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A conjecture by Leon Ehrenpreis about zeroes of exponential polynomials

Leon Ehrenpreis proposed in his 1970 monograph Fourier Analysis in several complex variables the following conjecture : the zeroes of an exponential polynomial

are well separated with respect to the Paley-Wiener weight. Such a conjecture remains essentially open (besides some very peculiar situations). But it motivated various analytic developments carried by C.A. Berenstein and the author, in relation with the problem of deciding whether an ideal generated by Fourier transforms of differential delayed operators in n variables with algebraic constant coefficients, as well as algebraic delays, is closed or not in the Paley-Wiener algebra E(R n ). In this survey, I present various analytic approaches to such a question, involving either the Schanuel-Ax formal conjecture, or D-modules technics based on the use of Bernstein-Sato relations for several functions. Nevertheless, such methods fail to take into account the intrinsic rigidity which arises from arithmetic hypothesis : this is the reason why I also focus on the fact that Gevrey arithmetic methods that where introduced by Y. André to revisit the Lindemann-Weierstrass theorem, could also be understood as an indication for rigidity constraints for example in Ritt's factorisation theorem of exponential sums in one variable. The objective of this survey is to present the state of the art with respect to L. Ehrenpreis's conjecture, as well as to suggest how methods from transcendental number theory could be combined with analytic ideas, in order precisely to take into account such rigidity constraints inherent to arithmetics.

The conjecture, various formulations

In [START_REF] Ehrenpreis | Fourier Analysis in several complex variables[END_REF], page 322, Leon Ehrenpreis formulated the following conjecture.

Conjecture 1.1 (original form, incorrect) If F 1 , ..., F N are N exponential polynomials in n variables with purely imaginary algebraic frequencies, namely

F j (z 1 , ..., z n ) = M j k=0 b jk (z) e i α jk ,z , b jk ∈ C[X 1 , ..., X n ] , α jk ∈ Q n ∩ R n , j = 1, ..., N,
then the ideal (F 1 , ..., F N ) they generate in the Paley-Wiener algebra E ′ (R n ) is slowly decreasing respect to the Paley-Wiener weight p(z) = log |z| + |Im z|.

As a consequence1 , this ideal is closed in E ′ (R n ). It coincides with the ideal [I(F 1 , ..., F N )] loc , which consists of elements in E ′ (R n ) that belong locally to the ideal generated by F 1 , ..., F N in the algebra of entire functions in n variables.

This conjecture, in a slightly modified form (see Conjecture 1.2), has been the inspiration for the joint work of C.A. Berenstein and the author since 1985.

It is a challenging and fascinating question, one that is closely connected with other open questions in number theory and analytic geometry. In this note, I will point out many of these connections, detail some of the progress that has been made on the problem, and hopefully inspire others to continue the work.

As it stands, Conjecture 1.1 would imply, in the one variable setting, the following : if

f (z) = M k=0 b k (z)e iα k z , b k ∈ C[X] , α k ∈ Q ∩ R (1.1)
is an exponential polynomial in one variable with algebraic frequencies and all simple zeroes, then the ideal (f, f ′ ) is a non proper ideal in E ′ (R) which would imply

|f (z)| + |f ′ (z)| ≥ c e -A|Im z| (1 + |z|) p (1.2)
for some c, A > 0 and p ∈ N. Unfortunately, such an assertion is false if one does not set any condition of arithmetic nature on the polynomial coefficients b k . Take for example

f (z) = f γ (z) = sin(z -γ) -sin( √ 2(z -γ)),
where 2γ/π has excellent approximations belonging to (2Z + 1) ⊕ √ 2(2Z + 1); then some zeroes of f γ of the form 2lπ 1 -√ 2 , l ∈ Z , will approach extremely well other zeroes of f γ of the form 2α + (2l

′ + 1)π 1 + √ 2 , l ′ ∈ Z,
and thus the ideal (f γ , f ′ γ ) fails to be closed in E ′ (R). So Conjecture 1.1 needs to be reformulated as follows.

Conjecture 1.2 (revised form) If F 1 , ..., F N are exponential polynomials in n variables with both algebraic coefficients and purely imaginary algebraic frequencies, namely

F j (z 1 , ..., z n ) = M j k=0 b jk (z) e i α jk ,z , b jk ∈ Q[X 1 , ..., X n ] , α jk ∈ Q n ∩ R n , j = 1, ..., N, (1.3) 
then the ideal (F 1 , ..., F N ) they generate in the Paley-Wiener algebra E ′ (R n ) is slowly decreasing respect to the Paley-Wiener weight p(z) = log |z|+|Im z|. As a consequence, this ideal is closed in E ′ (R n ), and thus coincides with the set of elements in E ′ (R n ) which belong locally to the ideal generated by F 1 , ..., F N in the algebra of entire functions in n variables.

Such a conjecture appears to be stronger than the following one.

Conjecture 1.3 (weaker revised form) If F 1 , ..., F N are exponential polynomials in n variables as in Conjecture 1.2, namely

F j (z 1 , ..., z n ) = M j k=0 b jk (z) e i α jk ,z , b jk ∈ Q[X 1 , ..., X n ] , α jk ∈ Q n ∩ R n , j = 1, ..., N,
then the the closure of the ideal (F 1 , ..., F N ) they generate in the Paley-Wiener algebra E ′ (R n ) coincides with the set of elements in E ′ (R n ) which belong locally to the ideal generated by F 1 , ..., F N in the algebra of entire functions in n variables

The conjecture is equivalent to the assertion that the underlying system of difference-differential equations

