
HAL Id: hal-00618147
https://hal.science/hal-00618147v2

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A conjecture by Leon Ehrenpreis about zeroes of
exponential polynomials

Alain Yger

To cite this version:
Alain Yger. A conjecture by Leon Ehrenpreis about zeroes of exponential polynomials. Farkas,
H.M, Gunning, R.C, Knopp, M.I, Taylor, B.A. From Fourier Analysis and Number Theory to Radon
Transform and Geometry, Springer-Verlag, pp.517-535, 2013, Developpments in Mathematics, 28,
978-1-4614-4075-8. �hal-00618147v2�

https://hal.science/hal-00618147v2
https://hal.archives-ouvertes.fr


A conjecture by Leon Ehrenpreis about zeroes of

exponential polynomials

by
Alain Yger

yger@math.u-bordeaux.fr
Institute of Mathematics,

University of Bordeaux, 33405 Talence, France.

February 13, 2013

Abstract

Leon Ehrenpreis proposed in his 1970 monograph Fourier Analysis in sev-
eral complex variables the following conjecture : the zeroes of an exponential
polynomial

∑M
0 bk(z)e

iαkz, bk ∈ Q[X], αk ∈ Q∩R are well separated with re-
spect to the Paley-Wiener weight. Such a conjecture remains essentially open
(besides some very peculiar situations). But it motivated various analytic
developments carried by C.A. Berenstein and the author, in relation with the
problem of deciding whether an ideal generated by Fourier transforms of differ-
ential delayed operators in n variables with algebraic constant coefficients, as
well as algebraic delays, is closed or not in the Paley-Wiener algebra Ê(Rn). In
this survey, I present various analytic approaches to such a question, involv-
ing either the Schanuel-Ax formal conjecture, or D-modules technics based
on the use of Bernstein-Sato relations for several functions. Nevertheless,
such methods fail to take into account the intrinsic rigidity which arises from
arithmetic hypothesis : this is the reason why I also focus on the fact that
Gevrey arithmetic methods that where introduced by Y. André to revisit the
Lindemann-Weierstrass theorem, could also be understood as an indication for
rigidity constraints for example in Ritt’s factorisation theorem of exponential
sums in one variable. The objective of this survey is to present the state of
the art with respect to L. Ehrenpreis’s conjecture, as well as to suggest how
methods from transcendental number theory could be combined with analytic
ideas, in order precisely to take into account such rigidity constraints inherent
to arithmetics.
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1 The conjecture, various formulations

In [36], page 322, Leon Ehrenpreis formulated the following conjecture.

Conjecture 1.1 (original form, incorrect) If F1, ..., FN are N exponen-
tial polynomials in n variables with purely imaginary algebraic frequencies,
namely

Fj(z1, ..., zn) =

Mj∑

k=0

bjk(z) e
i〈αjk,z〉 ,

bjk ∈ C[X1, ..., Xn] , αjk ∈ Q
n ∩ Rn , j = 1, ..., N,

then the ideal (F1, ..., FN ) they generate in the Paley-Wiener algebra Ê ′(Rn)
is slowly decreasing respect to the Paley-Wiener weight p(z) = log |z|+ |Im z|.
As a consequence1, this ideal is closed in Ê ′(Rn). It coincides with the ideal

[I(F1, ..., FN )]loc, which consists of elements in Ê ′(Rn) that belong locally to the
ideal generated by F1, ..., FN in the algebra of entire functions in n variables.

This conjecture, in a slightly modified form (see Conjecture 1.2), has been the
inspiration for the joint work of C.A. Berenstein and the author since 1985.
It is a challenging and fascinating question, one that is closely connected with
other open questions in number theory and analytic geometry. In this note,
I will point out many of these connections, detail some of the progress that
has been made on the problem, and hopefully inspire others to continue the
work.

As it stands, Conjecture 1.1 would imply, in the one variable setting, the
following : if

f(z) =

M∑

k=0

bk(z)e
iαkz , bk ∈ C[X] , αk ∈ Q ∩ R (1.1)

is an exponential polynomial in one variable with algebraic frequencies and all

simple zeroes, then the ideal (f, f ′) is a non proper ideal in Ê ′(R) which would
imply

|f(z)|+ |f ′(z)| ≥ c
e−A|Im z|

(1 + |z|)p (1.2)

for some c, A > 0 and p ∈ N. Unfortunately, such an assertion is false if one
does not set any condition of arithmetic nature on the polynomial coefficients
bk. Take for example

f(z) = fγ(z) = sin(z − γ)− sin(
√
2(z − γ)),

1This follows from Theorem 11.2 in [36].
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where 2γ/π has excellent approximations belonging to (2Z+1)⊕
√
2(2Z+1);

then some zeroes of fγ of the form

2lπ

1−
√
2
, l ∈ Z ,

will approach extremely well other zeroes of fγ of the form

2α+ (2l′ + 1)π

1 +
√
2

, l′ ∈ Z,

and thus the ideal (fγ , f
′
γ) fails to be closed in Ê ′(R). So Conjecture 1.1 needs

to be reformulated as follows.

