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ACCESSING THE FARRELL–TATE COHOMOLOGY

OF DISCRETE GROUPS

ALEXANDER D. RAHM

Abstract. We introduce a method to explicitly determine the Farrell–Tate cohomology of
discrete groups. We apply this method to the Coxeter triangle and tetrahedral groups as well
as to the Bianchi groups, i.e. PSL2(O) for O the ring of integers in an imaginary quadratic
number field. We show that the Farrell–Tate cohomology of the Bianchi groups is completely
determined by the numbers of conjugacy classes of finite subgroups. In fact, our access to
Farrell–Tate cohomology allows us to detach the information about it from geometric models
for the Bianchi groups and to express it only with the group structure. Formulae for the numbers
of conjugacy classes of finite subgroups have been determined in a thesis of Krämer, in terms
of elementary number-theoretic information on O. An evaluation of these formulae for a large
number of Bianchi groups is provided numerically in the appendix. Our new insights about the
homological torsion allow us to give a conceptual description of the cohomology ring structure
of the Bianchi groups.

1. Introduction

Farrell–Tate cohomology Ĥ
q
(which we will by now just call Farrell cohomology) is identical

to the classical cohomology Hq of groups in all degrees q above their virtual cohomological
dimension [7]. So for instance for the Coxeter groups, the Farrell cohomology equals all of the
classical cohomology. In section 2, we will introduce a method of how to explicitly determine
the Farrell cohomology : By reducing the torsion subcomplexes. This method has also been
implemented on the computer [10, HAP version of June 22nd, 2012, respectively more recent],
which allows us to check the results that we obtain by our arguments. We apply our method to
the Coxeter triangle and tetrahedral groups in section 3, and to the Bianchi groups in sections 4
through 6.

We require any discrete group Γ under our study to be provided with a cell complex on which
it acts cellularly.

Definition 1. Let ℓ be a prime number. The ℓ-torsion subcomplex of a Γ-cell complex X
consists of all the cells of X the stabilisers in Γ of which contain elements of order ℓ.

For the Coxeter tetrahedral groups, generated by the reflections on the sides of a tetrahedron
in hyperbolic 3-space, we obtain the following. Denote by Dℓ the dihedral group of order 2ℓ.

Corollary 2 (Corollary to theorem 14.). Let Γ be a Coxeter tetrahedral group, and ℓ > 2 be a

prime number. Then there is an isomorphism Hq(Γ; Z/ℓ) ∼= (Hq(Dℓ; Z/ℓ))
m
, with m the number

of connected components of the orbit space of the ℓ-torsion subcomplex of the Davis complex of Γ.

We specify the exponent m in the tables in figures 2 through 5.
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Results for the Bianchi groups. Denote by Q(
√
−m), with m a square-free positive integer,

an imaginary quadratic number field, and by O−m its ring of integers. The Bianchi groups are
the groups PSL2(O−m). The Bianchi groups may be considered as a key to the study of a larger
class of groups, the Kleinian groups, which date back to work of Henri Poincaré [18]. In fact,
each non-cocompact arithmetic Kleinian group is commensurable with some Bianchi group [17].
A wealth of information on the Bianchi groups can be found in the monographs [12], [11], [17].
Krämer [16] has determined number-theoretic formulae for the numbers of conjugacy classes of
finite subgroups in the Bianchi groups, using numbers of ideal classes in orders of cyclotomic
extensions of Q(

√−m).
In section 5, we express the homological torsion of the Bianchi groups as a function of these

numbers of conjugacy classes. To achieve this, we build on the geometric techniques of [20],
which depend on the explicit knowledge of the quotient space of geometric models for the Bianchi
groups — like any technique effectively accessing the (co)homology of the Bianchi groups, either
directly [24], [28] or via a group presentation [5]. For the Bianchi groups, we can in this article
detach invariants of the group actions from the geometric models, in order to express them only
by the group structure itself, in terms of conjugacy classes of finite subgroups, normalisers of
the latter, and their interactions. This information is gathered, and reduced to its essence, in
the reduced torsion subcomplexes we construct for this purpose.

Not only does this provide us with exact formulae for the homological torsion of the Bianchi
groups, the power of which we can see in the numerical evaluations of appendices A.1 and A.2,
also it allows us to understand the rôle of the centralisers of the finite subgroups, and this is
how in [19], some more fruits of the present results are harvested (in terms of the Chen/Ruan
orbifold cohomology of the orbifolds given by the action of the Bianchi groups on complexified
hyperbolic space).

Except for the Gaussian and Eisenstein integers, which can easily be treated separately [24],
[20], all the rings of integers of imaginary quadratic number fields admit as only units {±1}.
In the latter case, we call PSL2(O) a Bianchi group with units {±1}. For the possible types of
finite subgroups in the Bianchi groups, see lemma 20 : there are five non-trivial possibilities.
Our main result is the following. We make it more explicit in theorem 4 and give its proof in
section 5. We deduce the structure of the cohomology ring in section 6.

Corollary 3. The Farrell cohomology of the Bianchi groups with units {±1} depends only on

the numbers of conjugacy classes of non-trivial finite subgroups of the occurring five types.

The main step in order to prove this, is to read off the Farrell cohomology from the reduced
torsion subcomplexes.

Krämer’s formulae express the numbers of conjugacy classes of the five types of non-trivial
finite subgroups in the Bianchi groups, where the symbols in the first row are Krämer’s notations
for the number of their conjugacy classes:

λ4 λ6 µ2 µ3 µT

Z/2 Z/3 D2 S3 A4

Recall that we can express the homology in degrees above the virtual cohomological dimension
of the Bianchi groups by the two Poincaré series — for ℓ = 2 and ℓ = 3 — in the dimensions
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over the field with ℓ elements, of the homology with Z/ℓ-coefficients of PSL2 (O−m),

P ℓ
m(t) :=

∞∑

q > 2

dimFℓ
Hq

(
PSL2

(
O−m

)
; Z/ℓ

)
tq,

which have been suggested by Grunewald. Further let P b (t) :=
−2t3

t−1 , which equals the series

P 2
m(t) of the groups PSL2 (O−m) the reduced 2-torsion subcomplex of which is a circle. Denote

by

• P ∗
D2

(t) := −t3(3t−5)
2(t−1)2

, the Poincaré series over dimF2 Hq (D2; Z/2)− 3
2 dimF2 Hq (Z/2; Z/2)

• and by P ∗
A4

(t) := −t3(t3−2t2+2t−3)
2(t−1)2(t2+t+1)

, the Poincaré series over

dimF2 Hq (A4; Z/2)−
1

2
dimF2 Hq (Z/2; Z/2) .

In 3-torsion, let P
b b

(t) := −t3(t2−t+2)
(t−1)(t2+1)

, which equals the series P 3
m(t) for the Bianchi groups

the reduced 3-torsion subcomplex of which is a single edge without identifications.

Theorem 4. For all Bianchi groups with units {±1}, the homology in degrees above their virtual

cohomological dimension is given by the Poincaré series

P 2
m(t) =

(
λ4 −

3µ2 − 2µT

2

)
P b (t) + (µ2 − µT )P

∗
D2

(t) + µTP
∗
A4

(t)

and

P 3
m(t) =

(
λ6 −

µ3

2

)
P b (t) +

µ3

2
P

b b
(t).

Organisation of the paper. In section 2, we introduce our method to explicitly determine
Farrell cohomology: By reducing the torsion subcomplexes. We apply our method to the Coxeter
triangle and tetrahedral groups in section 3. In section 4, we show how to read off the Farrell
cohomology of the Bianchi groups from the reduced torsion subcomplexes. We achieve this by
showing that for the Bianchi groups, the reduced torsion subcomplexes are homeomorphic to
conjugacy classes graphs that we can define without reference to any geometric model. This
enables us in section 5 to prove the formulae for the homological torsion of the Bianchi groups in
terms of numbers of conjugacy classes of finite subgroups. We use this to establish the structure
of the classical cohomology rings of the Bianchi groups in section 6. Krämer has given number-
theoretic formulae for these numbers of conjugacy classes, and we evaluate them numerically
in appendices A.1 and A.2. Finally, we present some numerical asymptotics on the numbers of
conjugacy classes in appendix A.3.

Acknowledgements. The author is indebted to the late great mathematician Fritz Grunewald,
for telling him about the existence and providing him a copy of Krämer’s Diplom thesis. Warmest
thanks go to Rubén Sánchez-Garćıa for providing his implementation of the Davis complex, to
Mike Davis and Götz Pfeiffer for discussions on the Coxeter groups, to Oliver Braunling for a
correspondence on the occurrence of given norms on rings of integers, to Nicolas Bergeron for
discussions on asymptotics, to Matthias Wendt for a very careful lecture of the manuscript and
helpful suggestions, and to Graham Ellis and Stephen S. Gelbart for support and encouragement.
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2. Reduction of torsion subcomplexes

Let X be a finite-dimensional cell complex with a cellular action of a discrete group Γ, such
that each cell stabiliser fixes its cell pointwise. Let ℓ be a prime such that the fixed point
set XG is acyclic for every non-trivial finite ℓ-subgroup G of Γ. Then, the Γ-equivariant Farrell
cohomology of X gives us the ℓ-primary part of the Farrell cohomology of Γ, as follows.

Proposition 5 (Brown [7]). Under the above assumptions, the canonical map

Ĥ
∗
(Γ; M)(ℓ) → Ĥ

∗

Γ(X; M)(ℓ)

is an isomorphism for any Γ-module M of coefficients.

We are going to deduce from X a cell complex Z(ℓ) for every prime ℓ, which still yields the
ℓ-primary part of the Farrell cohomology of Γ, but can have considerably less orbits of cells, be
easier to handle in practice, and, for certain classes of groups, lead us to an explicit structural
description of the Farrell cohomology of Γ. We will call the complex Z(ℓ) the reduced ℓ-torsion
subcomplex of Γ. Its pivotal property will be given in theorem 13.

