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NUMBER-THEORETIC FORMULAE FOR THE COHOMOLOGY RING

STRUCTURE OF THE BIANCHI GROUPS

ALEXANDER D. RAHM

Abstract. We describe the torsion in the homology of Bianchi groups, i.e. PSL2(O) for O

the ring of integers in an imaginary quadratic number field. We show that the homological
torsion is completely determined by the numbers of conjugacy classes of finite subgroups of the
Bianchi groups, by detaching information from geometric models and expressing it only with the
group structure. Formulae for the numbers of conjugacy classes of finite subgroups have been
determined in a thesis of Krämer, in terms of elementary number-theoretic information on O.
An evaluation of these formulae for a large number of Bianchi groups is provided numerically.
Our new insights about the homological torsion allow us to give a conceptual description of the
cohomology ring structure of the Bianchi groups.

1. Introduction

Denote by Q(
√
−m), with m a square-free positive integer, an imaginary quadratic number

field, and by O−m its ring of integers. The Bianchi groups are the groups PSL2(O−m). The
Bianchi groups may be considered as a key to the study of a larger class of groups, the Kleinian
groups, which date back to work of Henri Poincaré [15]. In fact, each non-cocompact arithmetic
Kleinian group is commensurable with some Bianchi group [14]. A wealth of information on the
Bianchi groups can be found in the monographs [10], [9], [14].

Norbert Krämer [13] has determined number-theoretic formulae for the numbers of conjugacy
classes of finite subgroups in the Bianchi groups, using numbers of ideal classes in orders of
cyclotomic extensions of Q(

√
−m).

The purpose of this article is to express the homological torsion of the Bianchi groups as
a function of these numbers of conjugacy classes. To achieve this, we build on the geometric
techniques of [17], which depend on the explicit knowledge of the quotient space of geometric
models for the Bianchi groups — like any technique effectively accessing the (co)homology of the
Bianchi groups, either directly [20], [23] or via a group presentation [5]. The main achievement
of this article is to detach invariants of the group actions from the geometric models, in order to
express them only by the group structure itself, in terms of conjugacy classes of finite subgroups,
normalisers of the latter, and their interactions. This information is gathered, and reduced to
its essence, in the conjugacy classes graphs we construct for this purpose.

Not only does this provide us with exact formulae for the homological torsion of the Bianchi
groups, the power of which we can see in the numerical evaluations of sections 5 and 6, also
it allows us to understand the rôle of the centralisers of the finite subgroups, and this is how
in [16], some more fruits of the present results are harvested.
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Statement of the results. Except for the Gaussian and Eisenstein integers, which can easily
be treated separately [20], [17], all the rings of integers of imaginary quadratic number fields
admit as only units {±1}. In the latter case, we call PSL2(O) a Bianchi group with units {±1}.
For the possible types of finite subgroups in the Bianchi groups, see lemma 8 : there are five
non-trivial possibilities. Our main result is the following. We make it more explicit in theorem 3
and give its proof in section 4. We deduce the structure of the cohomology ring in section 2.

Corollary 1. The homology of the Bianchi groups with units {±1} depends in all degrees above 2
(their virtual cohomological dimension) only on the numbers of conjugacy classes of non-trivial
finite subgroups of the occurring five types.

The main step in order to prove this, is to show how the homological torsion is determined by
the following graph, which we construct purely group-theoretically. Let ℓ be a prime number.
For a circle to become a graph, we identify the two endpoints of a single edge.

Definition 2. The ℓ–conjugacy classes graph of an arbitrary group Γ is given by the following
construction.

• We take as vertices the conjugacy classes of finite subgroups G of Γ containing elements
γ of order ℓ such that the normaliser of 〈γ〉 in G is not 〈γ〉 itself.

• We connect two vertices by an edge if and only if they admit representatives sharing a
common subgroup of order ℓ.

• For every pair of subgroups of order ℓ in G, which are conjugate in Γ but not in G, we
draw a circle attached to the vertex labelled by G.

• For every conjugacy class of subgroups of order ℓ which are not properly contained in
any finite subgroup of Γ, we add a disjoint circle.

Krämer’s formulae express the numbers of conjugacy classes of the five types of non-trivial
finite subgroups in the Bianchi groups, where the symbols in the first row are Krämer’s notations
for the number of their conjugacy classes:

λ4 λ6 µ2 µ3 µT

Z/2 Z/3 D2 S3 A4

Recall that we can express the homology in degrees above the virtual cohomological dimension
of the Bianchi groups by the two Poincaré series — for ℓ = 2 and ℓ = 3 — in the dimensions
over the field with ℓ elements, of the homology with Z/ℓ–coefficients of PSL2 (O−m),

P ℓ
m(t) :=

∞∑

q > 2

dimFℓ
Hq

(
PSL2

(
O−m

)
; Z/ℓ

)
tq,

which have been suggested by Grunewald. Further let P b (t) :=
−2t3

t−1 , which equals the series

P 2
m(t) of the groups PSL2 (O−m) the 2-conjugacy classes graph of which is a circle. Denote by

• P ∗
D2

(t) := −t3(3t−5)
2(t−1)2

, the Poincaré series over dimF2 Hq (D2; Z/2)− 3
2 dimF2 Hq (Z/2; Z/2)

• and by P ∗
A4

(t) := −t3(t3−2t2+2t−3)
2(t−1)2(t2+t+1)

, the Poincaré series over

dimF2 Hq (A4; Z/2)−
1

2
dimF2 Hq (Z/2; Z/2) .
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In 3-torsion, let P
b b

(t) := −t3(t2−t+2)
(t−1)(t2+1)

, which equals the series P 3
m(t) for the Bianchi groups

the 3-conjugacy classes graph of which is a single edge without identifications.

Theorem 3. For all Bianchi groups with units {±1}, the homology in degrees above their virtual
cohomological dimension is given by the Poincaré series

P 2
m(t) =

(
λ4 −

3µ2 − 2µT

2

)
P b (t) + (µ2 − µT )P

∗
D2

(t) + µTP
∗
A4

(t)

and

P 3
m(t) =

(
λ6 −

µ3

2

)
P b (t) +

µ3

2
P

b b
(t).

Organisation of the paper. We establish the structure of the cohomology rings in section 2.
In section 3, we show that the conjugacy classes graphs determine the homology of the Bianchi
groups above their virtual cohomological dimension. We achieve this by showing that for the
Bianchi groups, the conjugacy classes graphs are homeomorphic to the torsion subcomplexes
extracted from geometric models. This enables us in section 4 to prove the formulae for the
homological torsion of the Bianchi groups in terms of numbers of conjugacy classes of finite
subgroups. Krämer has given number-theoretic formulae for these numbers of conjugacy classes,
and we evaluate them numerically in sections 5 and 6. Finally, we present some numerical
asymptotics on the numbers of conjugacy classes in section 7.