Conjecture 1.2 (revised form) If F1, ..., FN are exponential polynomials
in n variables with both algebraic coefficients and purely imaginary algebraic
frequencies, namely

Fj(z1, ..., zn) =

Mj∑

k=0

bjk(z) e
i〈αjk,z〉 ,

bjk ∈ Q[X1, ..., Xn] , αjk ∈ Q
n ∩ Rn , j = 1, ..., N,

(1.3)

then the ideal (F1, ..., FN ) they generate in the Paley-Wiener algebra Ê ′(Rn) is
slowly decreasing respect to the Paley-Wiener weight p(z) = log |z|+|Im z|. As
a consequence, this ideal is closed in Ê ′(Rn), and thus coincides with the set

of elements in Ê ′(Rn) which belong locally to the ideal generated by F1, ..., FN

in the algebra of entire functions in n variables.

Such a conjecture appears to be stronger than the following one.

Conjecture 1.3 (weaker revised form) If F1, ..., FN are exponential poly-
nomials in n variables as in Conjecture 1.2, namely

Fj(z1, ..., zn) =

Mj∑

k=0

bjk(z) e
i〈αjk,z〉 ,

bjk ∈ Q[X1, ..., Xn] , αjk ∈ Q
n ∩ Rn , j = 1, ..., N,

then the the closure of the ideal (F1, ..., FN ) they generate in the Paley-Wiener

algebra Ê ′(Rn) coincides with the set of elements in Ê ′(Rn) which belong locally
to the ideal generated by F1, ..., FN in the algebra of entire functions in n
variables
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The conjecture is equivalent to the assertion that the underlying system of
difference-differential equations µ1 ∗f = · · · = µN ∗f = 0 satisfies the spectral
synthesis property.

With C.A. Berenstein, we have been developing since [16] a long-term joint
research program originally devoted to various attempts to tackle Conjecture
1.2. Such attempts lead to an approach based on multidimensional analytic
residue theory that relies on techniques of analytic continuation in one or
several complex variables. Conjecture 1.3 seems harder to deal with since it

fits so well with the search for explicit division formulas in Ê ′(Rn) that resolve
Ehrenpreis’s fundamental principle as studied in [36]. (See also [18] or, more
recently, [2]). What is known as Ehrenpreis-Montgomery conjecture is the
particular case of Conjecture 1.2, when n = 1. Thanks to Ritt’s theorem [52],
Conjecture 1.2 in the case n = 1 reduces to the following.

Conjecture 1.4 (Ehrenpreis-Montgomery conjecture) Let

f(z) =
M∑

k=0

bk(z) e
iαkz , bk ∈ Q[X], αk ∈ Q ∩ R (1.4)

be an exponential polynomial with both algebraic coefficients and frequencies.
Then, there are constant c, A > 0, p ∈ N (depending on f) such that

(
f(z) = f(z′) = 0 and z 6= z′

)
=⇒ |z − z′| ≥ c

e−A|Im z|

(1 + |z|)p . (1.5)

A possible reason for the terminology is the relation between Conjecture 1.4
and the following conjecture by H. Shapiro (1958) mentioned by H.L. Mont-
gomery in a colloquium in Number Theory (Bolyai Janos ed.), see [57, 58].

Conjecture 1.5 (Montgomery-Shapiro conjecture) Let f, g be two ex-
ponential polynomials that have an infinite number of common zeroes. Then,
there is an exponential polynomial h that divides both f and g and has also
an infinite number of zeroes.

Unfortunately, I failed to find a precise reference in H. L. Montgomery’s work.
There seems to be an oral contribution by H. L. Montgomery linking Conjec-
ture 1.4 and Conjecture 1.5. In 1973, Carlo Moreno, under the supervision of
L. Ehrenpreis, quoted in the introduction of [48] an unpublished manuscript
[47], which should be devoted to his work towards such a conjecture. His
thesis (New York, 1971) was centered around it. The idea there was to prove
Conjecture 1.4 for sums of exponentials (that is bk ∈ Q for any k), involving
only a small number of exponential monomials. This is fundamentally differ-
ent from the methods that arose later (see e.g. [16]), which depend on the
rank of the subgroup Γ(f) of the real line generated by the frequencies αk.
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2 What is known in connection with re-

sults in transcendental number theory

As mentioned in section 1, besides the approach by C. Moreno in his thesis,
most of the attempts towards Conjecture 1.4 rely on an additional hypothesis
on the rank of the additive subgroup Γ(f) of Q∩R generated by the frequencies
α0, ..., αM , not on the number of monomials eiαkz involved.

An easy case when Conjecture 1.4 holds is the case where the rank of Γ(f)
equals 2, and the bk are constant [39]. The result means in that case that the
analytic transcendental curve

t ∈ C 7→ (eit, eiγ1t) , γ1 ∈ (Q ∩ R) \Q,

cannot approach a finite subset in Q
2
. Explicitly, any finite linear combination

of logarithms of r algebraic numbers (r = 3 here) αι with degrees at most D,
logarithmic heights at most h, and with integer coefficients νι having absolute
values less than B is either 0 or bounded from below in absolute value,

∣∣∣
r∑

ι=1

νι logαι

∣∣∣ ≥ 1

Bc(r)×Dr+2 logD×hr . (2.6)

This is a well known fact originally due to A. Baker, see e.g. [9, 10] or
([59], section 4), for up-to-date results, references or conjectures. When the
coefficients νι are algebraic, with heights less than B, the following less explicit
estimate continues to hold.