The classical choice [7] is to take for X the geometric realisation of the partially ordered
set of non-trivial finite subgroups (respectively, non-trivial elementary Abelian ℓ-subgroups)
of Γ, the latter acting by conjugation. The stabilisers are then the normalisers, which in many
discrete groups are infinite. And it can impose great computational challenges to determine a

group presentation for them. When we want to compute the module Ĥ
∗

Γ(X; M)(ℓ) subject to
proposition 5, at least we must get to know the (ℓ-primary part of the) Farrell cohomology of
these normalisers. The Bianchi groups are an instance that different isomorphism types can
occur herefore at different conjugacy classes of elementary Abelian ℓ-subgroups, both for ℓ = 2
and ℓ = 3. As the only non-trivial elementary Abelian 3-subgroups in the Bianchi groups are of
rank 1, the orbit space Γ\X consists only of one point for each conjugacy class of type Z/3 and
a corollary [7] from proposition 5 decomposes the 3-primary part of the Farrell cohomology of
the Bianchi groups into the direct product over their normalisers. However, due to the different
possible homological types of the normalisers (in fact, two of them occur), the final result remains
unclear and subject to tedious case-by-case computations of the normalisers.

In contrast, in the cell complex we are going to develop, the connected components of the orbit
space are for the 3-torsion in the Bianchi groups not simple points, but have either the shape
b b or b . This dichotomy already contains the information about the occurring normaliser.

Condition 6. In the ℓ-torsion subcomplex, let σ be a cell of dimension n − 1, lying in the
boundary of precisely two n-cells τ1 and τ2, the latter cells representing two different orbits.
Assume further that no higher-dimensional cells of the ℓ-torsion subcomplex touch σ; and that
the n-cell stabilisers admit an isomorphim Γτ1

∼= Γτ2 .

Where this condition is fulfilled in the ℓ-torsion subcomplex, we merge the cells τ1 and τ2
along σ and do so for their entire orbits, if and only if they meet the following additional
condition. Here, we use Zassenhaus’s notion for a finite group to be ℓ-normal, if the center of
one of its Sylow ℓ-subgroups is the center of every Sylow ℓ-subgroup in which it is contained.

Condition 7. Either Γτ1
∼= Γσ,

or Γσ is ℓ-normal and Γτ1
∼= NΓσ(center(Sylowp(Γσ))).

Here, we write NΓσ for taking the normaliser in Γσ and Sylowp for picking an arbitrary Sylow
ℓ-subgroup. This is well defined because all Sylow ℓ-subgroups are conjugate.
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Lemma 8. Let X̃ℓ be the Γ-complex obtained by orbit-wise merging two n-cells of the ℓ-torsion
subcomplex Xℓ satisfying conditions 6 and 7. Then,

Ĥ
∗

Γ(X̃ℓ; M)(ℓ) ∼= Ĥ
∗

Γ(Xℓ; M)(ℓ).

For the proof, we will make use of Swan’s extension [27, final corollary] to Farrell cohomology
of the Second Theorem of Grün [13, Satz 5].

Theorem 9 (Swan). Let G be a ℓ-normal finite group, and let N be the normaliser of the center

of a Sylow ℓ-subgroup of G. Let M be any G-module. Then the inclusion and transfer maps both

are isomorphisms between the ℓ-primary components of Ĥ
∗
(G; M) and Ĥ

∗
(N ; M).

Proof of lemma 8. Consider the equivariant spectral sequence in Farrell cohomology [7]. On the
ℓ-torsion subcomplex, it includes a map

Ĥ
∗
(Γσ; M)(ℓ)

d
(n−1),∗
1 |

Ĥ
∗
(Γσ ;M)(ℓ)

// Ĥ
∗
(Γτ1 ; M)(ℓ) ⊕ Ĥ

∗
(Γτ2 ; M)(ℓ) ,

which is the diagonal map with blocks the isomorphisms

Ĥ
∗
(Γσ; M)(ℓ)

∼=
// Ĥ

∗
(Γτi ; M)(ℓ) ,

induced by the inclusions Γτi →֒ Γσ. The latter inclusions induce isomorphisms because of
theorem 9. If for the orbit of τ1 or τ2 we have chosen a representative which is not adjacent
to σ, than this isomorphism is composed with the isomorphism induced by conjugation with

the element of Γ carrying the cell to one adjacent to σ. Hence, the map d
(n−1),∗
1 |

Ĥ
∗

(Γσ ;M)(ℓ)
has

vanishing kernel, and dividing its image out of Ĥ
∗
(Γτ1 ; M)(ℓ)⊕Ĥ

∗
(Γτ2 ; M)(ℓ) gives the ℓ-primary

part Ĥ
∗
(Γτ1∪τ2 ; M)(ℓ) of the Farrell cohomology of the union τ1 ∪ τ2 of the two n-cells. As by

condition 6 no higher-dimensional cells are touching σ, there are no higher degree differentials
interfering. �

The following consequence of the Lyndon–Hochschild–Serre spectral sequence allows us to
weaken condition 7 in a way that lemma 8 still holds. Let ℓ be a prime number, and denote
homology with non-twisted Z/ℓ-coefficients by “mod ℓ homology”.

Lemma 10. Let T be a group with trivial mod ℓ homology, and consider any group extension

1 → T → E(Q,T ) → Q → 1.

Then the map E(Q,T ) → Q induces an isomorphism on mod ℓ homology.

This statement may look like a triviality, but it becomes wrong as soon as we exchange the
rôles of T and Q in the group extension. In degrees 1 and 2, our claim follows from [7, VII.(6.4)].
In arbitrary degree, we can proceed as follows.

Proof. Consider the Lyndon–Hochschild–Serre spectral sequence associated to the group exten-
sion, namely

E2
p,q = Hp(Q; Hq(T ; Z/ℓ)) converges to Hp+q(E(Q,T ); Z/ℓ).
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By our assumption, Hq(T ; Z/ℓ) is trivial, so this spectral sequence concentrates in the row q = 0,
degenerates on the second page and yields isomorphisms

(1) Hp(Q; H0(T ; Z/ℓ)) ∼= Hp(E(Q,T ); Z/ℓ).

As H0(T ; Z/ℓ) ∼= (Z/ℓ)/〈tm−m | t∈T, m∈Z/ℓ〉 with trivial Z/ℓ-coefficients, we observe that for all
t ∈ T and m ∈ Z/ℓ, we have gm = m and hence for all q ∈ Q, we have qgm = m. Therefore,
the ideal divided out in the above expression is trivial and we only need to determine the action
of Q on the coefficients Z/ℓ in order to obtain its action on H0(T ; Z/ℓ).

If qm 6= m for some q ∈ Q, m ∈ Z/ℓ, then ℓ being a prime yields 〈qm−m〉 = Z/ℓ and further
H0(Q; H0(T ; Z/ℓ)) ∼= H0(T ; Z/ℓ)/〈qm−m | q∈Q, m∈H0(T ;Z/ℓ)〉 = 0. This contradicts the existence
of the isomorphism (1) to H0(E(Q,T ); Z/ℓ) ∼= Z/ℓ. Hence the action of Q on the coefficients of
H0(T ; Z/ℓ) must be trivial. Thus, the isomorphism (1) becomes

Hp(Q; Z/ℓ) ∼= Hp(E(Q,T ); Z/ℓ).

�

The above lemma directly implies that any extension of two groups both having trivial mod ℓ
homology, again has trivial mod ℓ homology.

Our condition 7 can now be weakened as follows.

Condition 11. The group Γσ admits a (possibly trivial) normal subgroup Tσ with trivial mod ℓ
homology and with quotient group Gσ; and the group Γτ1 admits a (possibly trivial) normal
subgroup Tτ with trivial mod ℓ homology and with quotient group Gτ making the sequences

1 → Tσ → Γσ → Gσ → 1 and 1 → Tτ → Γτ1 → Gτ → 1

exact and satisfying one of the following.

• Either Gτ
∼= Gσ ,

• or Gσ is ℓ-normal and Gτ
∼= NGσ(center(Sylowp(Gσ))),

• or both Gσ and Gτ are ℓ-normal and there is a (possibly trivial) group T with trivial
mod ℓ homology making the sequence

1 → T → NGσ(center(Sylowp(Gσ))) → NGτ (center(Sylowp(Gτ ))) → 1

exact.

Note that this weaker condition is not yet implemented on the machine, so the above quoted
program carries out only the reductions that are subject to condition 7.

By a “terminal vertex”, we will denote a vertex with no adjacent higher-dimensional cells and
precisely one adjacent edge in the quotient space, and by “cutting off” the latter edge, we will
mean that we remove the edge together with the terminal vertex from our cell complex.

Definition 12. The reduced ℓ-torsion subcomplex associated to a Γ-cell complex X is the cell
complex obtained by recursively merging orbit-wise all the pairs of cells satisfying conditions 6
and 11; and cutting off edges that admit a terminal vertex together with which they satisfy
condition 11.

Theorem 13. There is an isomorphism between the ℓ-primary parts of the Farrell cohomology

of Γ and the Γ-equivariant Farrell cohomology of the reduced ℓ-torsion subcomplex.
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Proof. We apply proposition 5 to the cell complex X, and then we apply lemma 8 each time
that we orbit-wise merge a pair of cells of the ℓ-torsion subcomplex, or that we cut off an edge.
Lemma 10 allows us to replace condition 7 by condition 11 as hypothesis for lemma 8. �

3. Farrell cohomology of the Coxeter tetrahedral groups

As Coxeter groups have trivial rational cohomology [9], their Farrell cohomology is identical
with their classical cohomology. So in this section, we make use of this fact to determine the
latter. For facts about Coxeter groups, and especially for the Davis complex, we refer to [9].
Recall that the simplest example of a Coxeter group, the dihedral group Dn, is an extension

1 → Z/n → Dn → Z/2 → 1,

so we can make use of the original application [29] of Wall’s lemma to obtain its mod ℓ homology
for prime numbers ℓ > 2,

Hq(Dn; Z/ℓ) ∼=





Z/ℓ, q = 0,

Z/gcd(n, ℓ), q ≡ 3 or 4 mod 4,

0, otherwise.

Theorem 14. Let ℓ > 2 be a prime number. Let Γ be a Coxeter group admitting a Coxeter

system with at most four generators, and relator orders not divisible by ℓ2. Let Z(ℓ) be the ℓ-
torsion subcomplex of the Davis complex of Γ. If Z(ℓ) is at most one-dimensional and contains

no loop nor bifurcation, then the mod ℓ homology of Γ is isomorphic to (Hq(Dℓ; Z/ℓ))
m
, with

m the number of connected components of the orbit space of Z(ℓ).

The conditions of this theorem are for instance fulfilled by the Coxeter tetrahedral groups;
we specify the exponent m for them in the tables in figures 2 through 5. In order to prove
theorem 14, we lean on the following intermediary statement.

