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Abstract. We define a color monogenic wavelet transform. This is based on the recent grayscale
monogenic wavelet transform and an extension to color signals aimed at defining non-marginal
tools. Wavelet based color image processing schemes have mostly been made by using a
grayscale tool separately on color channels. This may have some unexpected effect on col-
ors because those marginal schemes are not necessarily justified. Here we propose a definition
that considers a color (vector) image right at the beginning of the mathematical definition so we
can expect to bring an actual color wavelet transform - which has not been done so far to our
knowledge. This so provides a promising multiresolution color geometric analysis of images.
We show an application of this transform with a statistical modeling of coefficients for color
denoising issue.
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1 INTRODUCTION

Wavelets have been widely used for handling images for more than 20 years. It seems that
the human visual system sees images through different channels related to particular frequency
bands and directions; and wavelets provide such decompositions. Since 2001, the analytic sig-
nal and its 2D generalizations have brought a great improvement to wavelets [1, 2, 3] by a
natural embedding of an AM/FM analysis in the subband coding framework. This yields an
efficient representation of geometric structures in grayscale images thanks to a local phase car-
rying geometric information complementary to an amplitude envelope having good invariance
properties. So it codes the signal in a more coherent way than standard wavelets. The last and
seemingly most appropriate proposition [3] of analytic wavelets for image analysis is based on
the monogenic signal [4] defined with geometric algebra.

In parallel a color monogenic signal was proposed [5] as a mathematical extension of the
monogenic signal; paving the way to non-marginal color tools especially by using geometric
algebra and above all by considering a color signal right at the foundation of the mathematical
construction.

We define here a color monogenic wavelet transform that extends the monogenic wavelets
of [3] to color. These analytic wavelets are defined for color 2D signals (images) and avoid the
classical pitfall of marginal processing (grayscale tool used separately on color channels) by
relying on a sound mathematical definition. We may so expect to handle coherent information
of multiresolution color geometric structure; which would make easier any wavelet based color
image processing. To our knowledge color wavelets have not been proposed so far.

We first give a technical study of analytic signal/wavelets with the intent to popularize them
since they rely on non-trivial concepts of geometric algebra, complex/harmonic analysis, as well
as non-separable wavelet frames. Then we describe our color monogenic wavelet transform;
and finally an application to color denoising will be presented.

Notations :
2-vector coordinates : x=(x, y) , ω=(ω1, ω2) ∈ R2; k ∈ Z2

Euclidean norm : ‖x‖ =
√
x2 + y2

Complex imaginary number : j ∈ C Argument of a complex number : arg
Convolution symbol : ∗ Fourier transform : F

2 ANALYTIC SIGNAL AND 2D GENERALIZATION

An analytic signal sA is a multi-component signal associated to a real signal s to analyze.
The definition is well known in the 1D case where sA(t) = s(t) + j (h ∗ s)(t) is the complex
signal made of s and its Hilbert transform (with h(t) = 1

πt
).

The polar form of the 1D analytic signal provides an AM/FM representation of s with |sA|
being the amplitude envelope and ϕ = arg (sA) the instantaneous phase. This classical tool can
be found in many signal processing books and is used in communications for example.

Interestingly we can also interpret the phase in terms of signal shape i.e. there is a direct link
between the angle ϕ and the local structure of s. Such a link between a 2D phase and local
geometric structures of images would be very attractive in image processing. That is why there
were several attempts to generalize it for 2D signals; and among them the monogenic signal [4]
seems the most advanced since it is rotation invariant.
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The Monogenic Signal

Without going beyond strictly needed details we here review the key points of the funda-
mental construction of the monogenic signal; which will be necessary to understand the color
extension.

The definition of the 1D case given above can be interpreted in terms of signal processing :
the Hilbert transform makes a “pure π

2
-dephasing”. But such a dephasing is not straightforward

to define in 2D (same issue with many 1D signal tools) so let us look at the equivalent complex
analysis definition of the 1D analytic signal. It says that sA is the holomorphic extension of
s restricted to the real line. But complex algebra is impeding for generalizations to higher
dimensions. To bypass this limitation we can see a holomorphic function like a 2D harmonic
field that is an equivalent harmonic analysis concept involving the 2D Laplace equation ∆f=0.
It so can be generalized within the framework of 3D harmonic fields by using the 3D Laplace
operator ∆3 =