∣∣∣
r∑

ι=1

νι logαι

∣∣∣ ≥ 1

Bc(r,D)×hκ(r)
(2.7)

for some constants c(r,D) and κ(r), D being the maximum of the degrees of
the αι and νι.

The next natural step would be to show that, if γ1, γ2 are two real algebraic
numbers such that (1, γ1, γ2) are Q-linearly independent, the transcendental
curve

t ∈ C 7→ (eit, eiγ1t, eiγ2t)

cannot approach an algebraic curve in C3 which is defined over Q; That is,
the set of common zeroes of polynomials belonging to Q[X1, X2, X3]. Here
we are close to a quantified version of the so-called Schanuel’s conjecture (see
[59], section 4, for conjectures respect to its quantitative versions).

Conjecture 2.1 (Schanuel’s conjecture, “numerical” version) Given s
complex numbers y1, ..., ys which are Q-linearly independent, the transcendence
degree of the algebraic extension Q[y1, ..., ys, e

y1 , ..., eys ] over Q is at least equal
to s.
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For s = 1, this is Gel’fond-Schneider’s theorem. The s = 2 case would imply
for example the algebraic independence over Q of the pair of numbers (e, π)
or (log 2, log 3), and is of course still open. When γ is an algebraic number
with degree D ≥ 2 and ζ a complex number such that eiζ 6= 1, a result by
G. Diaz [34] asserts that, among the exponentials eiγζ , ..., eiγ

D−1ζ , at least
[(d+1)/2] are algebraically independent over Q. This result covers Gel’fond’s
well known result (D = 3) and even leads to a quantitative version of it. In
fact, the quantitative formulation obtained by D. Brownawell in [14] forD = 3
(using Gel’fond-Schneider’s method) implies the following (rather weak) result
respect to Conjecture 1.4, when the rank of Γ(f) equals 3.

Proposition 2.1 ([15]) If f is an exponential sum in one variable with bk ∈
Q and Γ(f) = Z⊕ γZ⊕ γ2Z, γ being an irrational cubic, then, for any ǫ > 0,
there is cǫ > 0 depending on f such that

(
f(z) = f(z′) = 0 and z 6= z′

)
=⇒ |z − z′| ≥ cǫe

−|z|4+ǫ

(2.8)

The methods introduced by Guy Diaz in [34] in fact allow one to replace 4+ ǫ
by 1 + ǫ in (2.8). In any case, we are indeed very far from what would be
the formulation of Conjecture 1.4 in the particular case where bk are constant
and the algebraic frequencies belong to the group Z ⊕ γZ ⊕ γ2Z, γ being an
irrational cubic. This is inherent to the approach of the problem via classical
methods in diophantine approximation.

Besides these cases and the results of C. Moreno in his unpublished 1971
thesis when the number of monomial terms is small, to my knowledge nothing
is really known about Conjecture 1.4, at least in connexion with an approach
based on transcendental number theory methods. For some up-to-date survey
about Schanuel’s conjecture and its quantitative versions, we refer the reader
to ([59], sections 3.1 and 4.3).

3 Using the formal counterpart of Scha-

nuel’s numerical conjecture

The point of view I developed with C. A. Berenstein in [16] and section 2 of
[15] relies on the fact that the formal analog of Schanuel’s conjecture holds,
despite the fact that very is known about the numerical Schanuel conjecture.
This is a result by J. Ax and B. Coleman [6, 31], following the ideas developped
by C. Chabauty [28] and E. Kolchin [40], see also [22] for a modern up-to-date
presentation. Here is a formulation.

Theorem 3.1 (Schanuel’s conjecture, formal version) Let y1, ..., ys be
s formal power series in C[[t1, ..., tk]] (k ≥ 1), and I an ideal in the polynomial
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ring C[X1, ..., Xs, Y1, ..., Ys], defining in C2s an algebraic subvariety V(I) with
dimension less or equal to s, such that

∀P ∈ I, P (y1(t), ..., ys(t), e
y1(t), ..., eys(t)) ≡ 0.

Then, there are rational numbers r1, ..., rs and a complex number2 γ ∈ C such
that

s∑

j=1

rjyj(t) ≡ γ. (3.9)

Here is a corollary of the last Theorem that shows the crucial role it plays
when studying the slowly decreasing conditions introduced by Ehrenpreis (
e.g. [36]) for ideals generated by exponential polynomials with frequencies
in (iZ)n. We ignore for the moment any condition of arithmetic type on the
coefficients.

Corollary 3.1 ([16], Proposition 6.4 and Corollary 6.7) Let P1, ..., PN

be N polynomials in the 2n variables (X1, ..., Xn, Y1, ..., Yn), defining an alge-
braic variety V(P ) in C2n

z,w. Let πz : (z, w) ∈ C2n 7→ z be the projection on the
factor Cn

z . Let W ⊂ Cn
z be the subset defined by

(z1, ..., zn) /∈ W =⇒ dim(V(P ) ∩ π−1(z)) = 0 or −∞.