Lemma 15. Let ℓ > 2 be a prime number; and let Γσ be a finite Coxeter group with n 6 4
generators. If Γσ is not a direct product of two dihedral groups and not associated to the Coxeter

diagram F4 or H4, then condition 11 is fulfilled for the triple consisting of ℓ, the group Γσ and

any of its Coxeter subgroups Γτ1 with (n− 1) generators that contains ℓ-torsion elements.

Proof. The dihedral groups admit only Coxeter subgroups with two elements, so without ℓ-
torsion. There are only finitely many other isomorphism types of irreducible finite Coxeter
groups with at most four generators, specified by the Coxeter diagrams

A1 A3 A4 B3 B4 D4 H3

• b b b b b b b b 4 b b b b b4 b

b

b

b b
b 5 b b

on which we can check the condition case by case.

A1. The symmetric group S2 admits no Coxeter subgroups.
A3. The symmetric group S4 is 3-normal; and its Sylow-3-subgroups are of type Z/3, so they

are identical to their center. Their normalisers in S4 match the Coxeter subgroups of
type D3 that one obtains by omitting one of the generators of S4 at an end of its Coxeter
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diagram. The other possible Coxeter subgroup type is (Z/2)2, obtained by omitting the
middle generator in this diagram, and contains no 3-torsion.

A4. The Coxeter subgroups with three generators in the symmetric group S5 are D3 × Z/2
and S4, so we only need to consider 3-torsion. The group S5 is 3-normal; the normaliser
of the center of any of its Sylow-3-subgroups is of type D3 × Z/2. So for the Coxeter
subgroup S4, we use the normaliser D3 of its Sylow-3-subgroup Z/3; and apply the last
option of condition 11.

B3. We apply lemma 10 to the Coxeter group (Z/2)3 ⋊ S3, and retain only S3, which is
isomorphic to the only Coxeter subgroup admitting 3-torsion.

B4. The Coxeter subgroups with three generators are of type S4, Z/2 × D3, D4 × Z/2 or
(Z/2)3 ⋊ S3, thus for the three of them containing 3-torsion, we use the above methods
to relate them to D3. The Coxeter group (Z/2)4 ⋊ S4 is 3-normal; its Sylow-3-subgroup
is of type Z/3 and admits a normaliser N fitting into the exact sequence

1 → (Z/2)2 → N → D3 → 1.

D4. From the Coxeter diagram, we see that the Coxeter subgroups with three generators are
(Z/2)3 and S4. So we only need to compare with the 3-torsion of S4. For this purpose,
we apply lemma 10 to the Coxeter group (Z/2)3 ⋊ S4.

H3. The symmetry group Icos120 of the icosahedron splits as a direct product Z/2 ×A5, so
by lemma 10, we can for all primes ℓ > 2 make use of the alternating group A5 as the
quotient group in condition 11. The primes other than 2, at which the homology of A5

admits torsion, are 3 and 5. So now let ℓ be 3 or 5. Then the group A5 is ℓ-normal;
and its Sylow-ℓ-subgroups are of type Z/ℓ, so they are identical to their center. Their
normalisers in A4 are of type Dℓ. From the Coxeter diagram, we see that this is the only
Coxeter subgroup type with two generators that contains ℓ-torsion.

The case where we have a direct product of the one-generator Coxeter group Z/2 with one of
the above groups, is already absorbed by condition 11. �

Proof of theorem 14. The Davis complex is a finite-dimensional cell complex with a cellular
action of the Coxeter group Γ with respect to which it is constructed, such that each cell
stabiliser fixes its cell pointwise. Also, it admits the property that the fixed point sets of the
finite subgroups of Γ are acyclic [9]. Thus by proposition 5, the Γ-equivariant Farrell cohomology
of the Davis complex gives us the ℓ-primary part of the Farrell cohomology of Γ. As the 3-torsion
subcomplex for the group generated by the Coxeter diagram F4 (the symmetry group of the 24-
cell) and the 3- and 5-torsion subcomplexes for the group generated by the Coxeter diagram H4

(the symmetry group of the 600-cell) as well as the ℓ-torsion subcomplex of a direct product
of two dihedral groups with ℓ-torsion all contain 2-cells, we are either in the case where the
ℓ-torsion subcomplex is trivial or in the case in which we suppose to be from now on, namely
where Γ is not one of the groups just mentioned. Then all the finite Coxeter subgroups of Γ fulfill
the hypothesis of lemma 15, and hence all pairs of a vertex stabiliser and the stabiliser of an
adjacent edge satisfy condition 11. By the assumptions on Z(ℓ), also condition 6 is fulfilled for
any pair of adjacent edges in Z(ℓ). Hence, every connected component of the reduced ℓ-torsion
subcomplex is a single vertex. From recursive use of lemma 15 and the assumption that the
relator orders are not divisible by ℓ2, we see that the stabiliser of the latter vertex has the mod ℓ
homology of Dℓ. Theorem 13 now yields our claim. �
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Let us determine the exponent m of theorem 14 for some classes of examples.
The Coxeter triangle groups are given by the presentation

〈 a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = 1 〉 ,
where 2 6 p, q, r ∈ N and 1

p +
1
q +

1
r ≤ 1.

Proposition 16. For any prime ℓ > 2, the mod ℓ homology of a Coxeter triangle group is

given as the direct sum over the mod ℓ homology of the dihedral groups Dp, Dq and Dr.

Proof. The quotient space of the Davis complex of a Coxeter triangle group can be realized as
the barycentric subdivision of an Euclidean or hyperbolic triangle with interior angles π

p ,
π
q and

π
r , and a, b and c acting as reflections through the corresponding sides. We obtain this triangle

Figure 1. Quotient of the Davis complex for a triangle group (diagram reprinted
with the kind permission of Sanchez-Garcia [23]).

by realizing the partially ordered set (where arrows stand for inclusions) of Figure 1. The whole
Davis complex of the Coxeter triangle groups is then given as a tessellation of the Euclidean
or hyperbolic plane by these triangles. The quotient space of the ℓ-torsion subcomplex then
consists of one vertex for each of the dihedral groups Dp, Dq and Dr which contain an element
of order ℓ. Theorem 13 now yields the result. �

3.1. Results for the Coxeter tetrahedral groups. Consider the groups that are generated
by the reflections on the four sides of a tetrahedron in hyperbolic 3-space, such that the images
of the tetrahedron tessellate the latter. Up to isomorphism, there are only thirty-two such
groups [11]; and we call them the Coxeter tetrahedral groups CT (n), with n running from 1
through 32.

Proposition 17. For all prime numbers ℓ > 2, the mod ℓ homology of all the Coxeter tetrahe-

dral groups is specified in the tables in figures 2 through 5 in all the cases where it is non-trivial.

Proof. Consider the Coxeter tetrahedral group CT (25), generated by the Coxeter diagram b b

bb

4
.

Then the Davis complex of CT (25) has a strict fundamental domain isomorphic to the barycen-
tric subdivision of the hyperbolic tetrahedron the reflections on the sides of which generate
CT (25) geometrically. A strict fundamental domain for the action on the 3-torsion subcomplex
is then the graph

S4
b b

D3

b (Z/2)3 ⋊ S3

bD3

bS4
b

D3

b (Z/2)3 ⋊ S3
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Name
Coxeter
graph

3−torsion
subcomplex quotient

reduced 3−torsion
subcomplex quotient

Hq(CT (m); Z/3)

CT (1) b b b4 b4
(Z/2)3 ⋊ S3b bD3 bS3 × Z/2 •D3 Hq(D3; Z/3)

CT (2)

b

b

b b
4

4
(Z/2)3 ⋊ S3b bD3 b(Z/2)

3 ⋊ S3 •D3 Hq(D3; Z/3)

CT (3)
b b

bb

4

4

S4

b b

D3

b (Z/2)3 ⋊ S3

bD3

b (Z/2)3 ⋊ S3

•D3 Hq(D3; Z/3)

CT (7) b b b4 b6
bD3

b (Z/2)3 ⋊ S3

bD6
b D6 × Z/2

•D6 • D3 (Hq(D3; Z/3))
2

CT (8)

b

b

b b

D3
b b

S4

b
D3

b
S4

b D3

bD3
b D3 × Z/2

•D3 • D3 (Hq(D3; Z/3))
2

CT (9)

b

b

b b4

bD3
b (Z/2)3 ⋊ S3

bD3
b (Z/2)3 ⋊ S3

bD3
b D3 × Z/2

•D3 • D3 • D3 (Hq(D3; Z/3))
3

CT (10) b b b b6

S4

b b
D3

b D3 × Z/2

bD3
bD6

b D6 × Z/2

•D6 • D3 (Hq(D3; Z/3))
2

CT (11)

b

b

b b
6

D3
b b

D3 × Z/2
b D3

b D6 •D6 • D3 (Hq(D3; Z/3))
2

CT (12)

b

b

b b

six copies of • D3 six copies of • D3 (Hq(D3; Z/3))
6

CT (13)

b

b

b b6 b D6
b D3

b D3

bD3
b D3 × Z/2 •D6 • D3 • D3 • D3 (Hq(D3; Z/3))

4

Figure 2. 3-torsion subcomplexes of the Coxeter tetrahedral groups CT (1)
through CT (13), in the cases where they are non-trivial.

where the labels specify the isomorphism types of the stabilisers, namely the dihedral group D3,
which also stabilises the edges, the symmetric group S4 and the semi-direct product (Z/2)2⋊S3.
The ℓ-torsion subcomplexes for all greater primes ℓ are empty. By theorem 14, we can reduce
the 3-torsion subcomplex to a single vertex and obtain H∗(CT (25); Z/3) ∼= H∗(D3; Z/3). For
the other Coxeter tetrahedral groups, we proceed analogously. �

The entries in the tables in figures 2 through 5 have additionally been checked on the machine [10].
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Name
Coxeter
graph

3−torsion
subcomplex quotient

reduced 3−torsion
subcomplex quotient

Hq(CT (m); Z/3)

