through the Bianchi fundamental
polyhedron. So, it is conjugate to one of the representative edge stabilizers. By Lemma 25, we
know that the line fixed by α is sent by γ to the line fixed by γαγ−1.

By Lemmata 27 and 28, the union of the Γ–images of the chain associated to α contains the
whole geodesic line fixed by α (because then, as the Γ–action is cellular, any cell stabilized by
γαγ−1 admits a cell on its orbit stabilized by α). So it follows that all the edges on a geodesic
line belong to the same reduced edge. �

Proof of Theorem 17. Comparing with Lemma 19, we see that the vertex set of the ℓ–conjugacy
classes graph gives precisely the bifurcation points and vertices with only one adjacent edge of
the ℓ–torsion sub-complex. When passing to the reduced ℓ–torsion sub-complex, we get rid of
all vertices with two adjacent edges except in the disjoint circles, see [22]. By Theorem 21, the
edges of the ℓ–conjugacy classes graph give the edges of the reduced ℓ–torsion sub-complex. �
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5. The Farrell cohomology of the Bianchi groups

In this section, we are going to prove Theorem 2. In order to compare with Krämer’s formulae
that we evaluate in the appendix, we make use of his notations for the numbers of conjugacy
classes of the five types of non-trivial finite subgroups in the Bianchi groups. His symbols for
these numbers are printed in the first row of the below table, and the second row gives the
symbol for the type of counted subgroup.

µ2 µT µ3 λ2n λT
4 λ∗

4 λ∗
6 µ−

2

D2 A4 S3 Z/n Z/2 ⊂ A4 Z/2 ⊂ D2 Z/3 ⊂ S3 D2 * A4

Here, the inclusion signs “⊂” mean that we only consider copies of Z/n admitting the specified
inclusion in the given Bianchi group and D2 * A4 means that we only consider copies of D2 not
admitting any inclusion into a subgroup of type A4 of the Bianchi group.

Note that the number µ−
2 is simply the difference µ2 − µT , because every copy of A4 admits

precisely one normal subgroup of type D2. Also, note the following graph-theoretical properties
of the reduced torsion subgraphs, the latter of which we obtain by restricting our attention to
the connected components not homeomorphic to b .

Corollary 29 (Corollary to Lemma 19). For all Bianchi groups with units {±1}, the numbers

of conjugacy classes of finite subgroups satisfy λT
4 6 µT and 2λ∗

6 = µ3, and even

2λ∗
4 = µT + 3µ−

2 .

The values given by Krämer’s formulae are matching with the values computed with [23].

Observation 30. The numbers of conjugacy classes of finite subgroups determine the 3-
conjugacy classes graph and hence the reduced 3–torsion sub-complex for all Bianchi groups
with units {±1}, as we can see immediately from Theorem 17 and the description of the reduced
3–torsion sub-complex in [22].

For the proof of Theorem 2, we need the following ingredients.

Remark 31. In the equivariant spectral spectral sequence converging to the Farrell cohomology
of PSL2 (O−m), the restriction of the differential to maps between cohomology groups of cells
that are not adjacent in the orbit space, are zero. So, the ℓ–primary part of the degree–1–
differentials of this sequence can be decomposed as a direct sum of the blocks associated to the
connected components of the ℓ–torsion sub-complex (Compare with sub-lemma 45 of [22]).

Lemma 32 (Schwermer/Vogtmann). Let M be Z or Z/2. Consider group homology with trivial

M–coefficients. Then the following holds.

• Any inclusion Z/2 → S3 induces an injection on homology.

• An inclusion Z/3 → S3 induces an injection on homology in degrees congruent to 3 or 0
mod 4, and is otherwise zero.

• Any inclusion Z/2 → D2 induces an injection on homology in all degrees.

• An inclusion Z/3 → A4 induces injections on homology in all degrees.

• An inclusion Z/2 → A4 induces injections on homology in degrees greater than 1, and is

zero on H1.
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For the proof in Z–coefficients, see [26], for Z/2–coefficients see [22].

Lemma 33 ([22], lemma 32). Let q > 3 be an odd integer number. Let v be a vertex representa-

tive of stabilizer type D2 in the refined cellular complex for the Bianchi groups. Then the three

images in (Hq(D2;Z))(2) induced by the inclusions of the stabilizers of the edges adjacent to v,

are linearly independent.

Finally, we establish the following last ingredient for the proof of Theorem 2, which might be
of interest in its own right.

Lemma 34. In all rows q > 1 and outside connected components of type b , the d1p,q–differential
of the equivariant spectral sequence converging to Hp+q(PSL2 (O−m) ; Z) is always injective.