Acknowledgements. The author is indebted to the late great mathematician Fritz Grunewald,
for telling him about the existence and providing him a copy of Krämer’s Diplom thesis. Warmest
thanks go to Oliver Braunling for a correspondence on the occurrence of given norms on rings
of integers, to Nicolas Bergeron for discussions on asymptotics, to Matthias Wendt for a very
careful lecture of the manuscript and helpful suggestions, and to Stephen Gelbart for support
and encouragement.

2. The cohomology ring structure of the Bianchi groups

In [5], Berkove has found a compatibility of the cup product of the cohomology ring of a Bianchi
group with the cup product of the cohomology rings of its finite subgroups. This compatibility
within the equivariant spectral sequence implies that all products that come from different
connected components of the torsion subcomplex, which we identify with the conjugacy classes
graph in section 3, are zero. It follows that the cohomology ring of any Bianchi group splits
into a restricted sum over subrings, which depend in degrees above the virtual cohomological
dimension only on the homeomorphism type of the associated connected component of the
conjugacy classes graph. The analogue in cohomology of theorem 3 and Berkove’s computations
of sample cohomology rings [4] yield the following corollary in 3–torsion.

We use Berkove’s notation, in which the degree j of a cohomology generator xj is appended
as a subscript. Furthermore, writing cohomology classes inside square brackets means that they
are polynomial (of infinite multiplicative order), and writing them inside parentheses means that
they are exterior (their powers vanish). The restricted sum ⊕̃ identifies all the degree zero classes
into a single copy of Z; when we write it with a power, we specify the number of summands.
Recall that λ6 (respectively µ3) counts the number of conjugacy classes subgroups of type Z/3
(respectively S3) in the Bianchi group.
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T subring associated to connected components of type T in 2− conjugacy classes graph

b F2[n1](m1)

b b F2[m3, u2, v3, w3]/〈m3v3 = 0, u32 + w2
3 + v23 +m2

3 + w3(v3 +m3) = 0〉

b b F2[n1,m2, n3,m3]/〈n1n3 = 0, m3
2 +m2

3 + n2
3 +m3n3 + n1m2m3 = 0〉

b

b

F2[n1,m1,m3]/〈m3(m3 + n2
1m1 + n1m

2
1) = 0〉

Table 1. Restricted summands of the mod-2 cohomology ring H∗(Γ;F2) of a
Bianchi group Γ above its virtual cohomological dimension.

Corollary 4. In degrees above the virtual cohomological dimension, the 3–primary part of the
cohomology ring of any Bianchi group Γ with units {±1} is given by

H∗(Γ; Z)(3) ∼= ⊕̃(λ6−
µ3
2
)
Z[x2](σ1) ⊕̃

µ3
2 Z[x4](x3),

where the generators xj are of additive order 3.

In 2–torsion, it does in general not suffice to know only the Krämer numbers to obtain the

cohomology ring structure, because for the two 2–conjugacy classes graphs b b b b and b

b
b b ,

we obtain the same Krämer numbers and homological 2–torsion, but different multiplicative
structures of the mod–2 cohomology rings, as we can see from table 1, which we compile from
the results of [5] and [17].

Observation 5. In the cases of class numbers 1 and 2, and in the cases where the absolute value
of the discriminant is inferior to 200, only the homeomorphism types T listed in table 1 occur
as connected components in the 2–conjugacy classes graph. So for all these Bianchi groups Γ
with units {±1}, the mod-2 cohomology ring H∗(Γ;F2) splits, above the virtual cohomological
dimension, as a restricted sum over the subrings specified in table 1, with powers according to
the multiplicities of the occurencies of the types T .

3. The conjugacy classes of finite order elements

The groups SL2(O−m) act in a natural way on hyperbolic three-space, which is isomorphic to
the symmetric space SL2(C)/SU(2) associated to them. The kernel of this action is the centre
{±1} of the groups. Thus it is useful to study the quotient of SL2(O−m) by its centre, namely
PSL2(O−m).

Let Γ = PSL2(O−m) be a Bianchi group. Then any element of Γ fixing a point inside real
hyperbolic 3-space H3

R acts as a rotation of finite order. Let Z be the refined cellular complex
obtained from the action of Γ on hyperbolic 3-space as described in [17], namely we subdivideH3

R
until the stabiliser in Γ of any cell σ fixes σ pointwise. We achieve this by computing Bianchi’s
fundamental polyhedron for the action of Γ, taking as preliminary set of 2-cells its facets lying
on the Euclidean hemispheres and vertical planes of the upper-half space model for H3

R, and
then subdividing along the rotation axes of the elements of Γ. Let ℓ be a prime number.
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Definition 6. The ℓ-torsion subcomplex is the subcomplex of Γ\Z consisting of all the cells, the
pre-images of which have stabilisers in Γ containing elements of order ℓ.

It is well-known that if γ is an element of Bianchi group of finite order n, then n must be
1, 2, 3, 4 or 6, because γ has eigenvalues ρ and ρ with ρ a primitive n-th root of unity and
the trace of γ is ρ + ρ ∈ O−m ∩ R = Z. For ℓ being one of the two occurring primes 2 and 3,
this subcomplex is a finite graph, because the cells of dimension greater than 1 are trivially
stabilised in the refined cellular complex. We reduce this subcomplex with the procedure of [17],
which consists in taking the pairs of edges with a common endpoint such that no further edge
is adjacent to this endpoint, and replacing them together with this endpoint by a single edge.

Theorem 7. Let Γ be any Bianchi group with units {±1} and ℓ any prime number. Then the
ℓ–conjugacy classes graph and the reduced ℓ–torsion subcomplex of Γ are isomorphic graphs.

The rest of this section will be devoted to the proof of this theorem. The first ingredient is
the following classification of Felix Klein [11].

Lemma 8 (Klein). The finite subgroups in PSL2(O) are exclusively of isomorphism types the
cyclic groups of orders one, two and three, the Klein four-group D2

∼= Z/2× Z/2, the symmetric
group S3 and the alternating group A4.

Recall the following lemma from [17].

Lemma 9. Let v be a non-singular vertex in the refined cell complex. Then the number n of
orbits of edges in the refined cell complex adjacent to v, with stabiliser in PSL2(O−m) isomorphic
to Z/ℓ, is given as follows for ℓ = 2 and ℓ = 3.

Isomorphism type of the vertex stabiliser {1} Z/2 Z/3 D2 S3 A4

n for ℓ = 2 0 2 0 3 2 1
n for ℓ = 3 0 0 2 0 1 2.

Now we investigate the associated normaliser groups. Straight-forward verification using the
multiplication tables of the concerned finite groups yields the following.