CT (14) b b b6 b6
bD6

b D6 × Z/2

bD6
b D6 × Z/2

b D3 •D6 • D6 • D3 (Hq(D3; Z/3))
3

CT (15) b b b b6
bD3

b D3 × Z/2

bD3
b D3 × Z/2

b D6 •D6 • D3 • D3 (Hq(D3; Z/3))
3

CT (16)

b

b

b b
D3

b b

S4

b D3

bD3
b

S4 b D3 b D3 •D3 • D3 • D3 (Hq(D3; Z/3))
3

CT (17)
b b

bb

6 6 •D6 • D6 • D3 • D3 •D6 • D6 • D3 • D3 (Hq(D3; Z/3))
4

CT (18)
b b

bb

4 4 (Z/2)3 ⋊ S3b bD3 b(Z/2)
3 ⋊ S3

(Z/2)3 ⋊ S3b bD3 b(Z/2)
3 ⋊ S3

•D3 • D3 (Hq(D3; Z/3))
2

CT (19) b b b4 b5
(Z/2)3 ⋊ S3b bD3 bIcos120 •D3 Hq(D3; Z/3)

CT (20)

b

b

b b
5

S4

b b

D3

b Icos120

bD3

b Icos120

•D3 Hq(D3; Z/3)

CT (21)
b b

bb

5 5 Icos120 b b
D3

b Icos120

bIcos120 b
D3 b Icos120

•D3 • D3 (Hq(D3; Z/3))
2

CT (22) b b b b5
Icos120 b b

D3

b D3 × Z/2

bIcos120 b
D3 b D3 × Z/2

•D3 • D3 (Hq(D3; Z/3))
2

CT (23)
b b

bb

5
S4

b b
D3

b Icos120

bD3

bS4
b

D3

b Icos120

•D3 Hq(D3; Z/3)

CT (24) b b b5 b5
Icos120 b b

D3

b Icos120 •D3 Hq(D3; Z/3)

CT (25)
b b

bb

4
S4

b b
D3

b (Z/2)3 ⋊ S3

bD3

bS4
b

D3

b (Z/2)3 ⋊ S3

•D3 Hq(D3; Z/3)

CT (26)
b b

bb

4 5 Icos120 b b
D3

b (Z/2)3 ⋊ S3

bIcos120 b
D3 b (Z/2)3 ⋊ S3

•D3 • D3 (Hq(D3; Z/3))
2

CT (27)

b

b

b b5

bD3
b Icos120

bD3
b Icos120

bD3
b D3 × Z/2

•D3 • D3 • D3 (Hq(D3; Z/3))
3

Figure 3. 3-torsion subcomplexes of the Coxeter tetrahedral groups CT (14)
through CT (27).



12 RAHM

Name
Coxeter
graph

3−torsion
subcomplex quotient

reduced 3−torsion
subcomplex quotient

Hq(CT (m); Z/3)

CT (28) b b b5 b6
bD3

b Icos120

bD6
b D6 × Z/2 •D6 • D3 (Hq(D3; Z/3))

2

CT (29)
b b

bb

6 5
bD3

b Icos120

bD3
b Icos120 b D6 •D6 • D3 • D3 (Hq(D3; Z/3))

3

CT (30)
b b

bb

6 4
bD3

b (Z/2)3 ⋊ S3

bD3
b (Z/2)3 ⋊ S3 b D6 •D6 • D3 • D3 (Hq(D3; Z/3))

3

CT (31)
b b

bb

4 4

4

(Z/2)3 ⋊ S3b bD3 b(Z/2)
3 ⋊ S3 •D3 Hq(D3; Z/3)

CT (32)
b b

bb

6 D3
b b

S4

b

D3

b

S4

b D3

b D6

•D6 • D3 (Hq(D3; Z/3))
2

Figure 4. 3-torsion subcomplexes of the Coxeter tetrahedral groups CT (28)
through CT (32).

Name and Coxeter graph
5−torsion

subcomplex quotient
reduced 5−torsion

subcomplex quotient
Hq(CT (m); Z/5)

CT (19),
b b b4 b5

CT (28)
b b b5 b6

Icos120 b b
D5 b D5 × Z/2 •D5 Hq(D5; Z/5)

CT (20),
b

b

b b
5

CT (22),
b b b b5

CT (23),

b b

bb

5

CT (26),

b b

bb

4 5

CT (27),
b

b

b b5

CT (29)

b b

bb

6 5

Icos120 b b
D5 b Icos120 •D5 Hq(D5; Z/5)

CT (21)

b b

bb

5 5

Icos120 b b

D5

b Icos120

bIcos120 b
D5 b Icos120

•D5 • D5 (Hq(D5; Z/5))
2

CT (24)
b b b5 b5

Icos120 b b

D5

b D5 × Z/2

bIcos120 b
D5 b D5 × Z/2

•D5 • D5 (Hq(D5; Z/5))
2

Figure 5. 5-torsion subcomplexes of the Coxeter tetrahedral groups, in the cases
where they are non-trivial.
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4. The conjugacy classes of finite order elements in the Bianchi groups

The groups SL2(O−m) act in a natural way on hyperbolic three-space, which is isomorphic to
the symmetric space SL2(C)/SU(2) associated to them. The kernel of this action is the centre
{±1} of the groups. Thus it is useful to study the quotient of SL2(O−m) by its centre, namely
PSL2(O−m).

Let Γ = PSL2(O−m) be a Bianchi group. Then any element of Γ fixing a point inside real
hyperbolic 3-space H3

R acts as a rotation of finite order. Let X be the refined cellular complex
obtained from the action of Γ on hyperbolic 3-space as described in [20], namely we subdivideH3

R
until the stabiliser in Γ of any cell σ fixes σ pointwise. We achieve this by computing Bianchi’s
fundamental polyhedron for the action of Γ, taking as preliminary set of 2-cells its facets lying
on the Euclidean hemispheres and vertical planes of the upper-half space model for H3

R, and
then subdividing along the rotation axes of the elements of Γ. Let ℓ be a prime number.

It is well-known that if γ is an element of Bianchi group of finite order n, then n must be
1, 2, 3, 4 or 6, because γ has eigenvalues ρ and ρ with ρ a primitive n-th root of unity and
the trace of γ is ρ + ρ ∈ O−m ∩ R = Z. For ℓ being one of the two occurring primes 2 and 3,
this subcomplex is a finite graph, because the cells of dimension greater than 1 are trivially
stabilised in the refined cellular complex. We reduce this subcomplex with the procedure of [20],
which consists in taking the pairs of edges with a common endpoint such that no further edge
is adjacent to this endpoint, and replacing them together with this endpoint by a single edge.

We construct the following graph purely group-theoretically in order to locate conjugacy
classes of finite groups on the reduced torsion subcomplex. Let ℓ be a prime number. For a
circle to become a graph, we identify the two endpoints of a single edge.

Definition 18. The ℓ-conjugacy classes graph of an arbitrary group Γ is given by the following

construction.

• We take as vertices the conjugacy classes of finite subgroups G of Γ containing elements
γ of order ℓ such that the normaliser of 〈γ〉 in G is not 〈γ〉 itself.

• We connect two vertices by an edge if and only if they admit representatives sharing a
common subgroup of order ℓ.

• For every pair of subgroups of order ℓ in G, which are conjugate in Γ but not in G, we
draw a circle attached to the vertex labelled by G.

• For every conjugacy class of subgroups of order ℓ which are not properly contained in
any finite subgroup of Γ, we add a disjoint circle.

Theorem 19. Let Γ be any Bianchi group with units {±1} and ℓ any prime number. Then the

ℓ-conjugacy classes graph and the reduced ℓ-torsion subcomplex of Γ are isomorphic graphs.

The rest of this section will be devoted to the proof of this theorem. The first ingredient is
the following classification of Felix Klein [14].

Lemma 20 (Klein). The finite subgroups in PSL2(O) are exclusively of isomorphism types the

cyclic groups of orders one, two and three, the Klein four-group D2
∼= Z/2× Z/2, the symmetric

group S3 and the alternating group A4.

Recall the following lemma from [20].

Lemma 21. Let v be a non-singular vertex in the refined cell complex. Then the number n of

orbits of edges in the refined cell complex adjacent to v, with stabiliser in PSL2(O−m) isomorphic
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to Z/ℓ, is given as follows for ℓ = 2 and ℓ = 3.

Isomorphism type of the vertex stabiliser {1} Z/2 Z/3 D2 S3 A4

n for ℓ = 2 0 2 0 3 2 1
n for ℓ = 3 0 0 2 0 1 2.

Now we investigate the associated normaliser groups. Straight-forward verification using the
multiplication tables of the concerned finite groups yields the following.

Lemma 22. Let G be a finite subgroup of PSL2(O−m). Then the type of the normaliser of any

subgroup of type Z/ℓ in G is given as follows for ℓ = 2 and ℓ = 3, where we print only cases with

existing subgroup of type Z/ℓ.

Isomorphism type of G {1} Z/2 Z/3 D2 S3 A4

normaliser of Z/2 Z/2 D2 Z/2 D2

normaliser of Z/3 Z/3 S3 Z/3.

The final ingredient in the proof of theorem 19 is the following.

Theorem 23. There is a natural bijection between conjugacy classes of subgroups of PSL2(O−m)
of order ℓ and edges of the reduced ℓ-torsion subcomplex. It is given by considering the stabiliser

of a representative edge in the refined cell complex.

In order to prove the latter theorem, we need several lemmata, and we establish them now.

Lemma 24. Consider two adjacent edges E, E′ of the non-reduced torsion subcomplex. Then

for any representative e of E, there is an adjacent representative e′ of E′ on the same geodesic

line as e.

Proof. Consider the element γ ∈ Γ identifying the end v of e with the origin γ(v) of e′. As E
and E′ are distinct in the orbit space, γ−1 cannot send e′ onto e.
Assume that the stabiliser of v is of isomorphism type Z/ℓZ. Then as the edge γ−1(e′) is point-
wise fixed by Γ, its stabiliser must contain the rotation with axis passing through e. Hence
γ−1(e′) is adjacent to e and on the same geodesic line.
If the stabiliser of v is of isomorphism type D2, S3 or A4, there are at most two orbits of ℓ-torsion
stabilised edges adjacent to v. So there is an element α in the stabiliser of v such that αγ−1(e′)
is adjacent to e and on the same geodesic line. �

Corollary 25. Any edge of the reduced torsion subcomplex can be represented by a chain of

edges on the intersection of one geodesic line with a strict fundamental domain for Γ in H.