Then, any irreducible component with strictly positive dimension of the ana-
lytic (transcendental) subset

V (F ) = {z ∈ Cn ; Fj(z) = Pj(z1, ..., zn, e
iz1 , ..., eizn) = 0, j = 1, ..., N}

lies in W . In particular, when N ≥ n, any irreducible component with strictly
positive dimension of V (F ) lies in the closure in Cn of the set W ′ ⊂ Cn

z

defined as

z /∈ W ′ =⇒ rank

[(∂Pj(z, w)

∂wk

)
1≤j≤N

k≤1≤n

]
= n ∀w ∈ Cn.

The formal analog of Schanuel’s conjecture also allows one to give refined
versions of Ritt’s theorem in several variables such as those formulated in [8].
Here is an example.

2Unfortunately, even when one specifies arithmetic conditions on the ideal I, such as the gen-
erating polynomials have algebraic coefficients, nothing more precise can be asserted about the
constant γ. Indeed, this is the main stumbling block to such a result being an efficient tool in
proving Conjecture 1.2 or even Conjecture 1.4.
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Corollary 3.2 ([16], see also [53]) Let

F (z1, ..., zn) =

M∑

k=0

bk(z)e
i〈αk,z〉

be an exponential polynomial in n complex variables which is identically zero
on an algebraic irreducible curve C. Then either all polynomial factors bk
vanish identically on C or else C is contained in some affine subspace 〈αk1 −
αk2 , z〉 = γ, where γ is a complex constant3 and αk1 6= αk2. If an irreducible
polynomial P ∈ C[X1, ..., Xn] divides F (as an entire function) without divid-
ing all the bk, then P is necessarily of the form

P (X) = 〈αk1 − αk2 , X〉 − γ.

The main reason such analytic techniques arising from the formal analog of
Schanuel’s conjecture fail to imply Conjecture 1.2 (or more specifically Con-
jecture 1.4), is because they do not allow one to keep track of the arithmetic
constraints. Though such a goal can be (partially) achieved when adapt-
ing Nœther Normalization’s lemma to the frame of exponential polynomials
P (X1, ..., Xn, e

Y1 , ..., eYn) (as in Proposition 6.3 in [16]), it still seems far from
providing enough information to make significant advances towards Conjec-
tures 1.2 or 1.4.

4 Arithmetic rigidity and the D-module ap-

proach

4.1 Lindemann-Weierstrass theorem versusRitt’s fac-

torization

The ubiquity that was pointed out in [4, 5] with respect to the well known
Lindemann-Weierstrass theorem suggests how arithmetic rigidity is reflected
in Ritt’s factorization of exponential sums in the one variable setting. Let us
recall the classical “numerical” formulation of Lindemann-Weierstrass theo-
rem.

Theorem 4.1 (Lindemann-Weierstrass, “numerical” formulation)
Let α1, ..., αs be s algebraic numbers which are Q-linearly independent. Then
their exponentials eα1 , ..., eαs are algebraically independent over Q.

Here is its equivalent “functional” formulation, which appears to be an arith-
metic version of Ritt’s factorization theorem. In this situation, arithmetic
conditions indeed impose drastic rigidity constraints.

3Here again, additional arithmetic information on F does not impose any arithmetic constraint
on γ.
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Theorem 4.2 (Lindemann-Weierstrass, “functional formulation”)
Let f be a formal power series in Q[[X]], which corresponds to the Taylor
development about the origin of an exponential polynomial f with constant
coefficients4, such that f(1) = 0, that is f can be divided by z− 1 as an entire
function. Then the quotient

z 7→ f(X)

X − 1

is also the formal power series at the origin of an exponential polynomial with
constant coefficients5.

4.2 A first ingredient for the proof of Theorem 4.2 :

the notion of “size” for a Xd/dX-module over K(X)

One of the major ingredients in the “modern” proof ([4, 5]) of Theorem 4.2 is
the notion of “being of finite size” for a Xd/dX module over K(X), where K

is a number field. We keep for the moment to the one variable setting.

LetK be such a number field, andM be aXd/dX-module overK(X). Assume
M is such that the K(X) induced module is free with finite rank6. Thus, M
can be represented in terms of a basis Υ = (υ0, ..., υµ−1) with the action of
the differential operator Xd/dX being represented as

(Xd/dX)[υj ] =

µ−1∑

k=0

Gjk(X)[υk].

Taking into account the fact that K is a number field (and thus the arithmetic
rigidity), one can introduce a notion of size σ(M) as

σ(M) = lim sup
N→∞

1

N

∑

v∈Σfinies(K)

log+ max
0≤p≤N

∥∥∥G
(p)(X)

p!

∥∥∥
v
, (4.10)

where Σfinies denotes the set of non archimedian (conveniently normalized)
absolute values on the number field K, and Gp is the (µ, µ) matrix with
entries in K(X), corresponding to the action of Xp(d/dX)p, expressed within
the basis Υ (see for example [3, 33]). The size is in fact independent of the
choice of the basis Υ. The module M is said to satisfy the Galochkin condition
when its size σ(M) is finite.