Lemma 10. Let G be a finite subgroup of PSL2(O−m). Then the type of the normaliser of any
subgroup of type Z/ℓ in G is given as follows for ℓ = 2 and ℓ = 3, where we print only cases with
existing subgroup of type Z/ℓ.

Isomorphism type of G {1} Z/2 Z/3 D2 S3 A4

normaliser of Z/2 Z/2 D2 Z/2 D2

normaliser of Z/3 Z/3 S3 Z/3.

The final ingredient in the proof of theorem 7 is the following.

Theorem 11. There is a natural bijection between conjugacy classes of subgroups of PSL2(O−m)
of order ℓ and edges of the reduced ℓ–torsion subcomplex. It is given by considering the stabiliser
of a representative edge in the refined cell complex.

In order to prove the latter theorem, we need several lemmata, and we establish them now.
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Lemma 12. Consider two adjacent edges E, E′ of the non-reduced torsion subcomplex. Then
for any representative e of E, there is an adjacent representative e′ of E′ on the same geodesic
line as e.

Proof. Consider the element γ ∈ Γ identifying the end v of e with the origin γ(v) of e′. As E
and E′ are distinct in the orbit space, γ−1 cannot send e′ onto e.
Assume that the stabiliser of v is of isomorphism type Z/ℓZ. Then as the edge γ−1(e′) is point-
wise fixed by Γ, its stabiliser must contain the rotation with axis passing through e. Hence
γ−1(e′) is adjacent to e and on the same geodesic line.
If the stabiliser of v is of isomorphism type D2, S3 or A4, there are at most two orbits of ℓ–torsion
stabilised edges adjacent to v. So there is an element α in the stabiliser of v such that αγ−1(e′)
is adjacent to e and on the same geodesic line. �

Corollary 13. Any edge of the reduced torsion subcomplex can be represented by a chain of
edges on the intersection of one geodesic line with a strict fundamental domain for Γ in H.

Proof. Consider the chain of edges in the torsion subcomplex that are reduced to the given edge
of the reduced torsion subcomplex. The representatives in H of the edges on this chain lie on
pairwise different orbits because the torsion subcomplex is a subcomplex of the orbit space Γ\H.
Now we start with a representative e for the edge sharing its origin with the reduced edge, and
use lemma 12 to obtain an adjacent edge e′ on the same geodesic line, representing the adjacent
edge of the torsion subcomplex. We proceed this way, assigning the role of e to e′ and so on,
until we have reached the end of the reduced edge. �

Corollary 14. Any edge of the reduced torsion subcomplex admits only representatives with
stabiliser in the same conjugacy class.

Lemma 15. Let α and γ be elements of PSL2(C). Then the fixed point set in H of α is identified
by γ with the fixed point set of γαγ−1.

Proof. One immediately checks that any fixed point x ∈ H of α induces the fixed point γ(x) of
γαγ−1. As PSL2(C) acts by isometries, the whole fixed point sets are identified. �

Lemma 16. Let v ∈ H3
R be a vertex with stabiliser in Γ of type D2 or A4. Let γ ∈ Γ be a

rotation of order 2 around an edge e adjacent to v.
Then the centraliser CΓ(γ) reflects Hγ — which is the geodesic line through e — onto itself at v.

Proof. Denote by Γv the stabiliser of the vertex v. In the case that Γv is of type D2, which is
Abelian, it admits two order–2–elements centralising γ and turning the geodesic line through e

onto itself such that the image of e touches v from the side opposite to e (illustration: b
e

b
v

γe
b ).

In the case that Γv is of type A4, it contains a normal subgroup of type D2 that admits again
two such elements. �

Let α be any torsion element in Γ. We construct the chain of edges associated to α as follows.
Consider the edge of the reduced torsion subcomplex to which the edge stabilised by α belongs.
Use corollary 13 to represent it by a chain of edges on a geodesic line. Now, α is conjugate to
an element γαγ−1 of the stabiliser of one of the edges in the chain. By lemma 15, the element
γ−1 ∈ Γ maps the mentioned geodesic line to the rotation axis of α. The image under γ−1 of
the chain of edges under consideration is the desired chain associated to α. It is well defined up
to translation along the rotation axis of α.
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Lemma 17. Let α be any 2–torsion element in Γ. Then the chain of edges associated to α is a
fundamental domain for the action of the centraliser of α on the rotation axis of α.

Proof. We distinguish the following two cases of how 〈α〉 ∼= Z/2 is included into Γ.
b Suppose that there is no subgroup of type D2 in Γ which contains 〈α〉. Then the connected

component of the 2–torsion subgraph to which any edge stabilised by 〈α〉 belongs, is homeomor-
phic to a circle. Choose a first edge e in the chain associated to α. We have an identification
γ between its end and the origin of the next edge e′, and by lemma 12 we can choose it such
that the edge stabilisers are conjugate under γ. We can write Γe = 〈α〉 and Γe′ = 〈γαγ−1〉.
By lemma 15, this gives us the identification γ−1 from e′ to an edge on the rotation axis of α,
adjacent to e because of the first condition on γ. We repeat this step until we have attached
an edge δe on the orbit of the first edge e, with δ ∈ Γ. As δ is an isometry, the whole chain is
translated by δ from the start at e to the start at δe. So the group 〈δ〉 acts on the rotation axis
with fundamental domain our chain of edges. And δαδ−1 is again the rotation of order 2 around
the axis of α. So, δαδ−1 = α and therefore 〈δ〉 < CΓ(α).

b b , b

b

, b b , . . . Suppose that there is a subgroup G of Γ of type G ∼= D2 containing 〈α〉. If
there is no further inclusion G < G′ < Γ with G′ ∼= A4, let G

′ := G. Then the chain associated
to α can be chosen such that one of its endpoints is stabilised by G′. The other endpoint of this
chain must then lie on a different Γ-orbit, and admit as stabiliser a group H ′ containing 〈α〉,
of type D2 or A4. By lemma 16, each G′ and H ′ contain a reflection of the rotation axis of α,
centralising α. These two reflections must differ from one another because they do not fix the
chain of edges. So their free product tessellates the rotation axis of α with images of the chain
of edges associated to α. �

Lemma 18. Let α be any non-trivial torsion element in a Bianchi group Γ. Then the Γ–image
of the chain of edges associated to α contains the rotation axis of α.