Proof. Consider the chain of edges in the torsion subcomplex that are reduced to the given edge
of the reduced torsion subcomplex. The representatives in H of the edges on this chain lie on
pairwise different orbits because the torsion subcomplex is a subcomplex of the orbit space Γ\H.
Now we start with a representative e for the edge sharing its origin with the reduced edge, and
use lemma 24 to obtain an adjacent edge e′ on the same geodesic line, representing the adjacent
edge of the torsion subcomplex. We proceed this way, assigning the role of e to e′ and so on,
until we have reached the end of the reduced edge. �

Corollary 26. Any edge of the reduced torsion subcomplex admits only representatives with

stabiliser in the same conjugacy class.
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Lemma 27. Let α and γ be elements of PSL2(C). Then the fixed point set in H of α is identified

by γ with the fixed point set of γαγ−1.

Proof. One immediately checks that any fixed point x ∈ H of α induces the fixed point γ(x) of
γαγ−1. As PSL2(C) acts by isometries, the whole fixed point sets are identified. �

Lemma 28. Let v ∈ H3
R be a vertex with stabiliser in Γ of type D2 or A4. Let γ ∈ Γ be a

rotation of order 2 around an edge e adjacent to v.
Then the centraliser CΓ(γ) reflects Hγ — which is the geodesic line through e — onto itself at v.

Proof. Denote by Γv the stabiliser of the vertex v. In the case that Γv is of type D2, which is
Abelian, it admits two order-2-elements centralising γ and turning the geodesic line through e

onto itself such that the image of e touches v from the side opposite to e (illustration: b
e

b
v

γe
b ).

In the case that Γv is of type A4, it contains a normal subgroup of type D2 that admits again
two such elements. �

Let α be any torsion element in Γ. We construct the chain of edges associated to α as follows.
Consider the edge of the reduced torsion subcomplex to which the edge stabilised by α belongs.
Use corollary 25 to represent it by a chain of edges on a geodesic line. Now, α is conjugate to
an element γαγ−1 of the stabiliser of one of the edges in the chain. By lemma 27, the element
γ−1 ∈ Γ maps the mentioned geodesic line to the rotation axis of α. The image under γ−1 of
the chain of edges under consideration is the desired chain associated to α. It is well defined up
to translation along the rotation axis of α.

Lemma 29. Let α be any 2-torsion element in Γ. Then the chain of edges associated to α is a

fundamental domain for the action of the centraliser of α on the rotation axis of α.

Proof. We distinguish the following two cases of how 〈α〉 ∼= Z/2 is included into Γ.
b Suppose that there is no subgroup of type D2 in Γ which contains 〈α〉. Then the connected

component of the 2-torsion subgraph to which any edge stabilised by 〈α〉 belongs, is homeomor-
phic to a circle. Choose a first edge e in the chain associated to α. We have an identification
γ between its end and the origin of the next edge e′, and by lemma 24 we can choose it such
that the edge stabilisers are conjugate under γ. We can write Γe = 〈α〉 and Γe′ = 〈γαγ−1〉.
By lemma 27, this gives us the identification γ−1 from e′ to an edge on the rotation axis of α,
adjacent to e because of the first condition on γ. We repeat this step until we have attached
an edge δe on the orbit of the first edge e, with δ ∈ Γ. As δ is an isometry, the whole chain is
translated by δ from the start at e to the start at δe. So the group 〈δ〉 acts on the rotation axis
with fundamental domain our chain of edges. And δαδ−1 is again the rotation of order 2 around
the axis of α. So, δαδ−1 = α and therefore 〈δ〉 < CΓ(α).

b b , b

b

, b b , . . . Suppose that there is a subgroup G of Γ of type G ∼= D2 containing 〈α〉. If
there is no further inclusion G < G′ < Γ with G′ ∼= A4, let G

′ := G. Then the chain associated
to α can be chosen such that one of its endpoints is stabilised by G′. The other endpoint of this
chain must then lie on a different Γ-orbit, and admit as stabiliser a group H ′ containing 〈α〉,
of type D2 or A4. By lemma 28, each G′ and H ′ contain a reflection of the rotation axis of α,
centralising α. These two reflections must differ from one another because they do not fix the
chain of edges. So their free product tessellates the rotation axis of α with images of the chain
of edges associated to α. �
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Lemma 30. Let α be any non-trivial torsion element in a Bianchi group Γ. Then the Γ-image

of the chain of edges associated to α contains the rotation axis of α.

Proof. For α a 2-torsion element, this follows directly from lemma 29. So we can assume α to
be a 3-torsion element.

b b The non-centralising reflections of S3, which is associated to the two vertices, tessellate
a geodesic line. Remark that there are exactly three maps Z/3 → Z/3 induced on the edge
stabilisers, given by the three order-2-elements of S3. So, the quotient space by the centraliser
of α must be bigger.

b After finitely many translations, all the edges in the fundamental domain conjugate to
edges on the geodesic line are obtained as images. Hence, the Γ–image contains the whole
geodesic line. �

Proof of theorem 23. Corollary 26 associates a conjugacy class of type Z/ℓ to each edge of the
reduced ℓ-torsion subcomplex. Conversely, let α and γαγ−1 be conjugate torsion elements of Γ.
We want to show that they stabilise edges representing the same reduced edge. By Klein, we
know that the torsion elements are elliptic and hence fix some geodesic line. Every torsion
element acts as the stabiliser of a line conjugate to one passing through the Bianchi fundamental
polyhedron. So, it is conjugate to one of the representative edge stabilisers. By lemma 27, we
know that the line fixed by α is sent by γ to the line fixed by γαγ−1.

By lemmata 29 and 30, the union of the Γ-images of the chain associated to α contains the
whole geodesic line fixed by α (because then, as the Γ-action is cellular, any cell stabilised by
γαγ−1 admits a cell on its orbit stabilised by α). So it follows that all the edges on a geodesic
line belong to the same reduced edge. �

Proof of theorem 19. Comparing with lemma 21, we see that the vertex set of the ℓ-conjugacy
classes graph gives precisely the bifurcation points and vertices with only one adjacent edge of
the ℓ-torsion subcomplex. When passing to the reduced ℓ-torsion subcomplex, we get rid of all
vertices with two adjacent edges except in the disjoint circles, see [20]. By theorem 23, the edges
of the ℓ-conjugacy classes graph give the edges of the reduced ℓ-torsion subcomplex. �

5. The Farrell cohomology of the Bianchi groups

In this section, we are going to prove theorem 4. In order to compare with Krämer’s formulae
that we evaluate in the appendix, we make use of his notations for the numbers of conjugacy
classes of the five types of non-trivial finite subgroups in the Bianchi groups. His symbols for
these numbers are printed in the first row of the below table, and the second row gives the
symbol for the type of counted subgroup.

µ2 µT µ3 λ2n λT
4 λ∗

4 λ∗
6 µ−

2

D2 A4 S3 Z/n Z/2 ⊂ A4 Z/2 ⊂ D2 Z/3 ⊂ S3 D2 * A4

Here, the inclusion signs “⊂” mean that we only consider copies of Z/n admitting the specified
inclusion in the given Bianchi group and D2 * A4 means that we only consider copies of D2 not
admitting any inclusion into a subgroup of type A4 of the Bianchi group.

Note that the number µ−
2 is simply the difference µ2 − µT , because every copy of A4 admits

precisely one normal subgroup of type D2. Also, note the following graph-theoretical properties



ACCESSING THE FARRELL–TATE COHOMOLOGY OF DISCRETE GROUPS 17

of the reduced torsion subgraphs, the latter of which we obtain by restricting our attention to
the connected components not homeomorphic to b .

Corollary 31 (Corollary to lemma 21). For all Bianchi groups with units {±1}, the numbers

of conjugacy classes of finite subgroups satisfy λT
4 6 µT and 2λ∗

6 = µ3, and even

2λ∗
4 = µT + 3µ−

2 .

The values given by Krämer’s formulae are matching with the values computed with [21].

Observation 32. The numbers of conjugacy classes of finite subgroups determine the 3-
conjugacy classes graph and hence the reduced 3-torsion subcomplex for all Bianchi groups
with units {±1}, as we can see immediately from theorem 19 and the description of the reduced
3-torsion subcomplex in [20].

For the proof of theorem 4, we need the following ingredients.

Remark 33. In the equivariant spectral spectral sequence converging to the Farrell cohomology
of PSL2 (O−m), the restriction of the differential to maps between cohomology groups of cells that
are not adjacent in the orbit space, are zero. So, the ℓ-primary part of the degree-1-differentials
of this sequence can be decomposed as a direct sum of the blocks associated to the connected
components of the ℓ-torsion subcomplex (Compare with sub-lemma 45 of [20]).

Lemma 34 (Schwermer/Vogtmann). Let M be Z or Z/2. Consider group homology with trivial

M -coefficients. Then the following holds.

• Any inclusion Z/2 → S3 induces an injection on homology.

• An inclusion Z/3 → S3 induces an injection on homology in degrees congruent to 3 or 0
mod 4, and is otherwise zero.

• Any inclusion Z/2 → D2 induces an injection on homology in all degrees.

• An inclusion Z/3 → A4 induces injections on homology in all degrees.

• An inclusion Z/2 → A4 induces injections on homology in degrees greater than 1, and is

zero on H1.

For the proof in Z-coefficients, see [24], for Z/2-coefficients see [20].

Lemma 35 ([20], lemma 32). Let q > 3 be an odd integer number. Let v be a vertex representa-

tive of stabiliser type D2 in the refined cellular complex for the Bianchi groups. Then the three

images in (Hq(D2;Z))(2) induced by the inclusions of the stabilisers of the edges adjacent to v,

are linearly independent.

Finally, we establish the following last ingredient for the proof of theorem 4, which might be
of interest in its own right.

Lemma 36. In all rows q > 1 and outside connected components of type b , the d1p,q-differential
of the equivariant spectral sequence converging to Hp+q(PSL2 (O−m) ; Z) is always injective.

Proof. For matrix blocks of the d1p,q-differential associated to vertices with just one adjacent
edge, we see from lemma 21 that the vertex stabiliser is of type A4 in 2-torsion, respectively of
type S3 in 3-torsion, so injectivity follows from lemma 34. As we have placed ourselves outside
connected components of type b , the remaining vertices are bifurcation points of stabiliser
type D2 and injectivity follows from lemma 35. �
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Proof of theorem 4. In 3-torsion, theorem 4 follows directly from observation 32, corollary 31
and theorem 13. In 2-torsion, what we need to determine with the numbers of conjugacy classes
of finite subgroups, is the 2-primary part of the E2

p,q-term of the equivariant spectral sequence
converging to Hp+q(PSL2 (O−m) ; Z) in all rows q > 1. From there, we see from theorem 13
that we obtain the claim. By remark 33, we only need to check this determination on each
homeomorphism type of connected components of the 2-torsion subgraph. We use theorem 19
to identify the reduced 2-torsion subgraph and the 2-conjugacy classes graph. Then we can
observe that

• Krämer’s number λ∗
4 − λ4 determines the number of connected components of type b .