µ 1 * f = • • • = µ N * f = 0 satisfies the spectral synthesis property.
With C.A. Berenstein, we have been developing since [START_REF] Berenstein | Ideals generated by exponential polynomials[END_REF] a long-term joint research program originally devoted to various attempts to tackle Conjecture 1.2. Such attempts lead to an approach based on multidimensional analytic residue theory that relies on techniques of analytic continuation in one or several complex variables. Conjecture 1.3 seems harder to deal with since it fits so well with the search for explicit division formulas in E ′ (R n ) that resolve Ehrenpreis's fundamental principle as studied in [START_REF] Ehrenpreis | Fourier Analysis in several complex variables[END_REF]. (See also [START_REF] Berenstein | Division interpolation methods and Nullstellensätze[END_REF] or, more recently, [START_REF] Andersson | Residue currents with prescribed annihilator ideals[END_REF]). What is known as Ehrenpreis-Montgomery conjecture is the particular case of Conjecture 1.2, when n = 1. Thanks to Ritt's theorem [START_REF] Ritt | A factorization theory for functions n i=1 a i e α i x[END_REF], Conjecture 1.2 in the case n = 1 reduces to the following.

Conjecture 1.4 (Ehrenpreis-Montgomery conjecture) Let f (z) = M k=0 b k (z) e iα k z , b k ∈ Q[X], α k ∈ Q ∩ R (1.4)
be an exponential polynomial with both algebraic coefficients and frequencies.

Then, there are constant c, A > 0, p ∈ N (depending on f ) such that

f (z) = f (z ′ ) = 0 and z = z ′ =⇒ |z -z ′ | ≥ c e -A|Im z| (1 + |z|) p . (1.5) 
A possible reason for the terminology is the relation between Conjecture 1.4 and the following conjecture by H. Shapiro (1958) mentioned by H.L. Montgomery in a colloquium in Number Theory (Bolyai Janos ed.), see [START_REF] Tijdeman | On common zeroes of exponential polynomials[END_REF][START_REF] Van Der Poorten | A note on the zeroes of exponential polynomials[END_REF].

Conjecture 1.5 (Montgomery-Shapiro conjecture) Let f, g be two exponential polynomials that have an infinite number of common zeroes. Then, there is an exponential polynomial h that divides both f and g and has also an infinite number of zeroes.

Unfortunately, I failed to find a precise reference in H. L. Montgomery's work. There seems to be an oral contribution by H. L. Montgomery linking Conjecture 1.4 and Conjecture 1.5. In 1973, Carlo Moreno, under the supervision of L. Ehrenpreis, quoted in the introduction of [START_REF] Moreno | The zeroes of exponential polynomials (I)[END_REF] an unpublished manuscript [START_REF] Moreno | Zeroes of exponential polynomials[END_REF], which should be devoted to his work towards such a conjecture. His thesis (New York, 1971) was centered around it. The idea there was to prove Conjecture 1.4 for sums of exponentials (that is b k ∈ Q for any k), involving only a small number of exponential monomials. This is fundamentally different from the methods that arose later (see e.g. [START_REF] Berenstein | Ideals generated by exponential polynomials[END_REF]), which depend on the rank of the subgroup Γ(f ) of the real line generated by the frequencies α k .

2 What is known in connection with results in transcendental number theory

As mentioned in section 1, besides the approach by C. Moreno in his thesis, most of the attempts towards Conjecture 1.4 rely on an additional hypothesis on the rank of the additive subgroup Γ(f ) of Q∩R generated by the frequencies α 0 , ..., α M , not on the number of monomials e iα k z involved.

An easy case when Conjecture 1.4 holds is the case where the rank of Γ(f ) equals 2, and the b k are constant [START_REF] Gramain | Solutions indéfiniment dérivables et solutions presque périodiques d'une équation de convolution[END_REF]. The result means in that case that the analytic transcendental curve

t ∈ C → (e it , e iγ 1 t ) , γ 1 ∈ (Q ∩ R) \ Q, cannot approach a finite subset in Q 2 .
Explicitly, any finite linear combination of logarithms of r algebraic numbers (r = 3 here) α ι with degrees at most D, logarithmic heights at most h, and with integer coefficients ν ι having absolute values less than B is either 0 or bounded from below in absolute value,

r ι=1 ν ι log α ι ≥ 1 B c(r)×D r+2 log D×h r . (2.6) 
This is a well known fact originally due to A. Baker, see e.g. [START_REF] Baker | Transcendental Number Theory[END_REF][START_REF] Baker | Logarithmic forms and group varieties[END_REF] or ( [START_REF] Waldschmidt | Open diophantine problems[END_REF], section 4), for up-to-date results, references or conjectures. When the coefficients ν ι are algebraic, with heights less than B, the following less explicit estimate continues to hold.

r ι=1 ν ι log α ι ≥ 1 B c(r,D)×h κ(r) (2.7)
for some constants c(r, D) and κ(r), D being the maximum of the degrees of the α ι and ν ι .

The next natural step would be to show that, if γ 1 , γ 2 are two real algebraic numbers such that (1, γ 1 , γ 2 ) are Q-linearly independent, the transcendental curve t ∈ C → (e it , e iγ 1 t , e iγ 2 t ) cannot approach an algebraic curve in C 3 which is defined over Q; That is, the set of common zeroes of polynomials belonging to Q[X 1 , X 2 , X 3 ]. Here we are close to a quantified version of the so-called Schanuel's conjecture (see [START_REF] Waldschmidt | Open diophantine problems[END_REF], section 4, for conjectures respect to its quantitative versions).

Conjecture 2.1 (Schanuel's conjecture, "numerical" version) Given s complex numbers y 1 , ..., y s which are Q-linearly independent, the transcendence degree of the algebraic extension Q[y 1 , ..., y s , e y 1 , ..., e ys ] over Q is at least equal to s.