(
δ
δx

+ δ
δy

+ δ
δz

)
. The whole generalization relies on this natural choice and

remaining points are analogous to the 1D case (see [4] for more details). Note that in Felsberg’s
thesis this construction is expressed in terms of geometric algebra but here we avoided it for
simplicity’s sake. Finally the 2D monogenic signal sA associated to s is the 3-vector valued
signal :

sA(x) =

 s(x)
sr1(x) = x

2π‖x‖3 ∗ s(x)

sr2(x) = y
2π‖x‖3 ∗ s(x)

 (1)

Where sr1 and sr2 are analogous to the imaginary part of the complex 1D analytic signal. Inter-
estingly, this construction reveals the two components of a Riesz transform :

R{s} = ( sr1(x) , sr2(x) ) =

(
x

2π‖x‖3
∗ s(x) ,

y

2π‖x‖3
∗ s(x)

)
(2)

in the same way that the 1D case exhibits a Hilbert transform. Note that we get back to a signal
processing interpretation since the Riesz transform can also be viewed like a pure 2D dephasing.
In the end, by focusing on the complex analysis definition of the analytic signal we end up with
a convincing generalization of the Hilbert transform.

Now recall that the motivation to build 2D analytic signals arises from the strong link existing
between the phase and the geometric structure. To define the 2D phase related to the Riesz
transform the actual monogenic signal must be expressed in spherical coordinates that yield the
following amplitude envelope and 2-angle phase :

Amplitude : A =
√
s2+s2r1+s2r2 s = A cosϕ

Orientation : θ = arg (sr1 + j sr2) sr1 = A sinϕ cos θ
1D Phase : ϕ = arccos ( s

A
) sr2 = A sinϕ sin θ

(3)

Felsberg shows a direct link between the angles θ and ϕ and the geometric local structure of s.
The signal is so expressed like an “A-strong” 1D structure with orientation θ. ϕ is analogous to
the 1D local phase and indicates if the structure is rather a line or an edge. A direct drawback is
that intrinsically 2D structures are not handled. Yet this tool found many applications in image
analysis from contour detection to motion estimation (see [3] and references therein p. 1).

From a signal processing viewpoint the AM/FM representation provided by an analytic sig-
nal is accordingly well suited for narrowband signals. That is why it seems natural to embed it
in a wavelet transform that performs subband decomposition. We now present the monogenic
wavelet analysis proposed in [3].
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3 MONOGENIC WAVELETS

So far there is one proposition of computable monogenic wavelets in the literature [3]. It
provides 3-vector valued monogenic subbands consisting of a rotation-covariant magnitude and
this new 2D phase. This representation - specially defined for 2D signals - is a great theoretic
improvement of the complex and quaternion wavelets [1, 2]; as well as the monogenic signal
itself is an improvement of its complex and quaternion counterparts.

The proposition of [3] consists of one real-valued “primary” wavelet transform in parallel
with an associated complex-valued wavelet transform. Both transforms are linked each other
by the Riesz transform so they carry out a multiresolution monogenic analysis. We end up with
3-vector coefficients forming subbands that are monogenic.

3.1 Primary transform

The primary transform is real-valued and relies on a dyadic pyramid decomposition tied to
a wavelet frame. Only one 2D wavelet is needed and the dyadic downsampling is done only at
the low frequency branch; leading to a redundancy of 4:3. The scaling function ϕγ and mother
wavelet ψ are defined in the Fourier domain :

ϕγ
F←→
(
4(sin2 ω1

2
+ sin2 ω2

2
)− 8

3
sin2 ω1

2
sin2 ω2

2

) γ
2

‖ω‖γ
(4)

ψ(x) = (−∆)
γ
2 ϕ2γ(2x) (5)

Note that ϕγ is a cardinal polyharmonic spline of order γ and spans the space of those splines
with its integer shifts. It also generates - as a scaling function - a valid multiresolution analysis.

This particular construction is made by an extension of a wavelet basis (non-redundant)
related to a critically-sampled filterbank. This extension to a wavelet frame (redundant) adds
some degrees of freedom used by the authors to tune the involved functions. In addition a
specific subband regression algorithm is used at the synthesis side. The construction is fully
described in [6].

3.2 The monogenic transform

The second “Riesz part” transform is a complex-valued extension of the primary one. We
define the associated complex-valued wavelet by including the Riesz components :

ψ′ = −
(

x

2π‖x‖3
∗ ψ(x)

)
+ j

(
y

2π‖x‖3
∗ ψ(x)

)
(6)

It can be shown that it generates a valid wavelet basis and that it can be extended to the pyramid
described above. The joint consideration of both transforms form monogenic subbands from
which can be extracted the amplitude and phase for an overall redundancy of 4:1.