Proof. For matrix blocks of the d1p,q–differential associated to vertices with just one adjacent
edge, we see from Lemma 19 that the vertex stabilizer is of type A4 in 2–torsion, respectively of
type S3 in 3–torsion, so injectivity follows from Lemma 32. As we have placed ourselves outside
connected components of type b , the remaining vertices are bifurcation points of stabilizer
type D2 and injectivity follows from Lemma 33. �

Proof of Theorem 2. In 3–torsion, Theorem 2 follows directly from Observation 30, Corollary 29
and Theorem 7. In 2–torsion, what we need to determine with the numbers of conjugacy classes
of finite subgroups, is the 2–primary part of the E2

p,q–term of the equivariant spectral sequence
converging to Hp+q(PSL2 (O−m) ; Z) in all rows q > 1. From there, we see from Theorem 7
that we obtain the claim. By Remark 31, we only need to check this determination on each
homeomorphism type of connected components of the 2–torsion subgraph. We use Theorem 17
to identify the reduced 2–torsion subgraph and the 2–conjugacy classes graph. Then we can
observe that

• Krämer’s number λ∗
4 − λ4 determines the number of connected components of type b .

• Krämer’s number λ∗
4 determines the number of edges of the 2–torsion subgraph outside

connected components of type b . Lemma 34 tells us that the block of the d1p,q–differential
of the equivariant spectral sequence associated to such edges is always injective.

• Krämer’s number µ−
2 determines the number of bifurcation points, and µT determines

the number of vertices with only one adjacent edge of the 2–torsion subgraph.

Using Corollary 29, we obtain the explicit formulae in Theorem 2. �

6. The cohomology ring structure of the Bianchi groups

In [5], Berkove has found a compatibility of the cup product of the cohomology ring of a
Bianchi group with the cup product of the cohomology rings of its finite subgroups. This
compatibility within the equivariant spectral sequence implies that all products that come from
different connected components of the reduced torsion sub-complex (which we turn into the
conjugacy classes graph in Section 4) are zero. It follows that the cohomology ring of any
Bianchi group splits into a restricted sum over sub-rings, which depend in degrees above the
virtual cohomological dimension only on the homeomorphism type of the associated connected
component of the reduced torsion sub-complex. The analogue in cohomology of Theorem 2 and
Berkove’s computations of sample cohomology rings [4] yield the following corollary in 3–torsion.
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T subring associated to connected components of type T in 2− conjugacy classes graph

b F2[n1](m1)

b b F2[m3, u2, v3, w3]/〈m3v3 = 0, u32 + w2
3 + v23 +m2

3 + w3(v3 +m3) = 0〉

b b F2[n1,m2, n3,m3]/〈n1n3 = 0, m3
2 +m2

3 + n2
3 +m3n3 + n1m2m3 = 0〉

b b F2[n1,m1,m3]/〈m3(m3 + n2
1m1 + n1m

2
1) = 0〉

Table 1. Restricted summands of the mod-2 cohomology ring H∗(Γ;F2) of a
Bianchi group Γ above its virtual cohomological dimension.

We use Berkove’s notation, in which the degree j of a cohomology generator xj is appended
as a subscript. Furthermore, writing cohomology classes inside square brackets means that they
are polynomial (of infinite multiplicative order), and writing them inside parentheses means that
they are exterior (their powers vanish). The restricted sum ⊕̃ identifies all the degree zero classes
into a single copy of Z; when we write it with a power, we specify the number of summands.
Recall that λ6 (respectively µ3) counts the number of conjugacy classes of subgroups of type
Z/3 (respectively S3) in the Bianchi group.

Corollary 35. In degrees above the virtual cohomological dimension, the 3–primary part of the

cohomology ring of any Bianchi group Γ with units {±1} is given by

H∗(Γ; Z)(3) ∼= ⊕̃(λ6−
µ3
2
)
Z[x2](σ1) ⊕̃

µ3
2 Z[x4](x3),

where the generators xj are of additive order 3.

In 2–torsion, it does in general not suffice to know only the numbers of conjugacy classes of
finite subgroups to obtain the cohomology ring structure, because for the two reduced 2–torsion

sub-complexes b b b b and b b b b , we obtain the same numbers of conjugacy classes and
homological 2–torsion, but different multiplicative structures of the mod-2 cohomology rings, as
we can see from Table 1, which we compile from the results of [5] (and [22]).

