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A conjecture by Leon Ehrenpreis about zeroes of
exponential polynomials

Alain Yger

July 15, 2011

Dedicated to the memory of Leon Ehrenpreis.

1 The conjecture, various formulations

In [36], page 322, Leon Ehrenpreis formulated the following conjecture.

Conjecture 1.1 (original form, incorrect) If F1, ..., FN are N exponential poly-
nomials in n variables with purely imaginary algebraic frequencies, namely

Fj(z1, ..., zn) =

Mj∑
k=0

bjk(z) ei〈αjk,z〉 , bjk ∈ C[X1, ..., Xn] , αjk ∈ Qn ∩Rn , j = 1, ..., N,

then the ideal (F1, ..., FN) they generate in the Paley-Wiener algebra Ê ′(Rn) is slowly
decreasing respect to the Paley-Wiener weight p(z) = log |z| + |Im z|. As a conse-

quence1, this ideal is closed in Ê ′(Rn). It coincides with the ideal [I(F1, ..., FN)]loc,

which consists of elements in Ê ′(Rn) that belong locally to the ideal generated by
F1, ..., FN in the algebra of entire functions in n variables.

This conjecture, in a slightly modified form (see Conjecture 1.2), has been the in-
spiration for the joint work of C.A. Berenstein and the author since 1985. It is a
challenging and fascinating question, one that is closely connected with other open
questions in number theory and analytic geometry. In this note, I will point out
many of these connections, detail some of the progress that has been made on the
problem, and hopefully inspire others to continue the work.

1This follows from Theorem 11.2 in [36].
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As it stands, Conjecture 1.1 would imply, in the one variable setting, the follow-
ing : if

f(z) =
M∑

k=0

bk(z)eiαkz , bk ∈ C[X] , αk ∈ Q ∩ R (1.1)

is an exponential polynomial in one variable with algebraic frequencies and all simple

zeroes, then the ideal (f, f ′) is a non proper ideal in Ê ′(R) which would imply

|f(z)|+ |f ′(z)| ≥ c
e−A|Im z|

(1 + |z|)p
(1.2)

for some c, A > 0 and p ∈ N. Unfortunately, such an assertion is false if one does
not set any condition of arithmetic nature on the polynomial coefficients bk. Take
for example

f(z) = fγ(z) = sin(z − γ)− sin(
√

2(z − γ)),

where 2γ/π has excellent approximations belonging to (2Z + 1)⊕
√

2(2Z + 1); then
some zeroes of fγ of the form

2lπ

1−
√

2
, l ∈ Z ,

will approach extremely well other zeroes of fγ of the form

2α + (2l′ + 1)π

1 +
√

2
, l′ ∈ Z,

and thus the ideal (fγ, f
′
γ) fails to be closed in Ê ′(R). So Conjecture 1.1 needs to be

reformulated as follows.

Conjecture 1.2 (revised form) If F1, ..., FN are exponential polynomials in n vari-
ables with both algebraic coefficients and purely imaginary algebraic frequencies,
namely

Fj(z1, ..., zn) =

Mj∑
k=0

bjk(z) ei〈αjk,z〉 , bjk ∈ Q[X1, ..., Xn] , αjk ∈ Qn ∩Rn , j = 1, ..., N,

(1.3)

then the ideal (F1, ..., FN) they generate in the Paley-Wiener algebra Ê ′(Rn) is slowly
decreasing respect to the Paley-Wiener weight p(z) = log |z| + |Im z|. As a conse-

quence, this ideal is closed in Ê ′(Rn), and thus coincides with the set of elements

in Ê ′(Rn) which belong locally to the ideal generated by F1, ..., FN in the algebra of
entire functions in n variables.
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Such a conjecture appears to be stronger than the following one.

Conjecture 1.3 (weaker revised form) If F1, ..., FN are exponential polynomi-
als in n variables as in Conjecture 1.2, namely

Fj(z1, ..., zn) =

Mj∑
k=0

bjk(z) ei〈αjk,z〉 , bjk ∈ Q[X1, ..., Xn] , αjk ∈ Qn ∩Rn , j = 1, ..., N,

then the the closure of the ideal (F1, ..., FN) they generate in the Paley-Wiener al-

gebra Ê ′(Rn) coincides with the set of elements in Ê ′(Rn) which belong locally to the
ideal generated by F1, ..., FN in the algebra of entire functions in n variables

The conjecture is equivalent to the assertion that the underlying system of difference-
differential equations µ1 ∗ f = · · · = µN ∗ f = 0 satisfies the spectral synthesis
property.

With C.A. Berenstein, we have been developing since [16] a long-term joint research
program originally devoted to various attempts to tackle Conjecture 1.2. Such at-
tempts lead to an approach based on multidimensional analytic residue theory that
relies on techniques of analytic continuation in one or several complex variables.
Conjecture 1.3 seems harder to deal with since it fits so well with the search for

explicit division formulas in Ê ′(Rn) that resolve Ehrenpreis’s fundamental princi-
ple as studied in [36]. (See also [18] or, more recently, [2]). What is known as
Ehrenpreis-Montgomery conjecture is the particular case of Conjecture 1.2, when
n = 1. Thanks to Ritt’s theorem [52], Conjecture 1.2 in the case n = 1 reduces to
the following.