Proof. For α a 2–torsion element, this follows directly from lemma 17. So we can assume α to
be a 3–torsion element.

b b The non-centralising reflections of S3, which is associated to the two vertices, tessellate
a geodesic line. Remark that there are exactly three maps Z/3 → Z/3 induced on the edge
stabilisers, given by the three order–2–elements of S3. So, the quotient space by the centraliser
of α must be bigger.

b After finitely many translations, all the edges in the fundamental domain conjugate to
edges on the geodesic line are obtained as images. Hence, the Γ–image contains the whole
geodesic line. �

Proof of theorem 11. Corollary 14 associates a conjugacy class of type Z/ℓ to each edge of the
reduced ℓ–torsion subcomplex. Conversely, let α and γαγ−1 be conjugate torsion elements of Γ.
We want to show that they stabilise edges representing the same reduced edge. By Klein, we
know that the torsion elements are elliptic and hence fix some geodesic line. Every torsion
element acts as the stabiliser of a line conjugate to one passing through the Bianchi fundamental
polyhedron. So, it is conjugate to one of the representative edge stabilisers. By lemma 15, we
know that the line fixed by α is sent by γ to the line fixed by γαγ−1.

By lemmata 17 and 18, the union of the Γ–images of the chain associated to α contains the
whole geodesic line fixed by α (because then, as the Γ–action is cellular, any cell stabilised by
γαγ−1 admits a cell on its orbit stabilised by α). So it follows that all the edges on a geodesic
line belong to the same reduced edge. �
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Proof of theorem 7. Comparing with lemma 9, we see that the vertex set of the ℓ–conjugacy
classes graph gives precisely the bifurcation points and vertices with only one adjacent edge of
the ℓ-torsion subcomplex. When passing to the reduced ℓ-torsion subcomplex, we get rid of all
vertices with two adjacent edges except in the disjoint circles, see [17]. By theorem 11, the edges
of the ℓ–conjugacy classes graph give the edges of the reduced ℓ-torsion subcomplex. �

4. The Krämer numbers and group homology

Krämer [13] has determined number-theoretic formulae for the numbers of conjugacy classes
of the five types of non-trivial finite subgroups in the Bianchi groups, where the symbols in the
first row are Krämer’s notations for the number of their conjugacy classes:

µ2 µT µ3 λ2n λT
4 λ∗

4 λ∗
6 µ−

2

D2 A4 S3 Z/n Z/2 ⊂ A4 Z/2 ⊂ D2 Z/3 ⊂ S3 D2 * A4

Here, the inclusion signs “⊂” mean that we only consider copies of Z/n admitting the specified
inclusion in the given Bianchi group and D2 * A4 means that we only consider copies of D2 not
admitting any inclusion into a subgroup of type A4 of the Bianchi group.

Note that the number µ−
2 is simply the difference µ2 − µT , because every copy of A4 admits

precisely one normal subgroup of type D2. Also, note the following graph-theoretical properties
of the reduced torsion subgraphs, the latter of which we obtain by restricting our attention to
the connected components not homeomorphic to b .

Corollary 19 (Corollary to lemma 9). For all Bianchi groups with units {±1}, the Krämer
numbers satisfy λT

4 6 µT and 2λ∗
6 = µ3, and even

2λ∗
4 = µT + 3µ−

2 .

The values given by Krämer’s formulae are matching with the values computed with [18].

Observation 20. The Krämer numbers determine the 3-conjugacy classes graph and hence the
reduced 3–torsion subcomplex for all Bianchi groups with units {±1}, as we can see immediately
from theorem 7 and the description of the reduced 3–torsion subcomplex in [17].

From now on, we will use group homology, the virtual cohomological dimension and the
equivariant spectral sequence, none of which we do define: they can be looked up in [7]. Except
in degrees 1 and 2 (below and at the virtual cohomological dimension of the Bianchi groups),
where we still have to resort to the methods of [20] in the principal ideal domain cases and [19]
in the other cases, we establish the characterisation of theorem 3.

In 3–torsion, theorem 3 follows directly from observation 20, corollary 19 and the main result
of [17], which is the following.

Theorem 21 ([17]). The ℓ–primary part of the integral homology of PSL2(O−m) depends in
degrees greater than 2 (the virtual cohomological dimension) only on the homeomorphism type
of the ℓ–torsion subcomplex.

In 2–torsion, we have to recall some lemmata in order to give the proof of theorem 3.
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Lemma 22 ([17]). The ℓ–primary part of the terms E2
p,q of the equivariant spectral sequence

converging to Hp+q(PSL2 (O−m) ; Z) depends in all rows q > 1 only on the homeomorphism type
of the ℓ–torsion subcomplex.

Sub-Lemma 23 ([17]). The matrix for the ℓ-primary part of the differential d11,q of the equi-

variant spectral sequence converging to Hp+q(PSL2 (O−m) ; Z) can be decomposed as a direct sum
of the blocks associated to the connected components of the ℓ-torsion subgraph.

Lemma 24 (Schwermer/Vogtmann). Let M be Z or Z/2. Consider group homology with trivial
M -coefficients. Then the following holds.

• Any inclusion Z/2 → S3 induces an injection on homology.
• An inclusion Z/3 → S3 induces an injection on homology in degrees congruent to 3 or 0
mod 4, and is otherwise zero.

• Any inclusion Z/2 → D2 induces an injection on homology in all degrees.
• An inclusion Z/3 → A4 induces injections on homology in all degrees.
• An inclusion Z/2 → A4 induces injections on homology in degrees greater than 1, and is
zero on H1.

For the proof in Z–coefficients, see [20], for Z/2–coefficients see [17].

Lemma 25 ([17], lemma 32). Let q > 3 be an odd integer number. Let v be a vertex representa-
tive of stabiliser type D2 in the refined cellular complex for the Bianchi groups. Then the three
images in (Hq(D2;Z))(2) induced by the inclusions of the stabilisers of the edges adjacent to v,

are linearly independent.

Finally, we deduce one new ingredient for the proof of theorem 3, which might be of interest
in its own right.

Lemma 26. In all rows q > 1 and outside connected components of type b , the d1p,q–differential
of the equivariant spectral sequence converging to Hp+q(PSL2 (O−m) ; Z) is always injective.

Proof. For matrix blocks of the d1p,q–differential associated to vertices with just one adjacent
edge, we see from lemma 9 that the vertex stabiliser is of type A4 in 2–torsion, respectively of
type S3 in 3–torsion, so injectivity follows from lemma 24. As we have placed ourselves outside
connected components of type b , the remaining vertices are bifurcation points of stabiliser
type D2 and injectivity follows from lemma 25. �

Proof of theorem 3. What we need to determine with the Krämer numbers, is the 2–primary
part of the E2

p,q–term of the equivariant spectral sequence converging to Hp+q(PSL2 (O−m) ; Z)
in all rows q > 1. From there, we see from the deduction of theorem 21 in [17] that we obtain
the claim. By sub-lemma 23 and lemma 22, we only need to check this determination on each
homeomorphism type of connected components of the 2–torsion subgraph. We use theorem 7
to identify the reduced 2–torsion subgraph and the 2-conjugacy classes graph. Then we can
observe that

• Krämer’s number λ∗
4 − λ4 determines the number of connected components of type b .