Observation 36. In the cases of class numbers 1 and 2, only the homeomorphism types T
listed in Table 1 occur as connected components in the reduced 2–torsion sub-complex. So for
all such Bianchi groups Γ with units {±1}, the mod-2 cohomology ring H∗(Γ;F2) splits, above
the virtual cohomological dimension, as a restricted sum over the sub-rings specified in Table 1,
with powers according to the multiplicities of the occurrences of the types T .
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Appendix A. Numerical evaluation of Krämer’s formulae

A.1. Numbers of conjugacy classes in 3–torsion. Denote by δ the number of finite ramifi-
cation places of Q(

√−m ) over Q. Let k+ be the totally real number field Q(
√
3m ) and denote

its ideal class number by hk+ . Krämer introduces the following indicators:

z :=

{
2, if 3 is the norm of an integer of k+,

1, otherwise.

For m ≡ 0 mod 3 and m 6= 3, denote by ǫ := 1
2(a + b

√
m
3 ) > 1 the fundamental unit of k+

(where a, b ∈ N). Now, define

x′ :=

{
2, if the norm of ǫ is 1,

1, if the norm of ǫ is − 1

and

y :=

{
2, if b ≡ 0 mod 3,

1, otherwise.

Then [17, 20.39 and 20.41] yield the following formulae in 3–torsion.

m specifying Bianchi groups PSL2 (O−m) λ∗
6 λ6 − λ∗

6

m ≡ 2 mod 3 0 z
2hk+

m ≡ 1 mod 3 gives either 2δ−1 1
2(hk+ − 2δ−1)

or 0 1
2hk+

m ≡ 6 mod 9 0 x′yhk+

m ≡ 3 mod 9, m 6= 3 gives either 2δ−2 1
2(3x

′hk+ − 2δ−2)

or 0 1
23x

′hk+

The above case distinctions come from the fact that Krämer’s theorem 20.39 ranges over all
types of maximal orders in quaternion algebras over Q(

√
−m ), in which Krämer determines the

numbers of conjugacy classes in the norm-1-group. The remaining task in order to decide which
of the cases applies, is to find out of which type considered in the mentioned theorem is the
maximal order M2(O−m). Some methods to cope with this task are introduced in [17, §27].
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Krämer’s resulting criteria can be summarized as follows for 3-torsion.

condition implication

m ≡ 2 mod 3 µ3 = λ∗
6 = 0.

m ≡ 6 mod 9 µ3 = λ∗
6 = 0.

m prime andm ≡ 1 mod 3 λ∗
6 > 0.

m = 3p with p prime and p ≡ 1 mod 3 λ∗
6 > 0.

m ≡ 1 mod 3 and − 3 occurs as norm onOk+ λ∗
6 > 0.

m ≡ 1 mod 3 and − 3 does not occur as norm onOk+ λ6 − λ∗
6 > 0.

m ≡ 1 mod 3 andm admits a prime divisor p with p ≡ 2 mod 3 λ6 − λ∗
6 > 0.

m ≡ 3 mod 9 and x′ = 1
and m

3 admits only prime divisors p with p ≡ 1 mod 12 λ∗
6 > 0.

m ≡ 3 mod 9 and x′ = 1
and m

3 admits a prime divisor p with p ≡ 5 mod 12 λ∗
6 = 0.

m ≡ 3 mod 9 and h(k′+) = 2δ−3

and m
3 admits only prime divisors p with p ≡ ±1 mod 12 or p = 2 λ∗

6 = 0.

m ≡ 3 mod 9 and h(k′+) = 1
and m

3 = p′p with p′, p prime and p′ ≡ p ≡ 7 mod 12 λ∗
6 > 0.

In order to determine Krämer’s indicator z, we need to determine if a given value occurs as
the norm on the ring of integers of an imaginary quadratic number field. This is implemented in
Pari/GP [1] (the first step is computing the answer under the Generalized Riemann hypothesis,
and the second step is a check computation which confirms that we arrive at that answer without
this hypothesis). Additionally, we compare with the below criterion [17, (20.13)].

Lemma 37 (Krämer). Let m be not divisible by 3.

• If the number −3 is the norm of an integer in the totally real number field k+, then all

prime divisors p ∈ N of m satisfy the congruence p ≡ 1 mod 3.
Especially, the congruence m ≡ 1 mod 3 is implied.