Conjecture 1.4 (Ehrenpreis-Montgomery conjecture) Let

f(z) =
M∑

k=0

bk(z) eiαkz , bk ∈ Q[X], αk ∈ Q ∩ R (1.4)

be an exponential polynomial with both algebraic coefficients and frequencies. Then,
there are constant c, A > 0, p ∈ N (depending on f) such that(

f(z) = f(z′) = 0 and z 6= z′
)

=⇒ |z − z′| ≥ c
e−A|Im z|

(1 + |z|)p
. (1.5)

A possible reason for the terminology is the relation between Conjecture 1.4 and
the following conjecture by H. Shapiro (1958) mentioned by H.L. Montgomery in a
colloquium in Number Theory (Bolyai Janos ed.), see [57, 58].
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Conjecture 1.5 (Montgomery-Shapiro conjecture) Let f, g be two exponen-
tial polynomials that have an infinite number of common zeroes. Then, there is an
exponential polynomial h that divides both f and g and has also an infinite number
of zeroes.

Unfortunately, I failed to find a precise reference in H. L. Montgomery’s work. There
seems to be an oral contribution by H. L. Montgomery linking Conjecture 1.4 and
Conjecture 1.5. In 1973, Carlo Moreno, under the supervision of L. Ehrenpreis,
quoted in the introduction of [48] an unpublished manuscript [47], which should
be devoted to his work towards such a conjecture. His thesis (New York, 1971)
was centered around it. The idea there was to prove Conjecture 1.4 for sums of
exponentials (that is bk ∈ Q for any k), involving only a small number of exponential
monomials. This is fundamentally different from the methods that arose later (see
e.g. [16]), which depend on the rank of the subgroup Γ(f) of the real line generated
by the frequencies αk.

2 What is known in connection with results in

transcendental number theory

As mentioned in section 1, besides the approach by C. Moreno in his thesis, most of
the attempts towards Conjecture 1.4 rely on an additional hypothesis on the rank
of the additive subgroup Γ(f) of Q∩R generated by the frequencies α0, ..., αM , not
on the number of monomials eiαkz involved.

An easy case when Conjecture 1.4 holds is the case where the rank of Γ(f) equals
2, and the bk are constant [39]. The result means in that case that the analytic
transcendental curve

t ∈ C 7→ (eit, eiγ1t) , γ1 ∈ (Q ∩ R) \Q,

cannot approach a finite subset in Q2
. Explicitly, any finite linear combination

of logarithms of r algebraic numbers (r = 3 here) αι with degrees at most D,
logarithmic heights at most h, and with integer coefficients νι having absolute values
less than B is either 0 or bounded from below in absolute value,∣∣∣ r∑

ι=1

νι log αι

∣∣∣ ≥ 1

Bc(r)×Dr+2 log D×hr . (2.6)

This is a well known fact originally due to A. Baker, see e.g. [9, 10] or ([59], section
4), for up-to-date results, references or conjectures. When the coefficients νι are
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algebraic, with heights less than B, the following less explicit estimate continues to
hold. ∣∣∣ r∑

ι=1

νι log αι

∣∣∣ ≥ 1

Bc(r,D)×hκ(r)
(2.7)

for some constants c(r, D) and κ(r), D being the maximum of the degrees of the αι

and νι.

The next natural step would be to show that, if γ1, γ2 are two real algebraic numbers
such that (1, γ1, γ2) are Q-linearly independent, the transcendental curve

t ∈ C 7→ (eit, eiγ1t, eiγ2t)

cannot approach an algebraic curve in C3 which is defined over Q; That is, the set
of common zeroes of polynomials belonging to Q[X1, X2, X3]. Here we are close to
a quantified version of the so-called Schanuel’s conjecture (see [59], section 4, for
conjectures respect to its quantitative versions).

Conjecture 2.1 (Schanuel’s conjecture, “numerical” version) Given s com-
plex numbers y1, ..., ys which are Q-linearly independent, the transcendence degree of
the algebraic extension Q[y1, ..., ys, e

y1 , ..., eys ] over Q is at least equal to s.

For s = 1, this is Gel’fond-Schneider’s theorem. The s = 2 case would imply
for example the algebraic independence over Q of the pair of numbers (e, π) or
(log 2, log 3), and is of course still open. When γ is an algebraic number with degree
D ≥ 2 and ζ a complex number such that eiζ 6= 1, a result by G. Diaz [34] asserts
that, among the exponentials eiγζ , ..., eiγD−1ζ , at least [(d + 1)/2] are algebraically
independent over Q. This result covers Gel’fond’s well known result (D = 3) and
even leads to a quantitative version of it. In fact, the quantitative formulation
obtained by D. Brownawell in [14] for D = 3 (using Gel’fond-Schneider’s method)
implies the following (rather weak) result respect to Conjecture 1.4, when the rank
of Γ(f) equals 3.