• Krämer’s number λ∗
4 determines the number of edges of the 2–torsion subgraph outside

connected components of type b . Lemma 26 tells us that the block of the d1p,q–differential
of the equivariant spectral sequence associated to such edges is always injective.

• Krämer’s number µ−
2 determines the number of bifurcation points, and µT determines

the number of vertices with only one adjacent edge of the 2–torsion subgraph.

Using corollary 19, we obtain the explicit formulae in theorem 3. �
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5. Numerical evaluation of Krämer’s formulae in 3–torsion

Denote by δ the number of finite ramification places of Q(
√
−m ) over Q. Let k+ be the

totally real number field Q(
√
3m ) and denote its ideal class number by hk+ . Krämer introduces

the following indicators:

z :=

{
2, if 3 is the norm of an integer of k+,

1, otherwise.

For m ≡ 0 mod 3 and m 6= 3, denote by ǫ := 1
2(a + b

√
m
3 ) > 1 the fundamental unit of k+

(where a, b ∈ N). Now, define

x′ :=

{
2, if the norm of ǫ is 1,

1, if the norm of ǫ is − 1

and

y :=

{
2, if b ≡ 0 mod 3,

1, otherwise.

Then [13, 20.39 and 20.41] yield the following formulae in 3–torsion.

m specifying Bianchi groups PSL2 (O−m) λ∗
6 λ6 − λ∗

6

m ≡ 2 mod 3 0 z
2hk+

m ≡ 1 mod 3 gives either 2δ−1 1
2(hk+ − 2δ−1)

or 0 1
2hk+

m ≡ 6 mod 9 0 x′yhk+

m ≡ 3 mod 9, m 6= 3 gives either 2δ−2 1
2(3x

′hk+ − 2δ−2)

or 0 1
23x

′hk+

The above case distinctions come from the fact that Krämer’s theorem 20.39 ranges over all
types of maximal orders in quaternion algebras over Q(

√
−m ), in which Krämer determines the

numbers of conjugacy classes in the norm-1-group. The remaining task in order to decide which
of the cases applies, is to find out of which type considered in the mentioned theorem is the
maximal order M2(O−m). Some methods to cope with this task are introduced in [13, §27].
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Krämer’s resulting criteria can be summarised as follows for 3-torsion.

condition implication

m ≡ 2 mod 3 µ3 = λ∗
6 = 0.

m ≡ 6 mod 9 µ3 = λ∗
6 = 0.

m prime andm ≡ 1 mod 3 λ∗
6 > 0.

m = 3p with p prime and p ≡ 1 mod 3 λ∗
6 > 0.

m ≡ 1 mod 3 and − 3 occurs as norm onOk+ λ∗
6 > 0.

m ≡ 1 mod 3 and − 3 does not occur as norm onOk+ λ6 − λ∗
6 > 0.

m ≡ 1 mod 3 andm admits a prime divisor p with p ≡ 2 mod 3 λ6 − λ∗
6 > 0.

m ≡ 3 mod 9 and x′ = 1
and m

3 admits only prime divisors p with p ≡ 1 mod 12 λ∗
6 > 0.

m ≡ 3 mod 9 and x′ = 1
and m

3 admits a prime divisor p with p ≡ 5 mod 12 λ∗
6 = 0.

m ≡ 3 mod 9 and h(k′+) = 2δ−3

and m
3 admits only prime divisors p with p ≡ ±1 mod 12 or p = 2 λ∗

6 = 0.

m ≡ 3 mod 9 and h(k′+) = 1
and m

3 = p′p with p′, p prime and p′ ≡ p ≡ 7 mod 12 λ∗
6 > 0.

In order to determine Krämer’s indicator z, we need to determine if a given value occurs as
the norm on the ring of integers of an imaginary quadratic number field. This is implemented in
Pari/GP [1] (the first step is computing the answer under the Generalised Riemann hypothesis,
and the second step is a check computation which confirms that we arrive at that answer without
this hypothesis). Additionally, we compare with the below criterion [13, (20.13)].

Lemma 27 (Krämer). Let m be not divisible by 3.

• If the number −3 is the norm of an integer in the totally real number field k+, then all
prime divisors p ∈ N of m satisfy the congruence p ≡ 1 mod 3.
Especially, the congruence m ≡ 1 mod 3 is implied.

• If the number 3 is the norm of an integer in the totally real number field k+, then all
prime divisors p ∈ N of m satisfy either p = 2 or the congruence p ≡ ±1 mod 12.
Additionally, the congruence m ≡ 2 mod 3 is implied.
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With Krämer’s criteria at hand, we can decide for many Bianchi groups, which of the alter-
native cases in Krämer’s formulae must be used. We do this in the below tables for all such
Bianchi groups PSL2 (O−m) with absolute value of the discriminant ∆ ranging between 7 and

2003, where we recall that the discriminant is ∆ =

{
−m, m ≡ 3 mod 4,

−4m, else.

In the cases m ∈ {102, 133, 165, 259, 559, 595, 763, 835, 1435}, where these statements are not
sufficient to eliminate the wrong alternatives, we insert the results of [18]. This way, the below
tables treat all Bianchi groups with units {±1} and discriminant of absolute value less than 615.
The cases where an ambiguity remains (so to exclude them from our tables) are m ∈ { 210, 262,
273, 298, 345, 426, 430, 462, 481, 615, 1155, 1159, 1195, 1339, 1351, 1407, 1515, 1807}. For
tables of the cases without ambiguity, with m ranging up to 10000, see the preprint version 2 of
this paper on HAL.

In [12], a theorem is established which solves all these ambiguities by giving for each type
of finite subgroups in PSL2 (O−m) criteria equivalent to its occurrence, in terms of congruence
conditions on the prime divisors of m.