• If the number 3 is the norm of an integer in the totally real number field k+, then all

prime divisors p ∈ N of m satisfy either p = 2 or the congruence p ≡ ±1 mod 12.
Additionally, the congruence m ≡ 2 mod 3 is implied.
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With Krämer’s criteria at hand, we can decide for many Bianchi groups, which of the alter-
native cases in Krämer’s formulae must be used. We do this in the below tables for all such
Bianchi groups PSL2 (O−m) with absolute value of the discriminant ∆ ranging between 7 and

2003, where we recall that the discriminant is ∆ =

{
−m, m ≡ 3 mod 4,

−4m, else.

In the cases m ∈ {102, 133, 165, 259, 559, 595, 763, 835, 1435}, where these statements are not
sufficient to eliminate the wrong alternatives, we insert the results of [23]. This way, the be-
low tables treat all Bianchi groups with units {±1} and discriminant of absolute value less
than 615. The cases where an ambiguity remains (so to exclude them from our tables) are m ∈
{210, 262, 273, 298, 345, 426, 430, 462, 481, 615, 1155, 1159, 1195, 1339, 1351, 1407, 1515, 1807}. For
tables of the cases without ambiguity, with m ranging up to 10000, see the preprint version 2 of
this paper on HAL.

In [16], a theorem is established which solves all these ambiguities by giving for each type
of finite subgroups in PSL2 (O−m) criteria equivalent to its occurrence, in terms of congruence
conditions on the prime divisors of m.

3−conjugacy
classes graph

m specifying Bianchi groups PSL2 (O−m) with this 3−conjugacy classes graph

b
2, 5, 6, 10, 11, 14, 15, 17, 22, 23, 29, 34, 35, 38, 41, 46, 47, 51, 53, 55,

58, 59, 62, 71, 82, 83, 86, 87, 89, 94, 95, 101, 106, 113, 115, 118, 119, 123, 131, 134,

137, 142, 149, 155, 158, 159, 166, 167, 173, 178, 179, 187, 191, 197, 202, 203, 206, 214, 215, 226,

227, 233, 235, 239, 251, 254, 257, 263, 267, 269, 274, 278, 281, 287, 293, 295, 303, 311, 317, 319,

323, 326, 334, 335, 339, 346, 347, 353, 355, 358, 359, 371, 382, 383, 389, 391, 394, 395, 398, 401,

411, 415, 422, 431, 443, 446, 447, 449, 451, 454, 461, 466, 467, 478, 479, 491, 515, 519, 527, 535,

551, 563, 583, 591, 599, 623, 635, 647, 655, 659, 667, 683, 695, 699, 707, 719, 731, 743, 755, 779,

791, 799, 807, 815, 827, 839, 843, 879, 887, 895, 899, 911, 943, 947, 951, 955, 959, 979, 983, 995,

1003, 1019, 1031, 1055, 1059, 1091, 1103, 1111, 1115, 1135, 1139, 1151, 1163, 1167, 1187, 1207,

1211, 1219, 1223, 1243, 1247, 1255, 1259, 1271, 1283, 1307, 1315, 1343, 1347, 1363, 1367, 1379,

1383, 1411, 1415, 1439, 1487, 1499, 1507, 1511, 1523, 1527, 1535, 1555, 1559, 1563, 1571, 1607,

1631, 1639, 1643, 1655, 1667, 1671, 1707, 1711, 1735, 1751, 1763, 1779, 1787, 1795, 1799, 1811,

1819, 1823, 1835, 1847, 1851, 1883, 1903, 1907, 1915, 1919, 1923, 1927, 1931, 1943, 1959, 1979, 2003,

2 b
26, 42, 65, 69, 70, 74, 77, 78, 85, 110, 122, 130, 141, 143, 145, 154, 161, 170, 182, 185, 186, 190, 194,

195, 205, 209, 213, 218, 221, 222, 230, 231, 238, 253, 265, 266, 286, 305, 310, 314, 322, 329, 365,

366, 370, 377, 386, 406, 407, 410, 418, 434, 437, 442, 445, 455, 458, 470, 473, 474, 483, 485, 493, 494,

497, 555, 611, 627, 671, 715, 767, 803, 851, 923, 935, 1015, 1079, 1095, 1199, 1235, 1295, 1311, 1391,

1403, 1455, 1463, 1491, 1495, 1595, 1599, 1615, 1679, 1703, 1739, 1771, 1855, 1887, 1991,

3 b
30, 66, 107, 138, 174, 255, 282, 302, 318, 354, 419, 498, 503, 759, 771, 795, 835, 863, 1007, 1319,

1355, 1427, 1479, 1551, 1583, 1619, 1691, 1695, 1871, 1895, 1947, 1967,

4 b
33, 105, 114, 146, 177, 249, 258, 285, 290, 299, 321, 330, 341, 357, 374, 385, 393, 402, 413,