4Certainly, the coefficients and frequencies of such an exponential polynomial f are in Q.
5That is, of course, is identically zero. Nevertheless, it seems better to keep this formulation to

view the statement as the effect of arithmetic rigidity constraints in Ritt’s factorization theorem.
6More generally, one may replace K(X) by some unitary K-algebra containing K(X), such as

K [[X]], and introduce then the notion of Xd/dX-module of finite type over K [[X]].
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An important result by G. Chudnovsky [29, 30], one that relies on Siegel’s
lemma7, asserts that, if A is a (µ, µ) matrix with coefficients in K[X] such
that the differential system

(d/dX −A)[Y ] = 0 (4.11)

admits a solution Y0 in (K [[X]])µ with K(X)-linearly independent compo-
nents, then the size of the corresponding Xd/dX-module MA is bounded
from above by C(Γ)h(Y0), where h(Y0) denotes the maximum of the heights
of the coefficients of Y0, the height being understood here as the height of a
formal power series with coefficients in K (see [3]). In particular, MA satisfies
the Galochkin condition when the differential system admits a solution with
K(X)-linearly independent components, which are all G-functions (see [3] for
various definitions8 of such an arithmetic notion). Note that G. Chudnovsky’s
theorem has been extended to the several variable context by L. di Vizio in
[32].

4.3 A second ingredient for the proof of Theorem

4.2 : a theorem by N. Katz

Here again, one keeps to the one variable context. A differential operator with
coefficients in Mµ,µ(C[X])

L =

L∑

0

Al(X)(d/dX)q,

it is called fuschian if all its singularities a ∈ C ∪ {∞} are regular ones. That
is, are such that

min
l<L

(vala(Al)− l) ≥ vala(AL)− L.

A theorem by N. Katz [44] asserts that any Xd/dX-module over K(X) (K be-
ing a number field) which satisfies Galochkin condition is necessarily fuschian.

This result has also an extension to the context of several variables ([32]).
Such an extension can be combined with Chudnovsky’s theorem in higher
dimension, as formulated in geometric terms also in ([32]).

The proof of Theorem 4.2 ([5]) follows from such a combination between Chud-
novsky’s and Katz’s theorems. It relies on the elementary proof proposed in
[23], which bypasses the p-adic methods based on the Bézivin-Robba criterion
that were previously introduced in [24].

7See e.g. [33], Chapter VIII, for a pedestrian presentation and a proof.
8To say it briefly, a G-function is a formal power series in Q [[X]] which is in the kernel of some

element in Q[X, d/dX] and, at the same time, has a finite logarithmic height, when considered as
a power series in Q [[X]] (see [3] for the notion of logarithmic height for a power series).

10



4.4 The D-modules approach

Let us start here with a few observations about division questions in multivari-
ate complex analysis. This approach is reminiscent of pseudo-Wiener decon-
volution methods that involve as deconvolutors filters with transfer functions

ω ∈ Rn 7−→ Fj(ω)

‖F (ω)‖2 + ǫ2
,

where the Fj , j = 1, ..., N , are the transfer functions of the convolutor filters,
and ǫ2 << 1 stands here for a signal to noise ratio.

Let F1, ..., FN be N elements in the Paley-Wiener algebra Ê ′(Rn). Consider
the holomorphic map z 7→ F (z) := (F1(z), ..., FN (z)) as an holomorphic sec-
tion of the trivial bundle Cn × CN → Cn, equipped with its canonical basis.
Let

σ(z) =

N∑
j=1

Fj(z)⊗ ej

‖F (z)‖2 , z ∈ Cn \ F−1(0).

It can be shown that there are bundle-valued currents PF and RF in Cn

defined by the formulas

PF :=
[
‖F (z)‖2λ

n∑

r=1

σ(z) ∧ (∂[σ(z)])r−1

(2iπ)r

]
λ=0

RF :=
[
∂ [‖F (z)‖2λ] ∧

n∑

r=1

σ(z) ∧ (∂ [σ(z)])r−1

(2iπ)r

]
λ=0

.

(4.12)

That is, one analytically continues the complex parameter λ from {Reλ >> 1}
to some half-plane {Reλ > −η} for some η > 0. Note that SuppRF ⊂ F−1(0)
and that PF and RF are related by ((2iπ)⌋F − ∂) ◦ PF = 1 − RF , where ⌋F
denotes the interior product with F .

In order to justify such a construction, one takes a log resolution π :
C̃n → Cn for the subvariety {F1 = · · · = FN = 0}. Such a log resolution
factorizes through the normalized blow-up of Cn along the coherent ideal sheaf
(F1, ..., FN )OCn . When N ≤ n and F1, ..., FN define a complete intersection
in Cn, the current RF reduces to its (0, N) component, which coincides in this
case with the current realized in a neighborhhood of

⋃N
1 F−1

j (0) as the value at
λ1 = · · · = λN = 0 of the analytically continued current-valued holomorphic
map

(λ1, ..., λN ) ∈ {Reλ1 >> 1, ...,ReλN >> 1} 7−→ 1

(2iπ)N

1∧

j=N

∂
( |Fj |2λj

Fj

)
.