3−conjugacy
classes graph

m specifying Bianchi groups PSL2 (O−m) with this 3−conjugacy classes graph

b
2, 5, 6, 10, 11, 14, 15, 17, 22, 23, 29, 34, 35, 38, 41, 46, 47, 51, 53, 55,

58, 59, 62, 71, 82, 83, 86, 87, 89, 94, 95, 101, 106, 113, 115, 118, 119, 123, 131, 134,

137, 142, 149, 155, 158, 159, 166, 167, 173, 178, 179, 187, 191, 197, 202, 203, 206, 214, 215, 226,

227, 233, 235, 239, 251, 254, 257, 263, 267, 269, 274, 278, 281, 287, 293, 295, 303, 311, 317, 319,

323, 326, 334, 335, 339, 346, 347, 353, 355, 358, 359, 371, 382, 383, 389, 391, 394, 395, 398, 401,

411, 415, 422, 431, 443, 446, 447, 449, 451, 454, 461, 466, 467, 478, 479, 491, 515, 519, 527, 535,

551, 563, 583, 591, 599, 623, 635, 647, 655, 659, 667, 683, 695, 699, 707, 719, 731, 743, 755, 779,

791, 799, 807, 815, 827, 839, 843, 879, 887, 895, 899, 911, 943, 947, 951, 955, 959, 979, 983, 995,

1003, 1019, 1031, 1055, 1059, 1091, 1103, 1111, 1115, 1135, 1139, 1151, 1163, 1167, 1187, 1207,

1211, 1219, 1223, 1243, 1247, 1255, 1259, 1271, 1283, 1307, 1315, 1343, 1347, 1363, 1367, 1379,

1383, 1411, 1415, 1439, 1487, 1499, 1507, 1511, 1523, 1527, 1535, 1555, 1559, 1563, 1571, 1607,

1631, 1639, 1643, 1655, 1667, 1671, 1707, 1711, 1735, 1751, 1763, 1779, 1787, 1795, 1799, 1811,

1819, 1823, 1835, 1847, 1851, 1883, 1903, 1907, 1915, 1919, 1923, 1927, 1931, 1943, 1959, 1979, 2003,

2 b
26, 42, 65, 69, 70, 74, 77, 78, 85, 110, 122, 130, 141, 143, 145, 154, 161, 170, 182, 185, 186, 190, 194,

195, 205, 209, 213, 218, 221, 222, 230, 231, 238, 253, 265, 266, 286, 305, 310, 314, 322, 329, 365,

366, 370, 377, 386, 406, 407, 410, 418, 434, 437, 442, 445, 455, 458, 470, 473, 474, 483, 485, 493, 494,

497, 555, 611, 627, 671, 715, 767, 803, 851, 923, 935, 1015, 1079, 1095, 1199, 1235, 1295, 1311, 1391,

1403, 1455, 1463, 1491, 1495, 1595, 1599, 1615, 1679, 1703, 1739, 1771, 1855, 1887, 1991,

3 b
30, 66, 107, 138, 174, 255, 282, 302, 318, 354, 419, 498, 503, 759, 771, 795, 835, 863, 1007, 1319,

1355, 1427, 1479, 1551, 1583, 1619, 1691, 1695, 1871, 1895, 1947, 1967,

4 b
33, 105, 114, 146, 177, 249, 258, 285, 290, 299, 321, 330, 341, 357, 374, 385, 393, 402, 413,

429, 465, 482, 595, 663, 915, 987, 1023, 1067, 1239, 1435, 1727, 1743, 1955, 1995,

5 b
1043, 1203, 1451,

6 b
102, 165, 246, 362, 390, 435, 1335, 1419, 1547,

7 b
587, 971,
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3−conjugacy
classes graph

m specifying Bianchi groups PSL2 (O−m) with this 3−conjugacy classes graph

8 b
438, 1131, 1635.

b b 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271, 283, 307, 379, 439,

463, 487, 499, 523, 571, 607, 619, 631, 691, 727, 739, 751, 787, 811, 823, 859, 883, 907, 919, 967,

991, 1039, 1051, 1063, 1123, 1171, 1231, 1279, 1303, 1399, 1423, 1447, 1459, 1471, 1483, 1531,

1543, 1567, 1579, 1627, 1663, 1699, 1723, 1759, 1783, 1831, 1867, 1987, 1999,

b b
∐

b
39, 111, 183, 219, 291, 327, 331, 367, 471, 543, 579, 643, 723, 831, 939, 1011, 1047, 1087, 1119,

1191, 1227, 1263, 1291, 1299, 1327, 1371, 1623, 1803, 1839, 1879, 1951, 1983,

b b
∐

2 b
547, 1747,

b b
∐

4 b
687,

b b
∐

10 b
1731,

2 b b 13, 37, 61, 91, 109, 157, 181, 229, 247, 277, 349, 373, 403, 421, 427, 511, 679, 703, 871,

1099, 1147, 1267, 1591, 1603, 1687, 1891, 1963,

2 b b
∐

b
73, 97, 193, 241, 259, 313, 337, 409, 457, 559, 763, 1651, 1939,

2 b b
∐

2 b
21, 57, 93, 129, 201, 309, 381, 397, 399, 417, 453, 489, 651, 903, 1443, 1659, 1767, 1843,

2 b b
∐

3 b
433, 1027, 1387,

2 b b
∐

8 b
237,

4 b b 217, 301, 469,

4 b b
∐

2 b
133,

6. Numerical evaluation of Krämer’s formulae in 2–torsion

Denote by δ the number of finite ramification places of Q(
√
−m ) over Q. Let k+ be the

totally real number field Q(
√
m ) and denote its ideal class number by hk+ . For m 6= 1, Krämer

introduces the following indicators:
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z :=

{
2, if 2 is the norm of an integer of k+,

1, otherwise,
q :=

{
2, if ± 2 is the norm of an integer of k+,

1, otherwise,

w :=

{
2, if ∀ prime divisors p of m with p 6= 2 we have p ≡ ±1 mod 8,

1, if m admits prime divisors p ≡ ±3 mod 8.

Furthermore, denote by ǫ := 1
2 (a+b

√
m) > 1 the fundamental unit of k+ (where a, b ∈ N). Now,

define

x :=

{
2, if the norm of ǫ is 1,

1, if the norm of ǫ is − 1
and y :=

{
3, if b ≡ 0 mod 2,

1, if b ≡ 1 mod 2.

Then [13, 26.12 and 26.14] yield the following formulae in 2–torsion.

m specifying Bianchi groups PSL2 (O−m) µT µ−
2 λT

4 λ∗
4 λ4 − λ∗

4

m ≡ 7 mod 8 0 0 0 0 z
2hk+

m ≡ 3 mod 8 gives either 2δ 0 2δ−1 2δ−1 1
2(hk+ − 2δ−1)

or (provided that 2δ−1 > 1) 0 0 0 0 1
2hk+

m ≡ 2 mod 4 and w = 2 gives either 2δ−1 2δ−1 2δ−2z 2δ 1
4x(z + 2)hk+ − 2δ−1

or (provided that 2δ−1 > 1) 0 0 0 0 1
4x(z + 2)hk+

m ≡ 2 mod 4 and w = 1 gives either 2δ−1 0 2δ−2 2δ−2 1
2(

3
2xhk+ − 2δ−2)

or 0 2δ−1 0 2δ−23 3
2(

1
2xhk+ − 2δ−2)

or (provided that 2δ−1 > 2) 0 0 0 0 3
4xhk+

m ≡ 1 mod 8 andm 6= 1 and w = 2 gives either 2δ−1 2δ−1 2δ−2 2δ 2xhk+ − 2δ−1

or (provided that 2δ−2 > 1) 0 0 0 0 2xhk+

m ≡ 1 mod 8 and w = 1 gives either 2δ−1 0 2δ−2 2δ−2 2xhk+ − 2δ−3

or 0 2δ−1 0 2δ−23 2xhk+ − 2δ−33

or (provided that 2δ−2 > 2) 0 0 0 0 2xhk+

m ≡ 5 mod 8 0 2δ−1 0 2δ−23 1
2

(
x(2y + 1)hk+ − 2δ−23

)

or (provided that 2δ−2 > 1) 0 0 0 0 1
2x(2y + 1)hk+
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The above case distinctions come from the fact that Krämer’s theorem 26.12 ranges over all
types of maximal orders in quaternion algebras over Q(