429, 465, 482, 595, 663, 915, 987, 1023, 1067, 1239, 1435, 1727, 1743, 1955, 1995,

5 b
1043, 1203, 1451,

6 b
102, 165, 246, 362, 390, 435, 1335, 1419, 1547,

7 b
587, 971,
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3−conjugacy
classes graph

m specifying Bianchi groups PSL2 (O−m) with this 3−conjugacy classes graph

8 b
438, 1131, 1635,

b b 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271, 283, 307, 379, 439,

463, 487, 499, 523, 571, 607, 619, 631, 691, 727, 739, 751, 787, 811, 823, 859, 883, 907, 919, 967,

991, 1039, 1051, 1063, 1123, 1171, 1231, 1279, 1303, 1399, 1423, 1447, 1459, 1471, 1483, 1531,

1543, 1567, 1579, 1627, 1663, 1699, 1723, 1759, 1783, 1831, 1867, 1987, 1999,

b b
∐

b
39, 111, 183, 219, 291, 327, 331, 367, 471, 543, 579, 643, 723, 831, 939, 1011, 1047, 1087, 1119,

1191, 1227, 1263, 1291, 1299, 1327, 1371, 1623, 1803, 1839, 1879, 1951, 1983,

b b
∐

2 b
547, 1747,

b b
∐

4 b
687,

b b
∐

10 b
1731,

2 b b 13, 37, 61, 91, 109, 157, 181, 229, 247, 277, 349, 373, 403, 421, 427, 511, 679, 703, 871,

1099, 1147, 1267, 1591, 1603, 1687, 1891, 1963,

2 b b
∐

b
73, 97, 193, 241, 259, 313, 337, 409, 457, 559, 763, 1651, 1939,

2 b b
∐

2 b
21, 57, 93, 129, 201, 309, 381, 397, 399, 417, 453, 489, 651, 903, 1443, 1659, 1767, 1843,

2 b b
∐

3 b
433, 1027, 1387,

2 b b
∐

8 b
237,

4 b b 217, 301, 469,

4 b b
∐

2 b
133.
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A.2. Numbers of conjugacy classes in 2–torsion. Denote by δ the number of finite rami-
fication places of Q(

√
−m ) over Q. Let k+ be the totally real number field Q(

√
m ) and denote

its ideal class number by hk+ . For m 6= 1, Krämer introduces the following indicators:

z :=

{
2, if 2 is the norm of an integer of k+,

1, otherwise,
q :=

{
2, if ± 2 is the norm of an integer of k+,

1, otherwise,

w :=

{
2, if ∀ prime divisors p of m with p 6= 2 we have p ≡ ±1 mod 8,

1, if m admits prime divisors p ≡ ±3 mod 8.

Furthermore, denote by ǫ := 1
2 (a+b

√
m) > 1 the fundamental unit of k+ (where a, b ∈ N). Now,

define

x :=

{
2, if the norm of ǫ is 1,

1, if the norm of ǫ is − 1
and y :=

{
3, if b ≡ 0 mod 2,

1, if b ≡ 1 mod 2.

Then [17, 26.12 and 26.14] yield the following formulae in 2–torsion.

m specifying Bianchi groups PSL2 (O−m) µT µ−
2 λT

4 λ∗
4 λ4 − λ∗

4

m ≡ 7 mod 8 0 0 0 0 z
2hk+

m ≡ 3 mod 8 gives either 2δ 0 2δ−1 2δ−1 1
2(hk+ − 2δ−1)

or (provided that 2δ−1 > 1) 0 0 0 0 1
2hk+

m ≡ 2 mod 4 and w = 2 gives either 2δ−1 2δ−1 2δ−2z 2δ 1
4x(z + 2)hk+ − 2δ−1

or (provided that 2δ−1 > 1) 0 0 0 0 1
4x(z + 2)hk+

m ≡ 2 mod 4 and w = 1 gives either 2δ−1 0 2δ−2 2δ−2 1
2(

3
2xhk+ − 2δ−2)

or 0 2δ−1 0 2δ−23 3
2(

1
2xhk+ − 2δ−2)

or (provided that 2δ−1 > 2) 0 0 0 0 3
4xhk+

m ≡ 1 mod 8 andm 6= 1 and w = 2 gives either 2δ−1 2δ−1 2δ−2 2δ 2xhk+ − 2δ−1

or (provided that 2δ−2 > 1) 0 0 0 0 2xhk+

m ≡ 1 mod 8 and w = 1 gives either 2δ−1 0 2δ−2 2δ−2 2xhk+ − 2δ−3

or 0 2δ−1 0 2δ−23 2xhk+ − 2δ−33

or (provided that 2δ−2 > 2) 0 0 0 0 2xhk+

m ≡ 5 mod 8 0 2δ−1 0 2δ−23 1
2

(
x(2y + 1)hk+ − 2δ−23

)

or (provided that 2δ−2 > 1) 0 0 0 0 1
2x(2y + 1)hk+
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The above case distinctions come from the fact that Krämer’s theorem 26.12 ranges over all
types of maximal orders in quaternion algebras over Q(