For s = 1, this is Gel'fond-Schneider's theorem. The s = 2 case would imply for example the algebraic independence over Q of the pair of numbers (e, π) or (log 2, log 3), and is of course still open. When γ is an algebraic number with degree D ≥ 2 and ζ a complex number such that e iζ = 1, a result by G. Diaz [START_REF] Diaz | Grands degrés de transcendance pour des familles d'exponentielles[END_REF] asserts that, among the exponentials e iγζ , ..., e iγ D-1 ζ , at least [(d + 1)/2] are algebraically independent over Q. This result covers Gel'fond's well known result (D = 3) and even leads to a quantitative version of it. In fact, the quantitative formulation obtained by D. Brownawell in [START_REF] Brownawell | Pairs of polynomials small at a number to certain algebraic numbers[END_REF] for D = 3 (using Gel'fond-Schneider's method) implies the following (rather weak) result respect to Conjecture 1.4, when the rank of Γ(f ) equals 3.

Proposition 2.1 ([15]) If f is an exponential sum in one variable with b k ∈ Q and Γ(f ) = Z ⊕ γZ ⊕ γ 2 Z, γ being an irrational cubic, then, for any ǫ > 0, there is c ǫ > 0 depending on f such that f (z) = f (z ′ ) = 0 and z = z ′ =⇒ |z -z ′ | ≥ c ǫ e -|z| 4+ǫ (2.8)
The methods introduced by Guy Diaz in [START_REF] Diaz | Grands degrés de transcendance pour des familles d'exponentielles[END_REF] in fact allow one to replace 4 + ǫ by 1 + ǫ in (2.8). In any case, we are indeed very far from what would be the formulation of Conjecture 1.4 in the particular case where b k are constant and the algebraic frequencies belong to the group Z ⊕ γZ ⊕ γ 2 Z, γ being an irrational cubic. This is inherent to the approach of the problem via classical methods in diophantine approximation.

Besides these cases and the results of C. Moreno in his unpublished 1971 thesis when the number of monomial terms is small, to my knowledge nothing is really known about Conjecture 1.4, at least in connexion with an approach based on transcendental number theory methods. For some up-to-date survey about Schanuel's conjecture and its quantitative versions, we refer the reader to ([59], sections 3.1 and 4.3).

3 Using the formal counterpart of Schanuel's numerical conjecture

The point of view I developed with C. A. Berenstein in [START_REF] Berenstein | Ideals generated by exponential polynomials[END_REF] and section 2 of [START_REF] Berenstein | On Lojasiewicz type inequalities for exponential polynomials[END_REF] relies on the fact that the formal analog of Schanuel's conjecture holds, despite the fact that very is known about the numerical Schanuel conjecture. This is a result by J. Ax and B. Coleman [START_REF] Ax | On Schanuel's conjectures[END_REF][START_REF] Coleman | A generalization of the Ax-Schanuel theorem[END_REF], following the ideas developped by C. Chabauty [START_REF] Chabauty | Sur les équations diophantiennes liées aux unités d'un corps de nombres algébrique fini[END_REF] and E. Kolchin [START_REF] Kolchin | Algebraic groups and algebraic dependence[END_REF], see also [START_REF] Bertrand | Théories de Galois différentielles et transcendance[END_REF] for a modern up-to-date presentation. Here is a formulation. 

C[X 1 , ..., X s , Y 1 , ..., Y s ],
defining in C 2s an algebraic subvariety V(I) with dimension less or equal to s, such that ∀ P ∈ I, P (y 1 (t), ..., y s (t), e y 1 (t) , ..., e ys(t) ) ≡ 0.

Then, there are rational numbers r 1 , ..., r s and a complex number2 γ ∈ C such that

s j=1 r j y j (t) ≡ γ. (3.9)
Here is a corollary of the last Theorem that shows the crucial role it plays when studying the slowly decreasing conditions introduced by Ehrenpreis ( e.g. [START_REF] Ehrenpreis | Fourier Analysis in several complex variables[END_REF]) for ideals generated by exponential polynomials with frequencies in (iZ) n . We ignore for the moment any condition of arithmetic type on the coefficients.

Corollary 3.1 ([16], Proposition 6.4 and Corollary 6.7) Let P 1 , ..., P N be N polynomials in the 2n variables (X 1 , ..., X n , Y 1 , ..., Y n ), defining an algebraic variety V(P ) in C 2n z,w . Let π z : (z, w) ∈ C 2n → z be the projection on the factor C n z . Let W ⊂ C n z be the subset defined by

(z 1 , ..., z n ) / ∈ W =⇒ dim(V(P ) ∩ π -1 (z)) = 0 or -∞.
Then, any irreducible component with strictly positive dimension of the analytic (transcendental) subset

V (F ) = {z ∈ C n ; F j (z) = P j (z 1 , .
.., z n , e iz 1 , ..., e izn ) = 0, j = 1, ..., N } lies in W . In particular, when N ≥ n, any irreducible component with strictly positive dimension of V (F ) lies in the closure in C n of the set

W ′ ⊂ C n z defined as z / ∈ W ′ =⇒ rank ∂P j (z, w) ∂w k 1≤j≤N k≤1≤n = n ∀ w ∈ C n .
The formal analog of Schanuel's conjecture also allows one to give refined versions of Ritt's theorem in several variables such as those formulated in [START_REF] Berenstein | The Ritt theorem in several variables[END_REF].

Here is an example.