So far no applications of the monogenic wavelets have been proposed. In [3] a demonstration
of AM/FM analysis is done with fine orientation estimation and gives very good results in terms
of coherency and accuracy. Accordingly this tool may be rather used for analysis tasks than
processing.

Motivated by the powerful analysis provided by the monogenic wavelet transform we pro-
pose now to extend it for color images.
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ψR ψG ψB ψr1 ψr2

Figure 1: Space representation of the 5 color wavelets.

Figure 2: Color MWT scheme. Each color channel is analyzed with the primary wavelet transform symbolized by
a ψ bloc and the sum “R+G+B” is analyzed with the “Riesz part” wavelet transform (ψr1 and ψr2 blocs).

4 COLOR MONOGENIC WAVELETS

We define here our proposition that combines a fundamental generalization of the mono-
genic signal to color with the monogenic wavelets described above. The challenge is to avoid
the classical marginal definition that would be applying a grayscale monogenic transform on
each of the three color channels of a color image. We believe that the monogenic signal has a
favorable theoretical framework for a color extension and this is why we propose to start from
this particular wavelet transform rather than from a more classical one.

The color generalization of the monogenic signal is expressed within the geometric algebra
framework. This algebra is very general and embeds the complex and quaternion as subal-
gebras. Its elements are “multivectors” naturally linked with various geometric entities. The
use of this fundamental tool is gaining popularity in the literature because it allows rewriting
sophisticated concepts with simpler algebraic expressions and so paves the way to innovative
ideas and generalizations in many fields.

For simplicity’s sake and since anyway we would not have enough space to present the
fundamentals of geometric algebra we here express the construction in classical terms; as we
already did section 2. Yet we may sometimes point out some necessary specific mechanisms
but we refer the reader to [4, 5] for further details.

4.1 The Color Monogenic Signal

Starting from Felsberg’s approach that is originally expressed in the geometric algebra of R3;
the extension proposed in [5] is written in the geometric algebra of R5 for 3-vector valued 2D
signals of the form (sR, sG, sB). By simply increasing the dimensions we can embed each color
channel along a different axis and the original equation from Felsberg involving a 3D Laplace
operator can be generalized in 5D with ∆5 =

(
δ
δx1

+ δ
δx2

+ δ
δx3

+ δ
δx4

+ δ
δx5

)
.

Then the system can be simplified by splitting it into three systems with a 3D Laplace equa-
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tion, reducing to applying Felsberg’s condition to each color channel. At this stage appears the
importance of geometric algebra since an algebraic simplification between vectors leads to a
5-vector color monogenic signal that is non-marginal. Instead of naively applying the Riesz
transform to each color channel, this fundamental generalization carries out the following color
monogenic signal : sA=(sR, sG, sB, sr1, sr2) where sr1 and sr2 are the Riesz transform applied
to sR+sG+sB.

Now the color extension of Felsberg’s monogenic signal is defined let us construct the color
extension of the monogenic wavelets.

4.2 The Color Monogenic Wavelet Transform

We can now define a wavelet transform whose subbands are color monogenic signals. The
goal is to obtain vector coefficients of the form (cR, cG, cB, cr1, cr2) such that cr1 = x

2π‖x‖3 ∗
(cR + cG + cB) and cr2 = y

2π‖x‖3 ∗ (cR + cG + cB) .
It turns out that we can very simply use the transforms presented above by applying the

primary one on each color channel and the Riesz part on the sum of the three. The five related
color wavelets illustrated Fig. 1 and forming one color monogenic wavelet ψA are :

ψR =

 ψ
0
0

 ψG =

 0
ψ
0

 ψB =

 0
0
ψ

 (7)

ψr1 =


x

2π‖x‖3 ∗ ψ
x

2π‖x‖3 ∗ ψ
x

2π‖x‖3 ∗ ψ

 ψr2 =


y

2π‖x‖3 ∗ ψ
y

2π‖x‖3 ∗ ψ
y

2π‖x‖3 ∗ ψ

 (8)

ψA = (ψR , ψG , ψB , ψr1 , ψr2) (9)

We then get 5-vector coefficients verifying our conditions and so forming a color monogenic
wavelet transform. The associated decomposition is described by the diagram Fig. 2. This pro-
vides a multiresolution color monogenic analysis made of a 5-vector valued pyramid transform.
The 5 decompositions of two images are shown Fig. 3 from left to right. Each one consists of 4
juxtaposed image-like subbands resulting from 3-level decomposition. We fixed γ=3 that gave
good experimental results.