√
−m ), in which Krämer determines

the numbers of conjugacy classes in the norm-1-group. The remaining task in order to decide
which of the cases applies, is to find out of which type considered in the mentioned theorem is
the maximal order M2(O−m). Some methods to cope with this task are introduced in [13, §27],
where Krämer obtains the following criteria for the 2–torsion numbers:

condition implication

m ≡ 7 mod 8 µT = µ−
2 = λT

4 = λ∗
4 = 0.

m ≡ 5 mod 8 µT = λT
4 = 0.

m ≡ 21 mod 24 λ∗
4 = 0.

m ≡ 0 mod 6 and λ∗
4 > 0 λT

4 > 0.

m ≡ 9 mod 24 and λ∗
4 > 0 λT

4 > 0.

m prime andm ≡ 1 or 3 mod 8 λT
4 > 0.

m ≡ 5 mod 8 andm prime λ∗
4 > 0.

m = 2p with p prime and p ≡ 3 or 5 mod 8 λ∗
4 > 0.

m = p′p with p and p′ prime and p ≡ p′ ≡ 3 or 5 mod 8 λ∗
4 > 0.

m = 3p with p prime and p ≡ 1 or 3 mod 8 λT
4 > 0.

m ≡ 1 or 2 mod 4 andm 6= 1 and x = 1 λ∗
4 > 0 and µ−

2 > 0.

m ≡ 1 or 2 mod 4 andm 6= 1 and x = 2 λ4 − λ∗
4 > 0.

m ≡ 3 mod 8 and − 2 occurs as norm onOk+ λ∗
4 > 0 and λT

4 > 0.

m ≡ 3 mod 8 and − 2 does not occur as norm onOk+ λ4 − λ∗
4 > 0.

m ≡ 3 mod 8 andm admits a prime divisor p with p ≡ 5 or 7 mod 8 λ4 − λ∗
4 > 0.

m ≡ 1 mod 8 and w = 1 and h(k+) = 2δ−3 µ−
2 = 0.

m ≡ 2 mod 4 and − 2 occurs as norm onOk+ λT
4 > 0.

m ≡ 2 mod 4 and − 2 does not occur as norm onOk+ and h(k+) = 2δ−2 λ∗
4 = 0.

m ≡ 2 mod 4 and q = 1 and h(k+) = 2δ−1 and w = 2 λ∗
4 = 0.

m ≡ 2 mod 4 and h(k+) = 2δ−2

andm admits a prime divisor p with p ≡ 5 or 7 mod 8 λ∗
4 = 0.
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With the above criteria at hand, we can decide for many Bianchi groups, which of the alter-
native cases in Krämer’s formulae must be used. We do this in the below tables for all such
Bianchi groups PSL2 (O−m) with absolute value of the discriminant ∆ ranging between 7 and
2003. In the cases m ∈ { 34, 105, 141, 142, 194, 235, 323, 427, 899, 979, 1243, 1507}, where these
statements are not sufficient to eliminate the wrong alternatives, we insert the results of [18].
This way, the below tables treat all Bianchi groups with units {±1} and discriminant of absolute
value less than 820. The cases where an ambiguity remains (so to exclude them from our tables)
are the following values of m: 205, 221, 254, 273, 305, 321, 322, 326, 345, 377, 381, 385, 386,
410, 438, 465, 469, 473, 482, 1067, 1139, 1211, 1339, 1443, 1763, 1771, 1947.

The above mentioned theorem on subgroup occurencies [12] solves all these ambiguities.

2−torsion
homology

m specifying Bianchi groups PSL2 (O−m) with this 2−torsion homology

P b 7, 15, 23, 31, 35, 39, 47, 55, 71, 87, 91, 95, 103, 111, 115, 127, 143, 151, 155,

159, 167, 183, 191, 199, 203, 215, 239, 247, 259, 263, 271, 295, 299, 303, 311, 319, 327, 335,

355, 367, 371, 383, 395, 403, 407, 415, 431, 447, 463, 471, 479, 487, 503, 515, 519, 535, 543,

551, 559, 583, 591, 599, 607, 611, 631, 635, 647, 655, 667, 671, 687, 695, 703, 707, 719, 743,

751, 755, 763, 767, 807, 815, 823, 831, 835, 851, 863, 871, 879, 887, 911, 919, 923, 951, 955,

967, 983, 991, 995, 1007, 1027, 1031, 1039, 1043, 1047, 1055, 1063, 1079, 1099, 1103, 1115,

1119, 1135, 1147, 1151, 1159, 1167, 1195, 1199, 1219, 1231, 1247, 1255, 1263, 1267, 1279,

1303, 1315, 1319, 1355, 1363, 1379, 1383, 1391, 1399, 1403, 1415, 1423, 1439, 1447, 1471,

1487, 1511, 1535, 1543, 1555, 1559, 1583, 1591, 1603, 1607, 1623, 1643, 1651, 1655, 1663,

1671, 1703, 1711, 1727, 1739, 1759, 1783, 1795, 1807, 1823, 1831, 1835, 1839, 1871, 1879,

1883, 1891, 1895, 1903, 1915, 1919, 1939, 1943, 1951, 1959, 1963, 1983, 1991, 1999,

2P b 14, 46, 62, 94, 119, 158, 195, 206, 231, 255, 287, 302, 334, 382, 391, 398, 435, 446, 455,

478, 483, 511, 527, 555, 595, 615, 623, 651, 663, 679, 715, 759, 791, 795, 903, 915, 935, 943,

987, 1015, 1095, 1131, 1207, 1235, 1271, 1295, 1311, 1335, 1343, 1407, 1435, 1455, 1463,

1479, 1491, 1515, 1547, 1551, 1595, 1615, 1631, 1635, 1659, 1687, 1695, 1751, 1767, 1799,

1855, 1887, 1927, 1955, 1967,

3P b 21, 30, 42, 69, 70, 77, 78, 79, 93, 110, 133, 138, 154, 174, 182, 186, 190, 213, 222, 223,