(4.13)
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When F1, ..., FN are polynomials (that is Fourier transforms of distributions
with support {0}), all distribution coefficients of the current PF belong to
S ′(Cn ≃ R2n), in which case the ideal (F1, ..., FN ) is of course closed in the
Paley-Wiener algebra. The current PF is said to have Paley-Wiener growth in
Cn if and only if all its distribution coefficients T satisfy the weaker condition

∃ p ∈ N, , ∃A > 0, ∃C > 0, such that

|〈T, ϕ〉| ≤ C sup
|l|+|m|≤p

sup
Cn

[
(1 + ‖z‖)peA‖Im z‖

∣∣∣∂
l+m [ϕ]

∂ζ l ∂ζ
m (z)

∣∣∣
]
.

(4.14)

If PF has Paley-Wiener growth, so has RF , since ((2iπ)⌋F −∂)◦PF = 1−RF .
Division methods such as developped in [19, 20, 1, 2], show that, if PF (hence
RF ) has Paley-Wiener growth in Cn,

(
[I(F1, ..., FN )]loc

)min(n,N)
⊂ I(F1, ..., FN ). (4.15)

In the particular case where N ≤ n and (F1, ..., FN ) define a complete in-
tersection in Cn, the fact that PF (hence RF ) has Paley-Wiener growth in
Cn implies that I(F1, ..., FN ) is closed in the Paley-Wiener algebra (one can
replace the exponent min(n,N) by 1 in (4.15)). When (F1, ..., FN ) have no
common zeroes in Cn, it is therefore equivalent to say that I(F1, ..., FN ) is
closed in the Paley-Wiener algebra or to say that PF has Paley-Wiener growth
(here RF ≡ 0 since F−1(0) = ∅). Conjecture 1.2 suggests then the following
conjecture.

Conjecture 4.1 Let F1, ..., FN be N exponential polynomials such as in Con-
jecture 1.2. The current PF (hence also RF ) has Paley-Wiener growth.

Remark 4.1 Conjecture 4.1 implies Conjecture 1.4 : when n = 1, take N
large enough and F1, ..., FN the list of successive derivatives of the exponential
polynomial f : z 7→ ∑M

k=0 bk(z) e
iαkz (see e.g. [15]).

In order to rephrase Conjecture 4.1 in more algebraic terms, let us recall the
following trick. If Reβ > 0, and t1, . . . , tN are N strictly positive numbers,
then one has, for any (γ1, . . . , γN−1) ∈]0,∞[N−1 such that γ1 + · · ·+ γN−1 <
Reβ,

(t1 + · · ·+ tN )−β (4.16)

=
1

(2iπ)N−1Γ(β)

∫

γ1+iR

· · ·
∫

γN−1+iR

Γ∗
N (ζ) t−ζ1

1 · · · t−ζN−1

N−1 tζ
∗

N dζ1 · · · dζN−1,

where

Γ∗
N (ζ) = Γ(ζ1) · · ·Γ(ζN−1)Γ(β − ζ1 − · · · − ζN−1) , ζ∗ =

N−1∑

k=1

ζk − β .
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Formula (4.16) allows the transformation of the additive operation between the

tj (namely (t1+· · ·+tN )−β) into amultiplicative one (namely t−ζ1
1 · · · t−ζN−1

N−1 tζ
∗

N ,
once in the integrand). One can view it as a continuous version of the binomial
formula (with negative exponent). Taking for example tj = |Fj(z)|2, j =
1, ..., N , it follows that one way then to tackle Conjecture 4.1 could be to study
(first formally, then numerically in Cn, pairing antiholomorphic coordinates
with holomorphic ones in order to recover positivity) the analytic continuation
of

λ = (λ1, ..., λN ) 7−→
N∏

j=1

(Fj(z1, ..., zn))
λj . (4.17)

When F1, ..., FN are polynomials in K[X1, ..., Xn] = K[X], where K is a num-
ber field, one may consider the K(λ)〈X, d/dX〉-module M(F ) freely generated
by a single generator (formally denoted as Fλ = Fλ1

1 ⊗ · · · ⊗ FλN

N ), namely

M(F ) = K(λ)[X]
[ 1

F1
, ...,

1

FN

]
· Fλ.

This K(λ)〈X, d/dX〉-module is holonomic (i.e. dimM(F ) = n). A noetheri-
annity argument (see e.g. [35]) implies then that there exists a set of global
Bernstein-Sato algebraic relations

Qj(λ,X, d/dX)
[
Fj · Fλ

]
= B(λ) · Fλ, j = 1, ..., N, (4.18)

where B ∈ K[λ] and Qj ∈ K[λ] 〈X, d/dX〉, j = 1, ..., N . Such a set of algebraic
relations (4.18) can be used in order to express (via (4.16) with tj = |Fj(z)|2,
t=1, ..., N) the current PF as a current with coefficients in S ′(Cn).