• Krämer’s number λ∗
4 determines the number of edges of the 2-torsion subgraph outside

connected components of type b . Lemma 36 tells us that the block of the d1p,q-differential
of the equivariant spectral sequence associated to such edges is always injective.

• Krämer’s number µ−
2 determines the number of bifurcation points, and µT determines

the number of vertices with only one adjacent edge of the 2-torsion subgraph.

Using corollary 31, we obtain the explicit formulae in theorem 4. �

6. The cohomology ring structure of the Bianchi groups

In [5], Berkove has found a compatibility of the cup product of the cohomology ring of a
Bianchi group with the cup product of the cohomology rings of its finite subgroups. This
compatibility within the equivariant spectral sequence implies that all products that come from
different connected components of the reduced torsion subcomplex (which we turn into the
conjugacy classes graph in section 4) are zero. It follows that the cohomology ring of any
Bianchi group splits into a restricted sum over subrings, which depend in degrees above the
virtual cohomological dimension only on the homeomorphism type of the associated connected
component of the reduced torsion subcomplex. The analogue in cohomology of theorem 4 and
Berkove’s computations of sample cohomology rings [4] yield the following corollary in 3-torsion.

We use Berkove’s notation, in which the degree j of a cohomology generator xj is appended
as a subscript. Furthermore, writing cohomology classes inside square brackets means that they
are polynomial (of infinite multiplicative order), and writing them inside parentheses means that
they are exterior (their powers vanish). The restricted sum ⊕̃ identifies all the degree zero classes
into a single copy of Z; when we write it with a power, we specify the number of summands.
Recall that λ6 (respectively µ3) counts the number of conjugacy classes of subgroups of type
Z/3 (respectively S3) in the Bianchi group.

Corollary 37. In degrees above the virtual cohomological dimension, the 3-primary part of the

cohomology ring of any Bianchi group Γ with units {±1} is given by

H∗(Γ; Z)(3) ∼= ⊕̃(λ6−
µ3
2
)
Z[x2](σ1) ⊕̃

µ3
2 Z[x4](x3),

where the generators xj are of additive order 3.

In 2-torsion, it does in general not suffice to know only the numbers of conjugacy classes of
finite subgroups to obtain the cohomology ring structure, because for the two reduced 2-torsion

subcomplexes b b b b and b

b
b b , we obtain the same numbers of conjugacy classes and

homological 2-torsion, but different multiplicative structures of the mod-2 cohomology rings, as
we can see from table 1, which we compile from the results of [5] (and [20]).
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T subring associated to connected components of type T in 2− conjugacy classes graph

b F2[n1](m1)

b b F2[m3, u2, v3, w3]/〈m3v3 = 0, u32 + w2
3 + v23 +m2

3 + w3(v3 +m3) = 0〉

b b F2[n1,m2, n3,m3]/〈n1n3 = 0, m3
2 +m2

3 + n2
3 +m3n3 + n1m2m3 = 0〉

b

b

F2[n1,m1,m3]/〈m3(m3 + n2
1m1 + n1m

2
1) = 0〉

Table 1. Restricted summands of the mod-2 cohomology ring H∗(Γ;F2) of a
Bianchi group Γ above its virtual cohomological dimension.

Observation 38. In the cases of class numbers 1 and 2, only the homeomorphism types T
listed in table 1 occur as connected components in the reduced 2-torsion subcomplex. So for all
such Bianchi groups Γ with units {±1}, the mod-2 cohomology ring H∗(Γ;F2) splits, above the
virtual cohomological dimension, as a restricted sum over the subrings specified in table 1, with
powers according to the multiplicities of the occurencies of the types T .



20 RAHM

Appendix A. Numerical evaluation of Krämer’s formulae

A.1. Numbers of conjugacy classes in 3-torsion. Denote by δ the number of finite ramifi-
cation places of Q(

√−m ) over Q. Let k+ be the totally real number field Q(
√
3m ) and denote

its ideal class number by hk+ . Krämer introduces the following indicators:

z :=

{
2, if 3 is the norm of an integer of k+,

1, otherwise.

For m ≡ 0 mod 3 and m 6= 3, denote by ǫ := 1
2(a + b

√
m
3 ) > 1 the fundamental unit of k+

(where a, b ∈ N). Now, define

x′ :=

{
2, if the norm of ǫ is 1,

1, if the norm of ǫ is − 1

and

y :=

{
2, if b ≡ 0 mod 3,

1, otherwise.

Then [16, 20.39 and 20.41] yield the following formulae in 3-torsion.

m specifying Bianchi groups PSL2 (O−m) λ∗
6 λ6 − λ∗

6

m ≡ 2 mod 3 0 z
2hk+

m ≡ 1 mod 3 gives either 2δ−1 1
2(hk+ − 2δ−1)

or 0 1
2hk+

m ≡ 6 mod 9 0 x′yhk+

m ≡ 3 mod 9, m 6= 3 gives either 2δ−2 1
2(3x

′hk+ − 2δ−2)

or 0 1
23x

′hk+

The above case distinctions come from the fact that Krämer’s theorem 20.39 ranges over all
types of maximal orders in quaternion algebras over Q(

√
−m ), in which Krämer determines the

numbers of conjugacy classes in the norm-1-group. The remaining task in order to decide which
of the cases applies, is to find out of which type considered in the mentioned theorem is the
maximal order M2(O−m). Some methods to cope with this task are introduced in [16, §27].
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Krämer’s resulting criteria can be summarised as follows for 3-torsion.

condition implication

m ≡ 2 mod 3 µ3 = λ∗
6 = 0.

m ≡ 6 mod 9 µ3 = λ∗
6 = 0.

m prime andm ≡ 1 mod 3 λ∗
6 > 0.

m = 3p with p prime and p ≡ 1 mod 3 λ∗
6 > 0.

m ≡ 1 mod 3 and − 3 occurs as norm onOk+ λ∗
6 > 0.

m ≡ 1 mod 3 and − 3 does not occur as norm onOk+ λ6 − λ∗
6 > 0.

m ≡ 1 mod 3 andm admits a prime divisor p with p ≡ 2 mod 3 λ6 − λ∗
6 > 0.

m ≡ 3 mod 9 and x′ = 1
and m

3 admits only prime divisors p with p ≡ 1 mod 12 λ∗
6 > 0.

m ≡ 3 mod 9 and x′ = 1
and m

3 admits a prime divisor p with p ≡ 5 mod 12 λ∗
6 = 0.

m ≡ 3 mod 9 and h(k′+) = 2δ−3

and m
3 admits only prime divisors p with p ≡ ±1 mod 12 or p = 2 λ∗

6 = 0.

m ≡ 3 mod 9 and h(k′+) = 1
and m

3 = p′p with p′, p prime and p′ ≡ p ≡ 7 mod 12 λ∗
6 > 0.

In order to determine Krämer’s indicator z, we need to determine if a given value occurs as
the norm on the ring of integers of an imaginary quadratic number field. This is implemented in
Pari/GP [1] (the first step is computing the answer under the Generalised Riemann hypothesis,
and the second step is a check computation which confirms that we arrive at that answer without
this hypothesis). Additionally, we compare with the below criterion [16, (20.13)].

Lemma 39 (Krämer). Let m be not divisible by 3.

• If the number −3 is the norm of an integer in the totally real number field k+, then all

prime divisors p ∈ N of m satisfy the congruence p ≡ 1 mod 3.
Especially, the congruence m ≡ 1 mod 3 is implied.

• If the number 3 is the norm of an integer in the totally real number field k+, then all

prime divisors p ∈ N of m satisfy either p = 2 or the congruence p ≡ ±1 mod 12.
Additionally, the congruence m ≡ 2 mod 3 is implied.
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With Krämer’s criteria at hand, we can decide for many Bianchi groups, which of the alter-
native cases in Krämer’s formulae must be used. We do this in the below tables for all such
Bianchi groups PSL2 (O−m) with absolute value of the discriminant ∆ ranging between 7 and

2003, where we recall that the discriminant is ∆ =

{
−m, m ≡ 3 mod 4,

−4m, else.

In the cases m ∈ {102, 133, 165, 259, 559, 595, 763, 835, 1435}, where these statements are not
sufficient to eliminate the wrong alternatives, we insert the results of [21]. This way, the below
tables treat all Bianchi groups with units {±1} and discriminant of absolute value less than 615.
The cases where an ambiguity remains (so to exclude them from our tables) are m ∈ { 210, 262,
273, 298, 345, 426, 430, 462, 481, 615, 1155, 1159, 1195, 1339, 1351, 1407, 1515, 1807}. For
tables of the cases without ambiguity, with m ranging up to 10000, see the preprint version 2 of
this paper on HAL.

In [15], a theorem is established which solves all these ambiguities by giving for each type
of finite subgroups in PSL2 (O−m) criteria equivalent to its occurrence, in terms of congruence
conditions on the prime divisors of m.