Let us look at the first 3 graymaps. These are the 3 primary transforms cR, cG and cB where
white (resp. black) pixels are high positive (resp. negative) values. Note that our transform is
non-separable and so provides at each scale only one subband related to all orientations. We
are not subjected to the arbitrarily separated horizontal, vertical and diagonal analyses of usual
wavelets. This advantage is even greater in color. Whereas marginal separable transforms show
3 arbitrary orientations within each color channel - which is not easily interpretable - the color
monogenic wavelet transform provides a more compact energy representation of the color image
content regardless of the local orientation. The color information is well separated through cR,
cG and cB : see that blue contours of first image are present only in cB. And in each of the
3 decompositions it is clear that every orientation is equally represented all along the round
contours. That is different from separable transform that privileges particular directions. The
multiresolution framework makes the horizontal blue low frequency structure of second image
be coded mainly in the third scale of cB.

But the directional analysis is not lost thanks to the Riesz part that completes this representa-
tion. Now look at the “2-in-1” last decomposition forming the Riesz part. It is displayed in one
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Original images cR cG cB Riesz part

Figure 3: Color MWT of images. The two components of the Riesz part are displayed in the same graphic with
the magnitude of cr1+jcr2 encoded in the intensity and argument (local orientation) encoded in the hue.

color map where the geometric energy
√
c2r1 + c2r2 is encoded into the intensity (with respect to

the well known HSV color space) and the orientation arg (cr1+jcr2) (π) is encoded in the hue
(e.g. red is for {0, π} and cyan is for ±π

2
). This way of displaying the Riesz part well reveals

the provided geometric analysis of the image.
The Riesz part makes a precise analysis that is local both in space and scale. If there is a local

color geometric structure in the image at a certain scale the Riesz part exhibits a high intensity
in the corresponding position and subband. This is completed with an orientation analysis (hue)
of the underlying structure. For instance a horizontal (resp. vertical) structure in the image will
be coded by a cyan (resp. red) intense point in the corresponding subband. The orientation
analysis is strikingly coherent and accurate. See for example that color structures with constant
orientation (second image) exhibit a constant hue in the Riesz part over the whole structure.

Note that low intensity corresponds to “no structure” i.e. where the image has no geometric
information. It is coherent not to display the orientation (low intensity makes the hue invisible)
for these coefficients since this data has no sense in those cases.

In short the color and geometric information of the image are well separated from each other
and the orientation analysis is very accurate. In addition the invariance properties of the primary
and Riesz wavelet transforms are kept in the color extension for a slight overall redundancy of
20 : 9≈2.2. This transform is non-marginal because RGB components is considered as well as
intensity (R+G+B) - which involves two different color spaces.

5 WAVELET COEFFICIENTS STUDY FOR DENOISING ISSUE

Let us now study reduction of additive gaussian noise by wavelet domain thresholding. First
we will experimentally characterize decomposition of a sole noise to identify effect of scale on
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Figure 4: Histograms (bars) of primary subbands and modulus of Riesz subbands; and PDF models (line).

Scale s 1(High freq.) 2 3 4
St. dev. σs 1.339 1.502 1.512 1.560

Table 1: Standard deviations of subbands after decomposition of gaussian noise with variance 1 (with γ = 3).

distribution and subband correlation. Then we will apply color MWT thresholding to achieve
color denoising and show experimental results.

5.1 Characterization of noise

With classical biorthogonal wavelets optimal thresholding involves a constant threshold over
the whole transform (see
citeDonoho1995). Here we have a non-orthogonal transform so we need to study how the noise
term of a noisy image is transformed through color monogenic wavelet analysis.

As shown Fig. 4 we observe that decomposition of a centered gaussian noise with vari-
ance σ2 remains centered and gaussian after decomposition - with different variances though.
For a given scale, distribution of Primary part as well as real and imaginary components of
the Riesz part is clearly gaussian. Experimental values for standard deviations are given in
table 1. These values can also be derived analytically from definition of filters. Recall that
linear filtering of a stationary random signal x by filter H with output y can be studied with
power spectral densities Ψx = |F [x]|2 (PSD) and autocorrelations Rx(τ) = F−1Ψx. In par-
ticular we have Ψy = Ψx|H|2. The output variance σ2

y is equal to Ry(0) which reduces to
σ2
y = σ2

x

4π2

∫∫ (2π,2π)

(0,0)
|H(ω)|2 dω.