Corollary 3.2 ( [START_REF] Berenstein | Ideals generated by exponential polynomials[END_REF], see also [START_REF] Ronkin | Functions of completely regular growth[END_REF]) Let

F (z 1 , ..., z n ) = M k=0 b k (z)e i α k ,z
be an exponential polynomial in n complex variables which is identically zero on an algebraic irreducible curve C. Then either all polynomial factors b k vanish identically on C or else C is contained in some affine subspace

α k 1 - α k 2 , z = γ, where γ is a complex constant 3 and α k 1 = α k 2 . If an irreducible polynomial P ∈ C[X 1 , ..., X n ]
divides F (as an entire function) without dividing all the b k , then P is necessarily of the form

P (X) = α k 1 -α k 2 , X -γ.
The main reason such analytic techniques arising from the formal analog of Schanuel's conjecture fail to imply Conjecture 1.2 (or more specifically Conjecture 1.4), is because they do not allow one to keep track of the arithmetic constraints. Though such a goal can be (partially) achieved when adapting Noether Normalization's lemma to the frame of exponential polynomials P (X 1 , ..., X n , e Y 1 , ..., e Yn ) (as in Proposition 6.3 in [START_REF] Berenstein | Ideals generated by exponential polynomials[END_REF]), it still seems far from providing enough information to make significant advances towards Conjectures 1.2 or 1.4.

4 Arithmetic rigidity and the D-module approach 4.1 Lindemann-Weierstrass theorem versus Ritt's factorization

The ubiquity that was pointed out in [START_REF] André | Séries Gevrey de type arithmétique, I. Théorèmes de pureté et de dualité[END_REF][START_REF] André | Séries Gevrey de type arithmétique, II. Transcendance sans transcendance[END_REF] with respect to the well known Lindemann-Weierstrass theorem suggests how arithmetic rigidity is reflected in Ritt's factorization of exponential sums in the one variable setting. Let us recall the classical "numerical" formulation of Lindemann-Weierstrass theorem.

Theorem 4.1 (Lindemann-Weierstrass, "numerical" formulation) Let α 1 , ..., α s be s algebraic numbers which are Q-linearly independent. Then their exponentials e α 1 , ..., e αs are algebraically independent over Q.

Here is its equivalent "functional" formulation, which appears to be an arithmetic version of Ritt's factorization theorem. In this situation, arithmetic conditions indeed impose drastic rigidity constraints.

Theorem 4.2 (Lindemann-Weierstrass, "functional formulation") Let f be a formal power series in Q[[X]], which corresponds to the Taylor development about the origin of an exponential polynomial f with constant coefficients 4 , such that f (1) = 0, that is f can be divided by z -1 as an entire function. Then the quotient z → f(X) X -1 is also the formal power series at the origin of an exponential polynomial with constant coefficients5 .

4.2 A first ingredient for the proof of Theorem 4.2 : the notion of "size" for a Xd/dX-module over K(X)

One of the major ingredients in the "modern" proof ( [START_REF] André | Séries Gevrey de type arithmétique, I. Théorèmes de pureté et de dualité[END_REF][START_REF] André | Séries Gevrey de type arithmétique, II. Transcendance sans transcendance[END_REF]) of Theorem 4.2 is the notion of "being of finite size" for a Xd/dX module over K(X), where K is a number field. We keep for the moment to the one variable setting.

Let K be such a number field, and M be a Xd/dX-module over K(X). Assume M is such that the K(X) induced module is free with finite rank 6 . Thus, M can be represented in terms of a basis Υ = (υ 0 , ..., υ µ-1 ) with the action of the differential operator Xd/dX being represented as

(Xd/dX)[υ j ] = µ-1 k=0 G jk (X)[υ k ].
Taking into account the fact that K is a number field (and thus the arithmetic rigidity), one can introduce a notion of size σ(M) as

σ(M) = lim sup N →∞ 1 N v∈Σ finies (K) log + max 0≤p≤N G (p) (X) p! v , (4.10) 
where Σ finies denotes the set of non archimedian (conveniently normalized) absolute values on the number field K, and G p is the (µ, µ) matrix with entries in K(X), corresponding to the action of X p (d/dX) p , expressed within the basis Υ (see for example [START_REF] André | G-Functions and Geometry[END_REF][START_REF] Dwork | An introduction to G-functions[END_REF]). The size is in fact independent of the choice of the basis Υ. The module M is said to satisfy the Galochkin condition when its size σ(M) is finite.

An important result by G. Chudnovsky [START_REF] Chudnovsky | Applications of Padé approximations to diophantine inequalities in values of G-functions[END_REF][START_REF] Chudnovsky | Applications of Padé approximation to the Grothendieck conjecture on linear differential equations[END_REF], one that relies on Siegel's lemma 7 , asserts that, if A is a (µ, µ) matrix with coefficients in K[X] such that the differential system

(d/dX -A)[Y ] = 0 (4.11)
admits a solution Y 0 in (K [[X]]) µ with K(X)-linearly independent components, then the size of the corresponding Xd/dX-module M A is bounded from above by C(Γ) h(Y 0 ), where h(Y 0 ) denotes the maximum of the heights of the coefficients of Y 0 , the height being understood here as the height of a formal power series with coefficients in K (see [START_REF] André | G-Functions and Geometry[END_REF]). In particular, M A satisfies Galochkin condition when the differential system admits a solution with K(X)-linearly independent components, which are all G-functions (see [START_REF] André | G-Functions and Geometry[END_REF] for various definitions8 of such an arithmetic notion). Note that G. Chudnovsky's theorem has been extended to the several variable context by L. di Vizio in [START_REF] Vizio | Sur la théorie géométrique des G-fonctions, le théorème de Chudnovsky à plusieurs variables[END_REF].

A second ingredient for the proof of Theorem 4.2 : a theorem by N. Katz

Here again, one keeps to the one variable context. A differential operator with coefficients in M µ,µ (C[X])

L = L 0 A l (X)(d/dX) q ,
it is called fuschian if all its singularities a ∈ C ∪ {∞} are regular ones. That is, are such that min

l<L (val a (A l ) -l) ≥ val a (A L ) -L.
A theorem by N. Katz [START_REF] Katz | Algebraic solutions of Differential Equations (p-curvature and the Hodge filtration)[END_REF] asserts that any Xd/dX-module over K(X) (K being a number field) which satisfies Galochkin condition is necessarily fuschian.