√
−m ), in which Krämer determines

the numbers of conjugacy classes in the norm-1-group. The remaining task in order to decide
which of the cases applies, is to find out of which type considered in the mentioned theorem is
the maximal order M2(O−m). Some methods to cope with this task are introduced in [17, §27],
where Krämer obtains the following criteria for the 2–torsion numbers:

condition implication

m ≡ 7 mod 8 µT = µ−
2 = λT

4 = λ∗
4 = 0.

m ≡ 5 mod 8 µT = λT
4 = 0.

m ≡ 21 mod 24 λ∗
4 = 0.

m ≡ 0 mod 6 and λ∗
4 > 0 λT

4 > 0.

m ≡ 9 mod 24 and λ∗
4 > 0 λT

4 > 0.

m prime andm ≡ 1 or 3 mod 8 λT
4 > 0.

m ≡ 5 mod 8 andm prime λ∗
4 > 0.

m = 2p with p prime and p ≡ 3 or 5 mod 8 λ∗
4 > 0.

m = p′p with p and p′ prime and p ≡ p′ ≡ 3 or 5 mod 8 λ∗
4 > 0.

m = 3p with p prime and p ≡ 1 or 3 mod 8 λT
4 > 0.

m ≡ 1 or 2 mod 4 andm 6= 1 and x = 1 λ∗
4 > 0 and µ−

2 > 0.

m ≡ 1 or 2 mod 4 andm 6= 1 and x = 2 λ4 − λ∗
4 > 0.

m ≡ 3 mod 8 and − 2 occurs as norm onOk+ λ∗
4 > 0 and λT

4 > 0.

m ≡ 3 mod 8 and − 2 does not occur as norm onOk+ λ4 − λ∗
4 > 0.

m ≡ 3 mod 8 andm admits a prime divisor p with p ≡ 5 or 7 mod 8 λ4 − λ∗
4 > 0.

m ≡ 1 mod 8 and w = 1 and h(k+) = 2δ−3 µ−
2 = 0.

m ≡ 2 mod 4 and − 2 occurs as norm onOk+ λT
4 > 0.

m ≡ 2 mod 4 and − 2 does not occur as norm onOk+ and h(k+) = 2δ−2 λ∗
4 = 0.

m ≡ 2 mod 4 and q = 1 and h(k+) = 2δ−1 and w = 2 λ∗
4 = 0.

m ≡ 2 mod 4 and h(k+) = 2δ−2

andm admits a prime divisor p with p ≡ 5 or 7 mod 8 λ∗
4 = 0.
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With the above criteria at hand, we can decide for many Bianchi groups, which of the alter-
native cases in Krämer’s formulae must be used. We do this in the below tables for all such
Bianchi groups PSL2 (O−m) with absolute value of the discriminant ∆ ranging between 7 and
2003. In the cases m ∈ { 34, 105, 141, 142, 194, 235, 323, 427, 899, 979, 1243, 1507}, where these
statements are not sufficient to eliminate the wrong alternatives, we insert the results of [23].
This way, the below tables treat all Bianchi groups with units {±1} and discriminant of absolute
value less than 820. The cases where an ambiguity remains (so to exclude them from our tables)
are the following values of m: 205, 221, 254, 273, 305, 321, 322, 326, 345, 377, 381, 385, 386,
410, 438, 465, 469, 473, 482, 1067, 1139, 1211, 1339, 1443, 1763, 1771, 1947.

The above mentioned theorem on subgroup occurrences [16] solves all these ambiguities.