230, 235, 237, 253, 266, 282, 286, 301, 309, 310, 318, 341, 359, 366, 406, 413, 426, 427,

430, 437, 453, 470, 474, 494, 839, 895, 899, 1191, 1223, 1367, 1527, 1567, 1639, 1735, 1847,

4P b 161, 217, 238, 329, 399, 497, 799, 959, 1023, 1155, 1239, 1351, 1679, 1743, 1995,

5P b 439, 727, 1111, 1327,

6P b 142, 165, 210, 285, 330, 357, 390, 429, 434, 462, 1495, 1599,

7P b 141, 1087,

8P b 105,

2P ∗
D2

5, 10, 13, 26, 29, 53, 58, 61, 74, 106, 109, 122, 149, 157, 173, 181, 202, 218, 277,

293, 298, 314, 317, 362, 394, 397, 421, 458, 461,
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2−torsion
homology

m specifying Bianchi groups PSL2 (O−m) with this 2−torsion homology

2P ∗
D2

+ 2P b 37, 101, 197, 269, 349, 373, 389,

2P ∗
D2

+ 3P b 229, 346,

4P ∗
D2

85, 130, 170, 290, 365, 370, 493,

4P ∗
D2

+ P b 65, 185, 265, 481,

4P ∗
D2

+ 3P b 442, 445,

4P ∗
D2

+ 4P b 485,

4P ∗
D2

+ 5P b 145,

P ∗
A4

+ P ∗
D2

2,

2P ∗
A4

11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 283, 307, 331, 347, 379,

419, 467, 491, 523, 547, 563, 571, 587, 619, 643, 683, 691, 739, 787, 811, 827, 859, 883, 907,

947, 971, 1019, 1051, 1123, 1163, 1187, 1259, 1283, 1291, 1307, 1427, 1451, 1459, 1483, 1499,

1531, 1571, 1579, 1619, 1667, 1699, 1723, 1747, 1867, 1931, 1979, 2003,

2P ∗
A4

+ P b 6, 22, 38, 86, 118, 134, 166, 214, 262, 278, 358, 422, 443, 454, 659, 1091, 1171, 1523, 1627,

1787, 1811, 1907, 1987,

2P ∗
A4

+ 2P b 499,

2P ∗
A4

+ 2P ∗
D2

17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 281, 313, 337, 353, 409, 433, 449, 457,

2P ∗
A4

+ 2P ∗
D2

+ P b 82, 146, 178, 274, 466,

2P ∗
A4

+ 2P ∗
D2

+ 2P b 34, 194,

2P ∗
A4

+ 2P ∗
D2

+ 4P b 226, 257,

2P ∗
A4

+ 2P ∗
D2

+ 8P b 401,

4P ∗
A4

51, 123, 187, 267, 339, 411, 451, 699, 771, 779, 803, 843, 1059, 1203, 1347,

1563, 1691, 1707, 1779, 1819, 1843, 1923,

4P ∗
A4

+ P b 219, 291, 323, 579, 723, 731, 939, 979, 1003, 1011, 1227, 1243, 1371, 1387, 1411, 1507, 1731,

1803,

4P ∗
A4

+ 2P b 66, 102, 114, 246, 258, 354, 374, 402, 418, 498, 1851,

4P ∗
A4

+ 3P b 33, 57, 129, 177, 201, 209, 249, 393, 417, 489, 1299,

8P ∗
A4

627, 1419.
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7. Asymptotic behaviour of the number of conjugacy classes

From Krämer’s above formulae, we see that both in 2–torsion and in 3–torsion, the number
of conjugacy classes of finite subgroups, and hence also the cardinality of the homology of
the Bianchi groups in degrees above their virtual cohomological dimension, admits only two
factors which are not strictly limited: hk+ and 2δ. As for the ideal class number hk+ , we
recall that the Cohen-Lenstra heuristic [8] predicts the following. Define the constant A as the
product

∏
k>2 ζ(k) ≈ 2.29486, where ζ is the classical Riemann zeta-function. Furthermore, set

B :=
∏

k∈N(1 − 2−k) ≈ 0.288788. Then, the probability that the ideal class group of k+ is
isomorphic to a given finite Abelian group G of odd order |G|, is equal to

1

2 · |G| ·B ·A · |Aut(G)| .

This prediction implies that more than 75% of all totally real quadratic number fields admit the
trivial ideal class group (hk+ = 1) and over 12.5% of them admit hk+ = 3.

As for the factor 2δ, the number δ of finite ramification places of Q(
√
−m ) over Q is well-

known to equal the number of prime divisors of the discriminant of Q(
√
−m ).

The numerical evaluation of Krämer’s formulae provides us with databases which are over a
thousand times larger than what is reasonable to print in sections 5 and 6. We now give an
instance of how these databases can be exploited. Denote the discriminant of Q(

√
−m ) by ∆.

In the cases m ≡ 3 mod 4, we have ∆ = −m. Denote the number λ6 − λ∗
6 of connected com-

ponents of type b in the 3-conjugacy classes graph by λ′
6(∆). Then clearly, the subgroup in

Hq(PSL2 (O−m)), q > 2, generated by the order-3-elements coming from the connected compo-

nents of this type, is of order 3λ
′

6(∆). Denote by covolume(∆) the volume of the quotient space

PSL2(O−m)\H. The study of the ratio 3λ
′

6(∆)

covolume(∆) is motivated by the formulae in [3]. In figure 1,

we print the logarithm of the average of this ratio over the cases |∆| ≡ 3 mod 4, scaled by a

factor m
−2
3 , so to say

m
−2
3 log


 1

#{∆ : |∆| 6 m}
∑

|∆|6m

3λ
′

6(∆)

covolume(∆)


 ,

where we consider m and ∆ as independent variables, m running through the square-free positive
rational integers. In order to cope with the fact that in some cases, Krämer’s formulae leave an
ambiguity, we print a function assuming the lowest possible values of λ′

6(∆) and one assuming
the highest possible values of λ′

6(∆) in the same diagram.
So for m greater than 10815 and less than one million, we can observe that the average of the

above ratio oscillates between exp(m
2
3 0.023695) and exp(m

2
30.054419). For m less than 10815,

this oscillation is much stronger, and the diagram might be seen as suggesting that possibly the
oscillation could remain between these two bounds for m greater than one million.

For related asymptotics, see the recent works of Bergeron/Venkatesh [3] and Sengün [21].
For an alternative computer program treating the Bianchi groups, see the SAGE package of
Cremona’s student Aranes [2], and for GL2(O) see Yasaki’s program [24].
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Figure 1. Average homological 3-torsion outside subgroups of type S3, scaled
as indicated.
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