This result has also an extension to the context of several variables ( [START_REF] Vizio | Sur la théorie géométrique des G-fonctions, le théorème de Chudnovsky à plusieurs variables[END_REF]). Such an extension can be combined with Chudnovsky's theorem in higher dimension, as formulated in geometric terms also in ( [START_REF] Vizio | Sur la théorie géométrique des G-fonctions, le théorème de Chudnovsky à plusieurs variables[END_REF]).

The proof of Theorem 4.2 ([5]

) follows from such a combination between Chudnovsky's and Katz's theorems. It relies on the elementary proof proposed in [START_REF] Beukers | An alternative proof of the Lindemann-Weierstrass theorem[END_REF], which bypasses the p-adic methods based on the Bézivin-Robba criterion that were previously introduced in [START_REF] Bézivin | A new p-adic method for proving irrationality and transcendence results[END_REF].

The D-modules approach

Let us start here with a few observations about division questions in multivariate complex analysis. This approach is reminiscent of pseudo-Wiener deconvolution methods that involve as deconvolutors filters with transfer functions

ω ∈ R n -→ F j (ω) F (ω) 2 + ǫ 2 ,
where the F j , j = 1, ..., N , are the transfer functions of the convolutor filters, and ǫ 2 << 1 stands here for a signal to noise ratio.

Let F 1 , ..., F N be N elements in the Paley-Wiener algebra E ′ (R n ). Consider the holomorphic map z → F (z) := (F 1 (z), ..., F N (z)) as an holomorphic section of the trivial bundle C n × C N → C n , equipped with its canonical basis. Let

σ(z) = N j=1 F j (z) ⊗ e j F (z) 2 , z ∈ C n \ F -1 (0).
It can be shown that there are bundle-valued currents P F and R F in C n defined by the formulas

P F := F (z) 2λ n r=1 σ(z) ∧ (∂[σ(z)]) r-1 (2iπ) r λ=0 R F := ∂ [ F (z) 2λ ] ∧ n r=1 σ(z) ∧ (∂ [σ(z)]) r-1 (2iπ) r λ=0 . (4.12)
That is, one analytically continues the complex parameter λ from {Re λ >> 1} to some half-plane {Re λ > -η} for some η > 0. Note that Supp R F ⊂ F -1 (0) and that P F and R F are related by ((2iπ)⌋ F -∂) • P F = 1 -R F , where ⌋ F denotes the interior product with F . In order to justify such a construction, one takes a log resolution π :

C n → C n for the subvariety {F 1 = • • • = F N = 0}
. Such a log resolution factorizes through the normalized blow-up of C n along the coherent ideal sheaf (F 1 , ..., F N ) O C n . When N ≤ n and F 1 , ..., F N define a complete intersection in C n , the current R F reduces to its (0, N ) component, which coincides in this case with the current realized in a neighborhhood of N 1 F -1 j (0) as the value at

λ 1 = • • • = λ N = 0 of the analytically continued current-valued holomorphic map (λ 1 , ..., λ N ) ∈ {Re λ 1 >> 1, ..., Re λ N >> 1} -→ 1 (2iπ) N 1 j=N ∂ |F j | 2λ j F j . (4.13)
When F 1 , ..., F N are polynomials (that is Fourier transforms of distributions with support {0}), all distribution coefficients of the current P F belong to S ′ (C n ≃ R 2n ), in which case the ideal (F 1 , ..., F N ) is of course closed in the Paley-Wiener algebra. The current P F is said to have Paley-Wiener growth in C n if and only if all its distribution coefficients T satisfy the weaker condition (see e.g. [START_REF] Berenstein | On Lojasiewicz type inequalities for exponential polynomials[END_REF]).

∃ p ∈ N, , ∃ A > 0, ∃ C > 0, such that | T, ϕ | ≤ C sup |l|+|m|≤p sup C n (1 + z ) p e A Im z ∂ l+m [ϕ] ∂ζ l ∂ζ m (z) .
In order to rephrase Conjecture 4.1 in more algebraic terms, let us recall the following trick. If Re β > 0, and t 1 , . . . , t N are N strictly positive numbers, then one has, for any (γ 1 , . . . , γ

N -1 ) ∈]0, ∞[ N -1 such that γ 1 + • • • + γ N -1 < Re β, (t 1 + • • • + t N ) -β (4.16) = 1 (2iπ) N -1 Γ(β) γ 1 +iR • • • γ N -1 +iR Γ * N (ζ) t -ζ 1 1 • • • t -ζ N -1 N -1 t ζ * N dζ 1 • • • dζ N -1 ,
where

Γ * N (ζ) = Γ(ζ 1 ) • • • Γ(ζ N -1 )Γ(β -ζ 1 -• • • -ζ N -1 ) , ζ * = N -1 k=1 ζ k -β .
Formula (4.16) allows the transformation of the additive operation between the t j (namely (t

1 +• • •+t N ) -β ) into a multiplicative one (namely t -ζ 1 1 • • • t -ζ N -1
N -1 t ζ * N , once in the integrand). One can view it as a continuous version of the binomial formula (with negative exponent). Taking for example t j = |F j (z)| 2 , j = 1, ..., N , it follows that one way then to tackle Conjecture 4.1 could be to study (first formally, then numerically in C n , pairing antiholomorphic coordinates with holomorphic ones in order to recover positivity) the analytic continuation of