2−torsion
homology

m specifying Bianchi groups PSL2 (O−m) with this 2−torsion homology

P b 7, 15, 23, 31, 35, 39, 47, 55, 71, 87, 91, 95, 103, 111, 115, 127, 143, 151, 155,

159, 167, 183, 191, 199, 203, 215, 239, 247, 259, 263, 271, 295, 299, 303, 311, 319, 327, 335,

355, 367, 371, 383, 395, 403, 407, 415, 431, 447, 463, 471, 479, 487, 503, 515, 519, 535, 543,

551, 559, 583, 591, 599, 607, 611, 631, 635, 647, 655, 667, 671, 687, 695, 703, 707, 719, 743,

751, 755, 763, 767, 807, 815, 823, 831, 835, 851, 863, 871, 879, 887, 911, 919, 923, 951, 955,

967, 983, 991, 995, 1007, 1027, 1031, 1039, 1043, 1047, 1055, 1063, 1079, 1099, 1103, 1115,

1119, 1135, 1147, 1151, 1159, 1167, 1195, 1199, 1219, 1231, 1247, 1255, 1263, 1267, 1279,

1303, 1315, 1319, 1355, 1363, 1379, 1383, 1391, 1399, 1403, 1415, 1423, 1439, 1447, 1471,

1487, 1511, 1535, 1543, 1555, 1559, 1583, 1591, 1603, 1607, 1623, 1643, 1651, 1655, 1663,

1671, 1703, 1711, 1727, 1739, 1759, 1783, 1795, 1807, 1823, 1831, 1835, 1839, 1871, 1879,

1883, 1891, 1895, 1903, 1915, 1919, 1939, 1943, 1951, 1959, 1963, 1983, 1991, 1999,

2P b 14, 46, 62, 94, 119, 158, 195, 206, 231, 255, 287, 302, 334, 382, 391, 398, 435, 446, 455,

478, 483, 511, 527, 555, 595, 615, 623, 651, 663, 679, 715, 759, 791, 795, 903, 915, 935, 943,

987, 1015, 1095, 1131, 1207, 1235, 1271, 1295, 1311, 1335, 1343, 1407, 1435, 1455, 1463,

1479, 1491, 1515, 1547, 1551, 1595, 1615, 1631, 1635, 1659, 1687, 1695, 1751, 1767, 1799,

1855, 1887, 1927, 1955, 1967,

3P b 21, 30, 42, 69, 70, 77, 78, 79, 93, 110, 133, 138, 154, 174, 182, 186, 190, 213, 222, 223,

230, 235, 237, 253, 266, 282, 286, 301, 309, 310, 318, 341, 359, 366, 406, 413, 426, 427,

430, 437, 453, 470, 474, 494, 839, 895, 899, 1191, 1223, 1367, 1527, 1567, 1639, 1735, 1847,

4P b 161, 217, 238, 329, 399, 497, 799, 959, 1023, 1155, 1239, 1351, 1679, 1743, 1995,

5P b 439, 727, 1111, 1327,

6P b 142, 165, 210, 285, 330, 357, 390, 429, 434, 462, 1495, 1599,

7P b 141, 1087,

8P b 105,

2P ∗
D2

5, 10, 13, 26, 29, 53, 58, 61, 74, 106, 109, 122, 149, 157, 173, 181, 202, 218, 277,

293, 298, 314, 317, 362, 394, 397, 421, 458, 461,
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2−torsion
homology

m specifying Bianchi groups PSL2 (O−m) with this 2−torsion homology

2P ∗
D2

+ 2P b 37, 101, 197, 269, 349, 373, 389,

2P ∗
D2

+ 3P b 229, 346,

4P ∗
D2

85, 130, 170, 290, 365, 370, 493,

4P ∗
D2

+ P b 65, 185, 265, 481,

4P ∗
D2

+ 3P b 442, 445,

4P ∗
D2

+ 4P b 485,

4P ∗
D2

+ 5P b 145,

P ∗
A4

+ P ∗
D2

2,

2P ∗
A4

11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 283, 307, 331, 347, 379,

419, 467, 491, 523, 547, 563, 571, 587, 619, 643, 683, 691, 739, 787, 811, 827, 859, 883, 907,

947, 971, 1019, 1051, 1123, 1163, 1187, 1259, 1283, 1291, 1307, 1427, 1451, 1459, 1483, 1499,

1531, 1571, 1579, 1619, 1667, 1699, 1723, 1747, 1867, 1931, 1979, 2003,

2P ∗
A4

+ P b 6, 22, 38, 86, 118, 134, 166, 214, 262, 278, 358, 422, 443, 454, 659, 1091, 1171, 1523, 1627,

1787, 1811, 1907, 1987,

2P ∗
A4

+ 2P b 499,

2P ∗
A4

+ 2P ∗
D2

17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 281, 313, 337, 353, 409, 433, 449, 457,