Local analytic analogs of global Bernstein-Sato algebraic relations (4.18) in-
deed exist. When f1, ..., fN are N elements in OCn,0 and t is an holonomic
distribution about the origin in Cn (for example, a distribution coefficient of
some integration current [V ], or of some Coleff-Herrera current, see [27]), then
there exists a set of local Bernstein-Sato analytic equations

qt,j(λ, ζ, ∂/∂ζ)
[
fj · fλ ⊗ t] = bt(λ) · fλ ⊗ t, j = 1, ..., N, (4.19)

where qt,j denotes a germ at the origin of a holomorphic differential operator
with coefficients analytic in ζ and polynomial in λ, and bt is a finite product
of affine forms κ0 + κ1λ1 + · · · + κnλn, with κ0 ∈ N∗, (κ1, ..., κM ) ∈ NM \
{0} ([25, 55, 42, 26]). Unfortunately, such a local result does not provide
any algebraic information about the qt,j , when for example the fj ’s represent
the germs at the origin of exponential polynomials of the form (1.3), as in
Conjecture 1.2 or Conjecture 1.3.

One intermediate way to proceed in this case is to consider the case of formal
power series. For example, let us suggest an approach to tackle Conjecture

13



1.4 for exponential sums. Consider an exponential sum

f : ζ ∈ C 7−→
M∑

k=0

bke
iαkζ ,

with algebraic coefficients bk, and purely imaginary algebraic distinct frequen-
cies iαk. Let K be the number field generated by the bk’s, the αk’s, and i. Let
n ≥ 1 be the rank of the subgroup Γ(f) = Zα0 + · · · + ZαM , and (γ1, ..., γn)
be a basis of Γ(f). For each j = 1, ...,M , let Pj ∈ K[X1, ..., Xn] such that

dj−1f

dζj−1
(z) = Pj(e

iγ1z, ..., eiγnz), ∀ z ∈ C,

and P := (P1, ..., PM ) : Cn → CM . Let N = M + n− 1, and the exponential
polynomials F1, ..., FN be defined as follows:

• for j = 1, ...,M , Fj is the exponential sum in n variables, with coefficients
in K,

(z1, ..., zn) 7−→ Fj(z) = Pj(e
iz1 , ..., eizn) ;

• for j = 1, ..., n− 1, FM+j is the linear form, also with coefficients in K,

(z1, ..., zn) 7−→ γn zj − γj zn.

Let ξ be a point in Cn, such that eiξ ∈ Kn∩{P = 0}. The Taylor developments
of F1, ..., FM at ξ correspond to power series f1,ξ, ..., fM,ξ in K[[X1, ..., Xn]],
while the Taylor developpements at ξ of FM+1, ..., FN correspond to the affine
power series

fM+j,ξ : X = (X1, ..., Xn) 7−→ uj + (γnXj − γjXn), j = 1, ..., n− 1,

where uj = γn ξj − γjξn is a linear combination of logarithms of algebraic
numbers with algebraic coefficients. Here u1, ..., un−1 can be interpreted as
parameters. Inspired by [11], one could conjecture9 the existence of a set of
global formal generic Bernstein-Sato relations:

Qξ,j(λ,X, u1, ..., un−1, d/dX)
[
fj,ξ ·Fλ

ξ

]
= gξ(u1, ..., un−1) bξ(λ)·Fλ

ξ , j = 1, ..., N,
(4.20)

where Fλ
ξ = fλ1

1,ξ ⊗ . . . fλN

N,ξ, Qξ,j is a differential operator with coefficients in
K[λ] [[u, X]], gξ ∈ K[[u]], bξ ∈ K[λ]. Moreover, an argument based on Siegel’s
method (and principle), as that developed by L. Ehrenpreis10 in [37], could
be then used in order to ensure then that the formal power series coefficients

9The lines which follow intend just to sketch what could be a conjectural approach to Conjecture
1.4 for exponential sums f such that Γ(f) has small rank.

10Note that this work of L. Ehrenpreis appeared in the Lecture Notes volume where appeared
also the important results by G. Chudnovsky [29, 30].

14



(in X, u) of the Qj (considered as polynomials in λ and d/dX) have indeed a
radius of convergence which is bounded from below by ρ > 0, independently
of ξ, provided eiξ belongs to a compact subset of (C∗)n. Then (4.20) would
provide a semi-global Bernstein-Sato set of relations. The results quoted in
section 4, which rely on Siegel’s lemma (see e.g. the proof of Chudnovsky’s
theorem in [33], or the approach to Gelfand-Shidlovsky theorem as in [21])
give indeed some credit to the conjectural existence of such a collection (in-
dexed by ξ, with eiξ ∈ Kn ∩ P−1(0)) of Berntein-Sato sets of semi-global
relations Bξ as (4.20). One could then identify terms with lower degree in
u in (4.20) and thus assume, in each set of relations Bξ such as (4.20), that
gξ is homogeneous in u. In the particular case n = 3 (where we recall al-
most nothing is known concerning Conjecture 1.4, see section 2), one could
thus assume that gξ factorizes as a product of linear factors βξ,1u1 + βξ,2u2,
where βξ,1 and βξ,2 belong to K. Combining this with A. Baker’s theorem
(take (u1, u2) = (log ξ1 + 2ik1π, log ξ2 + 2ik2π), (k1, k2) ∈ Z2), one would get
(with (4.20)) some way to control the analytic continuation procedure (4.17),
leading to the conjectural lower estimates

M∑

j=1

|Pj(e
γ1z, ..., eγnz)| =

M∑

1

∣∣∣d
j−1f

dζj−1
(z)

∣∣∣ ≥ c
e−A|Im z|

(1 + |z|)p ,

that ensure (1.5) (see [15]).