λ = (λ 1 , ..., λ N ) -→ N j=1 (F j (z 1 , ..., z n )) λ j . (4.17) When F 1 , ..., F N are polynomials in K[X 1 , ..., X n ] = K[X],
where K is a number field, one may consider the K(λ) X, d/dX -module M(F ) freely generated by a single generator (formally denoted as

F λ = F λ 1 1 ⊗ • • • ⊗ F λ N N ), namely M(F ) = K(λ)[X] 1 F 1 , ..., 1 F N • F λ . This K(λ) X, d/dX -module is holonomic (i.e. dim M(F ) = n).
A noetheriannity argument (see e.g. [START_REF] Ehlers | The Weyl algebra[END_REF]) implies then that there exists a set of global Bernstein-Sato algebraic relations

Q j (λ, X, d/dX) F j • F λ = B(λ) • F λ , j = 1, ..., N, (4.18) 
where B ∈ K[λ] and Q j ∈ K[λ] X, d/dX , j = 1, ..., N . Such a set of algebraic relations (4.18) can be used in order to express (via (4.16) with t j = |F j (z)| 2 , t = 1, ..., N ) the current P F as a current with coefficients in S ′ (C n ).

Local analytic analogs of global Bernstein-Sato algebraic relations (4.18) indeed exist. When f 1 , ..., f N are N elements in O C n ,0 and t is an holonomic distribution about the origin in C n (for example, a distribution coefficient of some integration current [V ], or of some Coleff-Herrera current, see [START_REF] Björk | Residues and D-modules[END_REF]), then there exists a set of local Bernstein-Sato analytic equations

q t,j (λ, ζ, ∂/∂ζ) f j • f λ ⊗ t] = b t (λ) • f λ ⊗ t, j = 1, ..., N, (4.19) 
where q t,j denotes a germ at the origin of a holomorphic differential operator with coefficients analytic in ζ and polynomial in λ, and b t is a finite product of affine forms [START_REF] Björk | Rings of of differential operators[END_REF][START_REF] Sabbah | Proximité évanescente II. Équations fonctionnelles pour plusieurs fonctions analytiques[END_REF][START_REF] Gyoja | Bernstein-Sato's polynomial for several analytic functions[END_REF][START_REF] Björk | Analytic D-modules and applications[END_REF]). Unfortunately, such a local result does not provide any algebraic information about the q t,j , when for example the f j 's represent the germs at the origin of exponential polynomials of the form (1.3), as in Conjecture 1.2 or Conjecture 1.3.

κ 0 + κ 1 λ 1 + • • • + κ n λ n , with κ 0 ∈ N * , (κ 1 , ..., κ M ) ∈ N M \ {0} ([
One intermediate way to proceed in this case is to consider the case of formal power series. For example, let us suggest an approach to tackle Conjecture 1.4 for exponential sums. Consider an exponential sum

f : ζ ∈ C -→ M k=0 b k e iα k ζ ,
with algebraic coefficients b k , and purely imaginary algebraic distinct frequencies iα k . Let K be the number field generated by the b k 's, the α k 's, and i. Let n ≥ 1 be the rank of the subgroup Γ(f ) = Zα 0 + • • • + Zα M , and (γ 1 , ..., γ n ) be a basis of Γ(f ). For each j = 1, ..., M , let P j ∈ K[X 1 , ..., X n ] such that d j-1 f dζ j-1 (z) = P j (e iγ 1 z , ..., e iγnz ), ∀ z ∈ C, and P := (P 1 , ..., P M ) : C n → C M . Let N = M + n -1, and the exponential polynomials F 1 , ..., F N be defined as follows:

• for j = 1, ..., M , F j is the exponential sum in n variables, with coefficients in K, (z 1 , ..., z n ) -→ F j (z) = P j (e iz 1 , ..., e izn ) ;

• for j = 1, ..., n -1, F M +j is the linear form, also with coefficients in K,

(z 1 , ..., z n ) -→ γ n z j -γ j z n .
Let ξ be a point in C n , such that e iξ ∈ K n ∩{P = 0}. The Taylor developments of F 1 , ..., F M at ξ correspond to power series f 1,ξ , ..., f M,ξ in K[[X 1 , ..., X n ]], while the Taylor developpements at ξ of F M +1 , ..., F N correspond to the affine power series

f M +j,ξ : X = (X 1 , ..., X n ) -→ u j + (γ n X j -γ j X n ), j = 1, ..., n -1,
where u j = γ n ξ jγ j ξ n is a linear combination of logarithms of algebraic numbers with algebraic coefficients. Here u 1 , ..., u n-1 can be interpreted as parameters. Inspired by [START_REF] Bahloul | Global generic Bernstein-Sato polynomial on an irreducible algebraic scheme[END_REF], one could conjecture9 the existence of a set of global formal generic Bernstein-Sato relations:

Q ξ,j (λ, X, u 1 , ..., u n-1 , d/dX) f j,ξ •F λ ξ = g ξ (u 1 , ..., u n-1 ) b ξ (λ)•F λ ξ , j = 1, ..., N, (4.20) where F λ ξ = f λ 1 1,ξ ⊗ . . . f λ N N,ξ , Q ξ,j is a differential operator with coefficients in K[λ] [[u, X]], g ξ ∈ K[[u]], b ξ ∈ K[λ].
Moreover, an argument based on Siegel's method (and principle), as that developed by L. Ehrenpreis10 in [START_REF] Ehrenpreis | Transcendental numbers and partial differential equations[END_REF], could be then used in order to ensure then that the formal power series coefficients (in X, u) of the Q j (considered as polynomials in λ and d/dX) have indeed a radius of convergence which is bounded from below by ρ > 0, independently of ξ, provided e iξ belongs to a compact subset of (C * ) n . Then (4.20) would provide a semi-global Bernstein-Sato set of relations. The results quoted in section 4, which rely on Siegel's lemma (see e.g. the proof of Chudnovsky's theorem in [START_REF] Dwork | An introduction to G-functions[END_REF], or the approach to Gelfand-Shidlovsky theorem as in [START_REF] Bertrand | On André's proof of the Siegel-Shidlovsky theorem[END_REF]) give indeed some credit to the conjectural existence of such a collection (indexed by ξ, with e iξ ∈ K n ∩ P -1 (0)) of Berntein-Sato sets of semi-global relations B ξ as (4.20). One could then identify terms with lower degree in u in (4.20) and thus assume, in each set of relations B ξ such as (4.20), that g ξ is homogeneous in u. In the particular case n = 3 (where we recall almost nothing is known concerning Conjecture 1.4, see section 2), one could thus assume that g ξ factorizes as a product of linear factors β ξ,1 u 1 + β ξ,2 u 2 , where β ξ,1 and β ξ,2 belong to K. Combining this with A. Baker's theorem (take (u 1 , u 2 ) = (log ξ 1 + 2ik 1 π, log ξ 2 + 2ik 2 π), (k 1 , k 2 ) ∈ Z 2 ), one would get (with (4.20)) some way to control the analytic continuation procedure (4.17), leading to the conjectural lower estimates

M j=1 |P j (e γ 1 z , ..., e γnz )| = M 1 d j-1 f dζ j-1 (z) ≥ c e -A|Im z| (1 + |z|) p ,
that ensure (1.5) (see [START_REF] Berenstein | On Lojasiewicz type inequalities for exponential polynomials[END_REF]).

The conjectural approach proposed above can be seen as an attempt to take into account the intrinsic arithmetic rigidity of such problems that the results quoted in section 4 suggest.

Another approach, one that would seem more direct, would be to try to mimic the algebraic construction that leads to the construction of a global set of Bernstein-Sato relations such as (4.18) when F 1 , ..., F N belong to K[X 1 , ..., X n ]. That is, let F 1 , ..., F N be N exponential polynomials of the form F j (z) = P j (z 1 , ..., z n , e i γ 1,1 z 1 , ..., e i γ 1,N 1 z 1 , ..., e i γ n,1 zn , ..., e i γ n,Nn zn ), j = 1, ..., N, where P

j ∈ K[X 1 , ..., X n , Y 1,1 , ..., Y 1,N 1 , ..., Y n,1 , ..., Y n,N
], the γ j,k being also elements in K such that γ j,1 , ..., γ j,N j are Q-linearly independent for any j = 1, ..., n. Instead of the Weyl algebra K(λ) X, d/dX , one could introduce a non commutative algebra such as

K(λ 1 , ..., λ n ) X 1 , ..., X n , Y 1,1 , ..., Y 1,N 1 , ..., Y n,1 , ..., Y n,Nn , ∂ 1 , ..., ∂ n ,
with the following commutation rules: for any j, k ∈ {1, ..., n}, for any l ∈ {1, ..., N j },

[∂ k , X j ] = -δ jk , [X k , Y j,l ] = 0 , [∂ k , Y j,l ] = -γ j,l δ kl Y j,l .
One may consider, as in the Weyl algebra case, the K(λ) X, Y, ∂ -module

M(F ) = K(λ)[X, Y, ∂] 1 F 1 , ..., 1 F N • F λ .
Noetheriannity arguments based on the concept of dimension11 for such a module lead (inspired by the argument described by F. Ehlers in [START_REF] Ehlers | The Weyl algebra[END_REF]) to the existence, in some very particular cases, of what would be a substitute for a set of global Bernstein-Sato relations such as (4.18) (see [START_REF] Berenstein | Division interpolation methods and Nullstellensätze[END_REF]). Unfortunately, the results obtained here cover only situations basically quite close of that of Conjecture 1.4 when rank Γ(f ) ≤ 2. Here are the results obtained that way :

• the current P F attached to any system F = (F 1 , ..., F N ), F j (z 1 , ..., z n ) = P j (z 1 , ..., z n , e i zn ), j = 1, ..., N , where P j ∈ C[X 1 , ..., X n , Y ], has Paley-Wiener growth in C n ;

• the current P F attached to any system F = (F 1 , ..., F N ), F j (z 1 , ..., z n ) = P j (z 1 , ..., z n-1 , e i zn , e i γ zn ), j = 1, ..., N , where the polynomials P j belong to Q[X 1 , ..., X n-1 , Y 1 , Y 2 ] and γ ∈ (Q ∩ R) \ Q, has Paley-Wiener growth in C n .

Note that only the second situation carries an arithmetic structure. The methods developed in [START_REF] Berenstein | Division interpolation methods and Nullstellensätze[END_REF] failed, at least for their intended purpose of making progress towards Conjectures 1.2 or even 1.4. For example, they do not seem to be of any help towards Conjecture 1.4, when rank (Γ(f )) = 2 and f is a true exponential polynomial (not an exponential sum). The main reason for such a failure is that these methods take into account only the concept of dimension, and ignore that of logarithmic size. On the other hand, the conjectural approach towards Conjecture 1.4 when rank Γ(f ) = 3 (such as sketched above) was taking into account such concepts, basically through Siegel's lemma. It is natural to ask the following question: can some argument based on a filtration with respect to the size lead to what would be a substitute for a set of global Bernstein-Sato relations such as (4.18) or (4.20) ? That would indeed provide a decisive step towards all conjectures mentioned here.