2P ∗
A4

+ 2P ∗
D2

+ P b 82, 146, 178, 274, 466,

2P ∗
A4

+ 2P ∗
D2

+ 2P b 34, 194,

2P ∗
A4

+ 2P ∗
D2

+ 4P b 226, 257,

2P ∗
A4

+ 2P ∗
D2

+ 8P b 401,

4P ∗
A4

51, 123, 187, 267, 339, 411, 451, 699, 771, 779, 803, 843, 1059, 1203, 1347,

1563, 1691, 1707, 1779, 1819, 1843, 1923,

4P ∗
A4

+ P b 219, 291, 323, 579, 723, 731, 939, 979, 1003, 1011, 1227, 1243, 1371, 1387, 1411, 1507, 1731,

1803,

4P ∗
A4

+ 2P b 66, 102, 114, 246, 258, 354, 374, 402, 418, 498, 1851,

4P ∗
A4

+ 3P b 33, 57, 129, 177, 201, 209, 249, 393, 417, 489, 1299,

8P ∗
A4

627, 1419.
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Figure 6. Average homological 3-torsion outside subgroups of type S3, scaled
as indicated.

A.3. Asymptotic behavior of the number of conjugacy classes. From Krämer’s above
formulae, we see that both in 2–torsion and in 3–torsion, the number of conjugacy classes of finite
subgroups, and hence also the cardinality of the homology of the Bianchi groups in degrees above
their virtual cohomological dimension, admits only two factors which are not strictly limited:
hk+ and 2δ . As for the ideal class number hk+ , it is subject to the predictions of the Cohen-

Lenstra heuristic [9]. As for the factor 2δ, the number δ of finite ramification places of Q(
√−m )

over Q is well-known to equal the number of prime divisors of the discriminant of Q(
√−m ).

The numerical evaluation of Krämer’s formulae provides us with databases which are over
a thousand times larger than what is reasonable to print in Sections A.1 and A.2. We now
give an instance of how these databases can be exploited. Denote the discriminant of Q(

√
−m )

by ∆. In the cases m ≡ 3 mod 4, we have ∆ = −m. Denote the number λ6 − λ∗
6 of connected

components of type b in the 3-conjugacy classes graph by λ′
6(∆). Then clearly, the subgroup in

Hq(PSL2 (O−m)), q > 2, generated by the order-3-elements coming from the connected compo-

nents of this type, is of order 3λ
′

6(∆). Denote by covolume(∆) the volume of the quotient space

PSL2(O−m)\H. The study of the ratio 3λ
′

6(∆)

covolume(∆) is motivated by the formulae in [3]. In Figure 6,

we print the logarithm of the average of this ratio over the cases |∆| ≡ 3 mod 4, scaled by a
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factor m
−2
3 , so to say

m
−2
3 log


 1

#{∆ : |∆| 6 m}
∑

|∆|6m

3λ
′

6(∆)

covolume(∆)


 ,

where we consider m and ∆ as independent variables, m running through the square-free positive
rational integers. In order to cope with the fact that in some cases, Krämer’s formulae leave an
ambiguity, we print a function assuming the lowest possible values of λ′

6(∆) and one assuming
the highest possible values of λ′

6(∆) in the same diagram.
So for m greater than 10815 and less than one million, we can observe that the average of the

above ratio oscillates between exp(m
2
3 0.023695) and exp(m

2
30.054419). For m less than 10815,

this oscillation is much stronger, and the diagram might be seen as suggesting that possibly the
oscillation could remain between these two bounds for m greater than one million.

For related asymptotics, see the recent works of Bergeron/Venkatesh [3] and Sengün [27].
For an alternative computer program treating the Bianchi groups, see the SAGE package of
Cremona’s student Aranés [2], and for GL2(O) see Yasaki’s program [33].
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[16] Norbert Krämer, Die endlichen Untergruppen der Bianchi-Gruppen — Einbettung von Maximalordnungen
rationaler Quaternionenalgebren, preprint, http://fr.arxiv.org/abs/1207.6460 (2012) (German).

[17] , Die Konjugationsklassenanzahlen der endlichen Untergruppen in der Norm-Eins-Gruppe von Maxi-
malordnungen in Quaternionenalgebren, Diplomarbeit, Mathematisches Institut, Universität Bonn, 1980.
http://tel.archives-ouvertes.fr/tel-00628809/ (German).

[18] Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathe-
matics, vol. 219, Springer-Verlag, New York, 2003. MR1937957 (2004i:57021), Zbl 1025.57001

[19] John McCleary, A user’s guide to spectral sequences. 2nd ed., Cambridge Studies in Advanced Mathematics
58. Cambridge University Press, 2001.Zbl 0959.55001
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