For example the first scale output of our filterbank is directly linked to the first stage high-
pass filter :

σ2
1 =

σ2

4π2

∫∫ (2π,2π)

(0,0)

∣∣∣∣∣
(
4(sin2 ω1

2
+ sin2 ω2

2
)− 8

3
sin2 ω1

2
sin2 ω2

2

)γ
2‖ω‖γ

∣∣∣∣∣
2

dω (10)

Remaining coefficients are tied to equivalent filters of each filterbank output.
A slight spatial correlation is introduced by the filterbank due to its redundancy. Whereas

input noise autocorrelation R = σ2δ is null for τ > 0; Rs has some small coefficients around
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Noisy Color MWT thresholding

Figure 5: Denoising.

τ = 0 - though with very fast decay - in a neighborhood of about 2 pixels (Rs is of the same
form as wavelet functions showed Fig. 1). Some correlation is also present between primary and
Riesz parts of subbands. So this transform has to be used carefully if some data compression is
wanted.

Let us consider modulus of “Riesz part” outputs that will be of interest in the sequel. As real
and imaginay part of subbands follow centered gaussian distributions with same variance σ2

s ,
the complex subband follows a 2D isotropic gaussian distribution with variance 2σ2

s . As a result
the modulus of “Riesz part” outputs follow a Rayleigh distribution fs(m) = m

σ2
s
e−m

2/2σ2
s1m>0.

We can see that modeled curves Fig. 4 well correspond to measured histograms.
Now that subbands are statistically modeled we can apply automatic thresholding to perform

color denoising.

5.2 Thresholding

We apply a soft thresholding of color wavelet coefficients with a different threshold for each
scale s. For the primary part threshold is fixed to T prims = k ∗ σs, with σs as reported in table 1
and k = 3. This choice of k is classical with usual wavelet denoising.

For the Riesz part that is complex valued we propose to threshold modulus because this data
is tied to some amplitude information related to geometrical structures. But modulus follows a
Rayleigh distribution so classical thresholding does not hold. A similar issue is dealt in [7] with
modulus of gabor wavelets. Knowing that the mean (resp. variance) of a Rayleigh distribution
is µr = σ

√
π/2 (resp. σ2

r = σ2(4− π)/2), the noise shrinkage threshold at each scale is set to
be some number of standard deviations beyond the mean of the distribution - that is µr+kσr.
Since in our case a Rayleigh distribution is also involved this definition is pertinent for our Riesz

part thresholding. So we have TRieszs = σs(
√

π
2

+ k
√

4−π
2

) (as in [7] we will take k = 2).
Threshold is classically estimated by a simple analysis of first scale (High frequencies) (see

[8]). By assuming that first scale contains mainly noise plus a few significant coefficients,
one can use the experimental median of coefficients to well estimate standard deviation of the
gaussian noise distribution. So we have the estimate σ̂ = median(|W1|)/0.6745 with W1 being
the coefficients of first scale. This estimation is done in the primary part but can be used for
the Riesz part as both T prims and TRieszs only depends on estimate of σs. By using reference
coefficients of Table 1 we use σ̂s = σs

σ1
σ̂.

A result of color denoising is showed Fig. 5. This is a 4 scale thresholding of color MWT
coefficients where T Prims is used in Primary subbands and TRieszs in the Riesz part. Thresholds
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are processed from estimation of noise variance described above; and low frequency subband
is not modified. This first result is comparable to a classical wavelet denoising and so confirms
the potential of this transform. In practice the Riesz part remains difficult to deal with and many
improvements may be added.

6 CONCLUSION

We define a color extension of the recent monogenic wavelet transform proposed in [3]. This
extension is non-marginal since it takes care of considering a vector signal at the very beginning
of the fundamental construction and leads to a definition basically different from the marginal
approach. The use of non-separable wavelets joint with the monogenic framework allows for
a good orientation analysis well separated from the color information. This color transform
can be a great color image analysis tool thanks to this good separation of information through
various data. A statistical modeling of coefficient for thresholding/denoising issue is given.

Although it is not marginal the color generalization has a marginal style since it reduces to
apply the Riesz transform on the intensity of the image. So the geometric analysis is done with-
out considering the color information and it would be much more attractive to have a complete
representation of the color monogenic signal into magnitude and phase(s) with color/geometric
interpretation.
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