Some other miscellaneous approaches

This paper is intended to give brief, up-to-date discussions of the fascinating conjectures arising from arithmetic considerations added to L. Ehrenpreis's contributions to the study of the "slowly decreasing condition" in the Paley-Wiener algebra. One should add that recent developments in amoeba theory [START_REF] Passare | Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope[END_REF][START_REF] Purbhoo | A Nullstellensatz for amoebas[END_REF][START_REF] Henriques | An analog of convexity for complements of amoebas of higher codimension, an answer to a question asked by B. Sturmfels[END_REF], in relation with tropical geometry, might also be of some interest for such conjectures. Unfortunately, they usually are more adapted to the case of complex frequencies 12 than to the most delicate so-called "neutral case" where all frequencies are purely imaginary as in the questions discussed here. The most serious stumbling block is that, from the combinatorics point of view, when dealing with "algebraic" cones in R n , one is missing Gordon's lemma. One needs then to bypass such a difficulty; see, for example, [12] for the construction of toric varieties associated to non rational fans. In this connection, we mention some references that might inspire ideas for deciding such conjectures about exponential sums [START_REF] Forsberg | Laurent determinants and arrangements of hyperplane amoebas[END_REF][START_REF] Henriques | An analog of convexity for complements of amoebas of higher codimension, an answer to a question asked by B. Sturmfels[END_REF][START_REF] Gurevich | Closed ideals with zero dimensional root set in certain rings of holomorphic functions[END_REF][START_REF] Ya | On zeros of exponential sums[END_REF][START_REF] Ya | Exponential analytic sets[END_REF][START_REF] Passare | Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope[END_REF][START_REF] Purbhoo | A Nullstellensatz for amoebas[END_REF][START_REF] Yu | Zeros of holomorphic almost periodic mappings with independent components[END_REF][START_REF] Ronkin | On zeros of almost periodic functions generated by holomorphic functions in multicircular domain[END_REF][START_REF] Silipo | Amibes de sommes d'exponentielles[END_REF].

Unfortunately, most of them do not really take into account the arithmetic constraints, and are more in the spirit of C. Moreno's papers [START_REF] Moreno | Zeroes of exponential polynomials[END_REF][START_REF] Moreno | The zeroes of exponential polynomials (I)[END_REF].

Theorem 3 . 1 (

 31 Schanuel's conjecture, formal version) Let y 1 , ..., y s be s formal power series in C[[t 1 , ..., t k ]] (k ≥ 1), and I an ideal in the polynomial ring

(4. 14 )Conjecture 4 . 1 Remark 4 . 1

 144141 If P F has Paley-Wiener growth, so has R F , since ((2iπ)⌋ F -∂)• P F = 1 -R F .Division methods such as developped in[START_REF] Berenstein | Residue currents and Bézout identities[END_REF][START_REF] Berenstein | Multidimensional residue theory and applications[END_REF][START_REF] Andersson | Residue currents and ideals of holomorphic functions[END_REF][START_REF] Andersson | Residue currents with prescribed annihilator ideals[END_REF], show that, ifP F (hence R F ) has Paley-Wiener growth in C n , [I(F 1 , ..., F N )] loc min(n,N ) ⊂ I(F 1 , ..., F N ). (4.15) In the particular case where N ≤ n and (F 1 , ..., F N ) define a complete intersection in C n , the fact that P F (hence R F ) has Paley-Wiener growth in C n implies that I(F 1 , ..., F N ) is closed in the Paley-Wiener algebra (one can replace the exponent min(n, N ) by 1 in (4.15)). When (F 1 , ..., F N ) have no common zeroes in C n , it is therefore equivalent to say that I(F 1 , ..., F N ) is closed in the Paley-Wiener algebra or to say that P F has Paley-Wiener growth (here R F ≡ 0 since F -1 (0) = ∅). Conjecture 1.2 suggests then the following conjecture. Let F 1 , ..., F N be N exponential polynomials such as in Conjecture 1.2. The current P F (hence also R F ) has Paley-Wiener growth. Conjecture 4.1 implies Conjecture 1.4 : when n = 1, take N large enough and F 1 , ..., F N the list of successive derivatives of the exponential polynomial f : z → M k=0 b k (z) e iα k z

This follows from Theorem 11.2 in[START_REF] Ehrenpreis | Fourier Analysis in several complex variables[END_REF].

Unfortunately, even when one specifies arithmetic conditions on the ideal I, such as the generating polynomials have algebraic coefficients, nothing more precise can be asserted about the constant γ. Indeed, this is the main stumbling block to such a result being an efficient tool in proving Conjecture 1.2 or even Conjecture 1.4.

Here again, additional arithmetic information on F does not impose any arithmetic constraint on γ.

Certainly, the coefficients and frequencies of such an exponential polynomial f are in Q.

That is, of course, is identically zero. Nevertheless, it seems better to keep this formulation to view the statement as the effect of arithmetic rigidity constraints in Ritt's factorization theorem.

More generally, one may replace K(X) by some unitary K-algebra containing K(X), such as K [[X]], and introduce then the notion of Xd/dX-module of finite type over K [[X]].

See e.g.[START_REF] Dwork | An introduction to G-functions[END_REF], Chapter VIII, for a pedestrian presentation and a proof.

To say it briefly, a G-function is a formal power series in Q [[X]] which is in the kernel of some element in Q[X, d/dX] and, at the same time, has a finite logarithmic height, when considered as a power series in Q [[X]] (see[START_REF] André | G-Functions and Geometry[END_REF] for the notion of logarithmic height for a power series).

The lines which follow intend just to sketch what could be a conjectural approach to Conjecture 1.4 for exponential sums f such that Γ(f ) has small rank.

Note that this work of L. Ehrenpreis appeared in the Lecture Notes volume where appeared also the important results by G. Chudnovsky[START_REF] Chudnovsky | Applications of Padé approximations to diophantine inequalities in values of G-functions[END_REF][START_REF] Chudnovsky | Applications of Padé approximation to the Grothendieck conjecture on linear differential equations[END_REF].

That is on concepts of algebraic, not really arithmetic, nature, though arihmetics is deeply involved.