The conjectural approach proposed above can be seen as an attempt to take
into account the intrinsic arithmetic rigidity of such problems that the results
quoted in section 4 suggest.

Another approach, one that would seem more direct, would be to try to mimic
the algebraic construction that leads to the construction of a global set of
Bernstein-Sato relations such as (4.18) when F1, ..., FN belong toK[X1, ..., Xn].
That is, let F1, ..., FN be N exponential polynomials of the form

Fj(z) = Pj(z1, ..., zn, e
i γ1,1 z1 , ..., ei γ1,N1

z1 , ..., ei γn,1 zn , ..., ei γn,Nn zn),

j = 1, ..., N,

where Pj ∈ K[X1, ..., Xn, Y1,1, ..., Y1,N1 , ..., Yn,1, ..., Yn,N ], the γj,k being also
elements in K such that γj,1, ..., γj,Nj

are Q-linearly independent for any j =
1, ..., n. Instead of the Weyl algebra K(λ)〈X, d/dX〉, one could introduce a
non commutative algebra such as

K(λ1, ..., λn)
〈
X1, ..., Xn, Y1,1, ..., Y1,N1 , ..., Yn,1, ..., Yn,Nn

, ∂1, ..., ∂n

〉
,

with the following commutation rules: for any j, k ∈ {1, ..., n}, for any l ∈
{1, ..., Nj},

[∂k, Xj ] = −δjk , [Xk, Yj,l] = 0 , [∂k, Yj,l] = − γj,l δkl Yj,l.
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One may consider, as in the Weyl algebra case, the K(λ)〈X,Y, ∂〉-module

M(F ) = K(λ)[X,Y, ∂]
[ 1

F1
, ...,

1

FN

]
· Fλ.

Nœtheriannity arguments based on the concept of dimension11 for such a
module lead (inspired by the argument described by F. Ehlers in [35]) to the
existence, in some very particular cases, of what would be a substitute for a
set of global Bernstein-Sato relations such as (4.18) (see [18]). Unfortunately,
the results obtained here cover only situations basically quite close of that of
Conjecture 1.4 when rankΓ(f) ≤ 2. Here are the results obtained that way :

• the current PF attached to any system F = (F1, ..., FN ), Fj(z1, ..., zn) =
Pj(z1, ..., zn, e

i zn), j = 1, ..., N , where Pj ∈ C[X1, ..., Xn, Y ], has Paley-
Wiener growth in Cn;

• the current PF attached to any system F = (F1, ..., FN ), Fj(z1, ..., zn) =
Pj(z1, ..., zn−1, e

i zn , ei γ zn), j = 1, ..., N , where the polynomials Pj be-
long to Q[X1, ..., Xn−1, Y1, Y2] and γ ∈ (Q ∩ R) \ Q, has Paley-Wiener
growth in Cn.

Note that only the second situation carries an arithmetic structure. The
methods developed in [18] failed, at least for their intended purpose of making
progress towards Conjectures 1.2 or even 1.4. For example, they do not seem
to be of any help towards Conjecture 1.4, when rank (Γ(f)) = 2 and f is
a true exponential polynomial (not an exponential sum). The main reason
for such a failure is that these methods take into account only the concept
of dimension, and ignore that of logarithmic size. On the other hand, the
conjectural approach towards Conjecture 1.4 when rankΓ(f) = 3 (such as
sketched above) was taking into account such concepts, basically through
Siegel’s lemma. It is natural to ask the following question: can some argument
based on a filtration with respect to the size lead to what would be a substitute
for a set of global Bernstein-Sato relations such as (4.18) or (4.20) ? That
would indeed provide a decisive step towards all conjectures mentioned here.

5 Some other miscellaneous approaches

This paper is intended to give brief, up-to-date discussions of the fascinating
conjectures arising from arithmetic considerations added to L. Ehrenpreis’s
contributions to the study of the “slowly decreasing condition” in the Paley-
Wiener algebra. One should add that recent developments in amœba theory
[49, 50, 43], in relation with tropical geometry, might also be of some interest
for such conjectures. Unfortunately, they usually are more adapted to the

11That is on concepts of algebraic, not really arithmetic, nature, though arihmetics is deeply
involved.
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case of complex frequencies12 than to the most delicate so-called “neutral
case” where all frequencies are purely imaginary as in the questions discussed
here. The most serious stumbling block is that, from the combinatorics point
of view, when dealing with “algebraic” cones in Rn, one is missing Gordon’s
lemma. One needs then to bypass such a difficulty; see, for example, [12]
for the construction of toric varieties associated to non rational fans. In this
connection, we mention some references that might inspire ideas for deciding
such conjectures about exponential sums [38, 43, 41, 45, 46, 49, 50, 51, 54, 56].
Unfortunately, most of them do not really take into account the arithmetic
constraints, and are more in the spirit of C. Moreno’s papers [47, 48].
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