3−conjugacy
classes graph

m specifying Bianchi groups PSL2 (O−m) with this 3−conjugacy classes graph

b
2, 5, 6, 10, 11, 14, 15, 17, 22, 23, 29, 34, 35, 38, 41, 46, 47, 51, 53, 55,

58, 59, 62, 71, 82, 83, 86, 87, 89, 94, 95, 101, 106, 113, 115, 118, 119, 123, 131, 134,

137, 142, 149, 155, 158, 159, 166, 167, 173, 178, 179, 187, 191, 197, 202, 203, 206, 214, 215, 226,

227, 233, 235, 239, 251, 254, 257, 263, 267, 269, 274, 278, 281, 287, 293, 295, 303, 311, 317, 319,

323, 326, 334, 335, 339, 346, 347, 353, 355, 358, 359, 371, 382, 383, 389, 391, 394, 395, 398, 401,

411, 415, 422, 431, 443, 446, 447, 449, 451, 454, 461, 466, 467, 478, 479, 491, 515, 519, 527, 535,

551, 563, 583, 591, 599, 623, 635, 647, 655, 659, 667, 683, 695, 699, 707, 719, 731, 743, 755, 779,

791, 799, 807, 815, 827, 839, 843, 879, 887, 895, 899, 911, 943, 947, 951, 955, 959, 979, 983, 995,

1003, 1019, 1031, 1055, 1059, 1091, 1103, 1111, 1115, 1135, 1139, 1151, 1163, 1167, 1187, 1207,

1211, 1219, 1223, 1243, 1247, 1255, 1259, 1271, 1283, 1307, 1315, 1343, 1347, 1363, 1367, 1379,

1383, 1411, 1415, 1439, 1487, 1499, 1507, 1511, 1523, 1527, 1535, 1555, 1559, 1563, 1571, 1607,

1631, 1639, 1643, 1655, 1667, 1671, 1707, 1711, 1735, 1751, 1763, 1779, 1787, 1795, 1799, 1811,

1819, 1823, 1835, 1847, 1851, 1883, 1903, 1907, 1915, 1919, 1923, 1927, 1931, 1943, 1959, 1979, 2003,

2 b
26, 42, 65, 69, 70, 74, 77, 78, 85, 110, 122, 130, 141, 143, 145, 154, 161, 170, 182, 185, 186, 190, 194,

195, 205, 209, 213, 218, 221, 222, 230, 231, 238, 253, 265, 266, 286, 305, 310, 314, 322, 329, 365,

366, 370, 377, 386, 406, 407, 410, 418, 434, 437, 442, 445, 455, 458, 470, 473, 474, 483, 485, 493, 494,

497, 555, 611, 627, 671, 715, 767, 803, 851, 923, 935, 1015, 1079, 1095, 1199, 1235, 1295, 1311, 1391,

1403, 1455, 1463, 1491, 1495, 1595, 1599, 1615, 1679, 1703, 1739, 1771, 1855, 1887, 1991,

3 b
30, 66, 107, 138, 174, 255, 282, 302, 318, 354, 419, 498, 503, 759, 771, 795, 835, 863, 1007, 1319,

1355, 1427, 1479, 1551, 1583, 1619, 1691, 1695, 1871, 1895, 1947, 1967,

4 b
33, 105, 114, 146, 177, 249, 258, 285, 290, 299, 321, 330, 341, 357, 374, 385, 393, 402, 413,

429, 465, 482, 595, 663, 915, 987, 1023, 1067, 1239, 1435, 1727, 1743, 1955, 1995,

5 b
1043, 1203, 1451,

6 b
102, 165, 246, 362, 390, 435, 1335, 1419, 1547,

7 b
587, 971,
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3−conjugacy
classes graph

m specifying Bianchi groups PSL2 (O−m) with this 3−conjugacy classes graph

8 b
438, 1131, 1635,

b b 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271, 283, 307, 379, 439,

463, 487, 499, 523, 571, 607, 619, 631, 691, 727, 739, 751, 787, 811, 823, 859, 883, 907, 919, 967,

991, 1039, 1051, 1063, 1123, 1171, 1231, 1279, 1303, 1399, 1423, 1447, 1459, 1471, 1483, 1531,

1543, 1567, 1579, 1627, 1663, 1699, 1723, 1759, 1783, 1831, 1867, 1987, 1999,

b b
∐

b
39, 111, 183, 219, 291, 327, 331, 367, 471, 543, 579, 643, 723, 831, 939, 1011, 1047, 1087, 1119,

1191, 1227, 1263, 1291, 1299, 1327, 1371, 1623, 1803, 1839, 1879, 1951, 1983,

b b
∐

2 b
547, 1747,

b b
∐

4 b
687,

b b
∐

10 b
1731,

2 b b 13, 37, 61, 91, 109, 157, 181, 229, 247, 277, 349, 373, 403, 421, 427, 511, 679, 703, 871,

1099, 1147, 1267, 1591, 1603, 1687, 1891, 1963,

2 b b
∐

b
73, 97, 193, 241, 259, 313, 337, 409, 457, 559, 763, 1651, 1939,

2 b b
∐

2 b
21, 57, 93, 129, 201, 309, 381, 397, 399, 417, 453, 489, 651, 903, 1443, 1659, 1767, 1843,

2 b b
∐

3 b
433, 1027, 1387,

2 b b
∐

8 b
237,

4 b b 217, 301, 469,

4 b b
∐

2 b
133.

A.2. Numbers of conjugacy classes in 2-torsion. Denote by δ the number of finite ramifi-
cation places of Q(

√
−m ) over Q. Let k+ be the totally real number field Q(

√
m ) and denote

its ideal class number by hk+ . For m 6= 1, Krämer introduces the following indicators:
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z :=

{
2, if 2 is the norm of an integer of k+,

1, otherwise,
q :=

{
2, if ± 2 is the norm of an integer of k+,

1, otherwise,

w :=

{
2, if ∀ prime divisors p of m with p 6= 2 we have p ≡ ±1 mod 8,

1, if m admits prime divisors p ≡ ±3 mod 8.

Furthermore, denote by ǫ := 1
2 (a+b

√
m) > 1 the fundamental unit of k+ (where a, b ∈ N). Now,

define

x :=

{
2, if the norm of ǫ is 1,

1, if the norm of ǫ is − 1
and y :=

{
3, if b ≡ 0 mod 2,

1, if b ≡ 1 mod 2.

Then [16, 26.12 and 26.14] yield the following formulae in 2-torsion.

m specifying Bianchi groups PSL2 (O−m) µT µ−
2 λT

4 λ∗
4 λ4 − λ∗

4

m ≡ 7 mod 8 0 0 0 0 z
2hk+

m ≡ 3 mod 8 gives either 2δ 0 2δ−1 2δ−1 1
2(hk+ − 2δ−1)

or (provided that 2δ−1 > 1) 0 0 0 0 1
2hk+

m ≡ 2 mod 4 and w = 2 gives either 2δ−1 2δ−1 2δ−2z 2δ 1
4x(z + 2)hk+ − 2δ−1

or (provided that 2δ−1 > 1) 0 0 0 0 1
4x(z + 2)hk+

m ≡ 2 mod 4 and w = 1 gives either 2δ−1 0 2δ−2 2δ−2 1
2(

3
2xhk+ − 2δ−2)

or 0 2δ−1 0 2δ−23 3
2(

1
2xhk+ − 2δ−2)

or (provided that 2δ−1 > 2) 0 0 0 0 3
4xhk+

m ≡ 1 mod 8 andm 6= 1 and w = 2 gives either 2δ−1 2δ−1 2δ−2 2δ 2xhk+ − 2δ−1

or (provided that 2δ−2 > 1) 0 0 0 0 2xhk+

m ≡ 1 mod 8 and w = 1 gives either 2δ−1 0 2δ−2 2δ−2 2xhk+ − 2δ−3

or 0 2δ−1 0 2δ−23 2xhk+ − 2δ−33

or (provided that 2δ−2 > 2) 0 0 0 0 2xhk+

m ≡ 5 mod 8 0 2δ−1 0 2δ−23 1
2

(
x(2y + 1)hk+ − 2δ−23

)

or (provided that 2δ−2 > 1) 0 0 0 0 1
2x(2y + 1)hk+
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The above case distinctions come from the fact that Krämer’s theorem 26.12 ranges over all
types of maximal orders in quaternion algebras over Q(

√
−m ), in which Krämer determines

the numbers of conjugacy classes in the norm-1-group. The remaining task in order to decide
which of the cases applies, is to find out of which type considered in the mentioned theorem is
the maximal order M2(O−m). Some methods to cope with this task are introduced in [16, §27],
where Krämer obtains the following criteria for the 2-torsion numbers:

condition implication

m ≡ 7 mod 8 µT = µ−
2 = λT

4 = λ∗
4 = 0.

m ≡ 5 mod 8 µT = λT
4 = 0.

m ≡ 21 mod 24 λ∗
4 = 0.

m ≡ 0 mod 6 and λ∗
4 > 0 λT

4 > 0.

m ≡ 9 mod 24 and λ∗
4 > 0 λT

4 > 0.

m prime andm ≡ 1 or 3 mod 8 λT
4 > 0.

m ≡ 5 mod 8 andm prime λ∗
4 > 0.

m = 2p with p prime and p ≡ 3 or 5 mod 8 λ∗
4 > 0.

m = p′p with p and p′ prime and p ≡ p′ ≡ 3 or 5 mod 8 λ∗
4 > 0.

m = 3p with p prime and p ≡ 1 or 3 mod 8 λT
4 > 0.

m ≡ 1 or 2 mod 4 andm 6= 1 and x = 1 λ∗
4 > 0 and µ−

2 > 0.

m ≡ 1 or 2 mod 4 andm 6= 1 and x = 2 λ4 − λ∗
4 > 0.

m ≡ 3 mod 8 and − 2 occurs as norm onOk+ λ∗
4 > 0 and λT

4 > 0.

m ≡ 3 mod 8 and − 2 does not occur as norm onOk+ λ4 − λ∗
4 > 0.

m ≡ 3 mod 8 andm admits a prime divisor p with p ≡ 5 or 7 mod 8 λ4 − λ∗
4 > 0.

m ≡ 1 mod 8 and w = 1 and h(k+) = 2δ−3 µ−
2 = 0.

m ≡ 2 mod 4 and − 2 occurs as norm onOk+ λT
4 > 0.

m ≡ 2 mod 4 and − 2 does not occur as norm onOk+ and h(k+) = 2δ−2 λ∗
4 = 0.

m ≡ 2 mod 4 and q = 1 and h(k+) = 2δ−1 and w = 2 λ∗
4 = 0.

m ≡ 2 mod 4 and h(k+) = 2δ−2

andm admits a prime divisor p with p ≡ 5 or 7 mod 8 λ∗
4 = 0.
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With the above criteria at hand, we can decide for many Bianchi groups, which of the alter-
native cases in Krämer’s formulae must be used. We do this in the below tables for all such
Bianchi groups PSL2 (O−m) with absolute value of the discriminant ∆ ranging between 7 and
2003. In the cases m ∈ { 34, 105, 141, 142, 194, 235, 323, 427, 899, 979, 1243, 1507}, where these
statements are not sufficient to eliminate the wrong alternatives, we insert the results of [21].
This way, the below tables treat all Bianchi groups with units {±1} and discriminant of absolute
value less than 820. The cases where an ambiguity remains (so to exclude them from our tables)
are the following values of m: 205, 221, 254, 273, 305, 321, 322, 326, 345, 377, 381, 385, 386,
410, 438, 465, 469, 473, 482, 1067, 1139, 1211, 1339, 1443, 1763, 1771, 1947.

The above mentioned theorem on subgroup occurencies [15] solves all these ambiguities.

2−torsion
homology

m specifying Bianchi groups PSL2 (O−m) with this 2−torsion homology

P b 7, 15, 23, 31, 35, 39, 47, 55, 71, 87, 91, 95, 103, 111, 115, 127, 143, 151, 155,

159, 167, 183, 191, 199, 203, 215, 239, 247, 259, 263, 271, 295, 299, 303, 311, 319, 327, 335,

355, 367, 371, 383, 395, 403, 407, 415, 431, 447, 463, 471, 479, 487, 503, 515, 519, 535, 543,

551, 559, 583, 591, 599, 607, 611, 631, 635, 647, 655, 667, 671, 687, 695, 703, 707, 719, 743,

751, 755, 763, 767, 807, 815, 823, 831, 835, 851, 863, 871, 879, 887, 911, 919, 923, 951, 955,

967, 983, 991, 995, 1007, 1027, 1031, 1039, 1043, 1047, 1055, 1063, 1079, 1099, 1103, 1115,

1119, 1135, 1147, 1151, 1159, 1167, 1195, 1199, 1219, 1231, 1247, 1255, 1263, 1267, 1279,

1303, 1315, 1319, 1355, 1363, 1379, 1383, 1391, 1399, 1403, 1415, 1423, 1439, 1447, 1471,

1487, 1511, 1535, 1543, 1555, 1559, 1583, 1591, 1603, 1607, 1623, 1643, 1651, 1655, 1663,

1671, 1703, 1711, 1727, 1739, 1759, 1783, 1795, 1807, 1823, 1831, 1835, 1839, 1871, 1879,

1883, 1891, 1895, 1903, 1915, 1919, 1939, 1943, 1951, 1959, 1963, 1983, 1991, 1999,

2P b 14, 46, 62, 94, 119, 158, 195, 206, 231, 255, 287, 302, 334, 382, 391, 398, 435, 446, 455,

478, 483, 511, 527, 555, 595, 615, 623, 651, 663, 679, 715, 759, 791, 795, 903, 915, 935, 943,

987, 1015, 1095, 1131, 1207, 1235, 1271, 1295, 1311, 1335, 1343, 1407, 1435, 1455, 1463,

1479, 1491, 1515, 1547, 1551, 1595, 1615, 1631, 1635, 1659, 1687, 1695, 1751, 1767, 1799,

1855, 1887, 1927, 1955, 1967,

3P b 21, 30, 42, 69, 70, 77, 78, 79, 93, 110, 133, 138, 154, 174, 182, 186, 190, 213, 222, 223,

230, 235, 237, 253, 266, 282, 286, 301, 309, 310, 318, 341, 359, 366, 406, 413, 426, 427,

430, 437, 453, 470, 474, 494, 839, 895, 899, 1191, 1223, 1367, 1527, 1567, 1639, 1735, 1847,

4P b 161, 217, 238, 329, 399, 497, 799, 959, 1023, 1155, 1239, 1351, 1679, 1743, 1995,

5P b 439, 727, 1111, 1327,

6P b 142, 165, 210, 285, 330, 357, 390, 429, 434, 462, 1495, 1599,

7P b 141, 1087,

8P b 105,

2P ∗
D2

5, 10, 13, 26, 29, 53, 58, 61, 74, 106, 109, 122, 149, 157, 173, 181, 202, 218, 277,

293, 298, 314, 317, 362, 394, 397, 421, 458, 461,
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2−torsion
homology

m specifying Bianchi groups PSL2 (O−m) with this 2−torsion homology

2P ∗
D2

+ 2P b 37, 101, 197, 269, 349, 373, 389,

2P ∗
D2

+ 3P b 229, 346,

4P ∗
D2

85, 130, 170, 290, 365, 370, 493,

4P ∗
D2

+ P b 65, 185, 265, 481,

4P ∗
D2

+ 3P b 442, 445,

4P ∗
D2

+ 4P b 485,

4P ∗
D2

+ 5P b 145,

P ∗
A4

+ P ∗
D2

2,

2P ∗
A4

11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 283, 307, 331, 347, 379,

419, 467, 491, 523, 547, 563, 571, 587, 619, 643, 683, 691, 739, 787, 811, 827, 859, 883, 907,

947, 971, 1019, 1051, 1123, 1163, 1187, 1259, 1283, 1291, 1307, 1427, 1451, 1459, 1483, 1499,

1531, 1571, 1579, 1619, 1667, 1699, 1723, 1747, 1867, 1931, 1979, 2003,

2P ∗
A4

+ P b 6, 22, 38, 86, 118, 134, 166, 214, 262, 278, 358, 422, 443, 454, 659, 1091, 1171, 1523, 1627,

1787, 1811, 1907, 1987,

2P ∗
A4

+ 2P b 499,

2P ∗
A4

+ 2P ∗
D2

17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 281, 313, 337, 353, 409, 433, 449, 457,

2P ∗
A4

+ 2P ∗
D2

+ P b 82, 146, 178, 274, 466,

2P ∗
A4

+ 2P ∗
D2

+ 2P b 34, 194,

2P ∗
A4

+ 2P ∗
D2

+ 4P b 226, 257,

2P ∗
A4

+ 2P ∗
D2

+ 8P b 401,

4P ∗
A4

51, 123, 187, 267, 339, 411, 451, 699, 771, 779, 803, 843, 1059, 1203, 1347,

1563, 1691, 1707, 1779, 1819, 1843, 1923,

4P ∗
A4

+ P b 219, 291, 323, 579, 723, 731, 939, 979, 1003, 1011, 1227, 1243, 1371, 1387, 1411, 1507, 1731,

1803,

4P ∗
A4

+ 2P b 66, 102, 114, 246, 258, 354, 374, 402, 418, 498, 1851,

4P ∗
A4

+ 3P b 33, 57, 129, 177, 201, 209, 249, 393, 417, 489, 1299,

8P ∗
A4

627, 1419.
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A.3. Asymptotic behaviour of the number of conjugacy classes. From Krämer’s above
formulae, we see that both in 2-torsion and in 3-torsion, the number of conjugacy classes of finite
subgroups, and hence also the cardinality of the homology of the Bianchi groups in degrees above
their virtual cohomological dimension, admits only two factors which are not strictly limited:
hk+ and 2δ . As for the ideal class number hk+ , it is subject to the predictions of the Cohen-

Lenstra heuristic [8]. As for the factor 2δ, the number δ of finite ramification places of Q(
√
−m )

over Q is well-known to equal the number of prime divisors of the discriminant of Q(
√
−m ).

The numerical evaluation of Krämer’s formulae provides us with databases which are over
a thousand times larger than what is reasonable to print in sections A.1 and A.2. We now
give an instance of how these databases can be exploited. Denote the discriminant of Q(

√−m )
by ∆. In the cases m ≡ 3 mod 4, we have ∆ = −m. Denote the number λ6 − λ∗

6 of connected

components of type b in the 3-conjugacy classes graph by λ′
6(∆). Then clearly, the subgroup in

Hq(PSL2 (O−m)), q > 2, generated by the order-3-elements coming from the connected compo-

nents of this type, is of order 3λ
′

6(∆). Denote by covolume(∆) the volume of the quotient space

PSL2(O−m)\H. The study of the ratio 3λ
′

6(∆)

covolume(∆) is motivated by the formulae in [3]. In figure 6,

we print the logarithm of the average of this ratio over the cases |∆| ≡ 3 mod 4, scaled by a

factor m
−2
3 , so to say

m
−2
3 log


 1

#{∆ : |∆| 6 m}
∑

|∆|6m

3λ
′

6(∆)

covolume(∆)


 ,

where we consider m and ∆ as independent variables, m running through the square-free positive
rational integers. In order to cope with the fact that in some cases, Krämer’s formulae leave an
ambiguity, we print a function assuming the lowest possible values of λ′

6(∆) and one assuming
the highest possible values of λ′

6(∆) in the same diagram.
So for m greater than 10815 and less than one million, we can observe that the average of the

above ratio oscillates between exp(m
2
3 0.023695) and exp(m

2
30.054419). For m less than 10815,

this oscillation is much stronger, and the diagram might be seen as suggesting that possibly the
oscillation could remain between these two bounds for m greater than one million.

For related asymptotics, see the recent works of Bergeron/Venkatesh [3] and Sengün [25].
For an alternative computer program treating the Bianchi groups, see the SAGE package of
Cremona’s student Aranes [2], and for GL2(O) see Yasaki’s program [30].
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[14] Felix Klein, Ueber binäre Formen mit linearen Transformationen in sich selbst, Math. Ann. 9 (1875), no. 2,
183–208. MR1509857
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[19] Alexander D. Rahm, Chen/Ruan orbifold cohomology of the Bianchi groups (preprint, arXiv : 1109.5923,

http://hal.archives-ouvertes.fr/hal-00627034/, 2011).
[20] , The homological torsion of PSL2 of the imaginary quadratic integers, to appear in Transactions of

the AMS (http://hal.archives-ouvertes.fr/hal-00578383/en/, 2011).
[21] , Bianchi.gp, Open source program (GNU general public license), 2010. Based on Pari/GP [1],

https://www.projet-plume.org/fiche/bianchigp This program computes a fundamental domain for the
Bianchi groups in hyperbolic 3-space, the associated quotient space and essential information about the group
homology of the Bianchi groups.

[22] Alexander D. Rahm and Mathias Fuchs, The integral homology of PSL2 of imaginary quadratic integers with
nontrivial class group, J. Pure Appl. Algebra 215 (2011), no. 6, 1443–1472. MR2769243

[23] Rubén J. Sánchez-Garćıa, Equivariant K-homology for some Coxeter groups, J. Lond. Math. Soc. (2) 75

(2007), no. 3, 773–790, DOI 10.1112/jlms/jdm035. MR2352735 (2009b:19006)
[24] Joachim Schwermer and Karen Vogtmann, The integral homology of SL2 and PSL2 of Euclidean imaginary

quadratic integers, Comment. Math. Helv. 58 (1983), no. 4, 573–598. MR728453 (86d:11046), Zbl 0545.20031
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