Proposition 2.1 ([15]) If f is an exponential sum in one variable with bk ∈ Q
and Γ(f) = Z⊕ γZ⊕ γ2Z, γ being an irrational cubic, then, for any ε > 0, there is
cε > 0 depending on f such that(

f(z) = f(z′) = 0 and z 6= z′
)

=⇒ |z − z′| ≥ cεe
−|z|4+ε

(2.8)

The methods introduced by Guy Diaz in [34] in fact allow one to replace 4 + ε
by 1 + ε in (2.8). In any case, we are indeed very far from what would be the
formulation of Conjecture 1.4 in the particular case where bk are constant and the
algebraic frequencies belong to the group Z⊕ γZ⊕ γ2Z, γ being an irrational cubic.
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This is inherent to the approach of the problem via classical methods in diophantine
approximation.

Besides these cases and the results of C. Moreno in his unpublished 1971 thesis
when the number of monomial terms is small, to my knowledge nothing is really
known about Conjecture 1.4, at least in connexion with an approach based on tran-
scendental number theory methods. For some up-to-date survey about Schanuel’s
conjecture and its quantitative versions, we refer the reader to ([59], sections 3.1
and 4.3).

3 Using the formal counterpart of Schanuel’s nu-

merical conjecture

The point of view I developed with C. A. Berenstein in [16] and section 2 of [15]
relies on the fact that the formal analog of Schanuel’s conjecture holds, despite the
fact that very is known about the numerical Schanuel conjecture. This is a result
by J. Ax and B. Coleman [6, 31], following the ideas developped by C. Chabauty
[28] and E. Kolchin [40], see also [22] for a modern up-to-date presentation. Here is
a formulation.

Theorem 3.1 (Schanuel’s conjecture, formal version) Let y1, ..., ys be s for-
mal power series in C[[t1, ..., tk]] (k ≥ 1), and I an ideal in C[X1, ..., Xs, Y1, ..., Ys],
defining in C2s an algebraic subvariety V(I) with dimension less or equal to s, such
that

∀P ∈ I, P (y1(t), ..., ys(t), e
y1(t), ..., eys(t)) ≡ 0.

Then, there are rational numbers r1, ..., rs and a complex number2 γ ∈ C such that

s∑
j=1

rjyj(t) ≡ γ. (3.9)

Here is a corollary of the last Theorem that shows the crucial role it plays when
studying the slowly decreasing conditions introduced by Ehrenpreis ( e.g. [36]) for
ideals generated by exponential polynomials with frequencies in (iZ)n. We ignore
for the moment any condition of arithmetic type on the coefficients.

2Unfortunately, even when one specifies arithmetic conditions on the ideal I, such as the gen-
erating polynomials have algebraic coefficients, nothing more precise can be asserted about the
constant γ. Indeed, this is the main stumbling block to such a result being an efficient tool in
proving Conjecture 1.2 or even Conjecture 1.4.
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Corollary 3.1 ([16], Proposition 6.4 and Corollary 6.7) Let P1, ..., PN be N
polynomials in the 2n variables (X1, ..., Xn, Y1, ..., Yn), defining an algebraic variety
V(P ) in C2n

z,w. Let πz : (z, w) ∈ C2n 7→ z be the projection on the factor Cn
z . Let

W ⊂ Cn
z be the subset defined by

(z1, ..., zn) /∈ W =⇒ dim(V(P ) ∩ π−1(z)) = 0 or −∞.

Then, any irreducible component with strictly positive dimension of the analytic
(transcendental) subset

V (F ) = {z ∈ Cn ; Fj(z) = Pj(z1, ..., zn, e
iz1 , ..., eizn) = 0, j = 1, ..., N}

lies in W . In particular, when N ≥ n, any irreducible component with strictly
positive dimension of V (F ) lies in the closure in Cn of the set W ′ ⊂ Cn

z defined as

z /∈ W ′ =⇒ rank

[(∂Pj(z, w)

∂wk

)
1≤j≤N

k≤1≤n

]
= n ∀w ∈ Cn.

The formal analog of Schanuel’s conjecture also allows one to give refined versions
of Ritt’s theorem in several variables such as those formulated in [8]. Here is an
example.

Corollary 3.2 ([16], see also [53]) Let

F (z1, ..., zn) =
M∑

k=0

bk(z)ei〈αk,z〉

be an exponential polynomial in n complex variables which is identically zero on an
algebraic irreducible curve C. Then either all polynomial factors bk vanish identically
on C or else C is contained in some affine subspace 〈αk1 − αk2 , z〉 = γ, where γ is
a complex constant3 and αk1 6= αk2. If an irreducible polynomial P ∈ C[X1, ..., Xn]
divides F (as an entire function) without dividing all the bk, then P is necessarily
of the form

P (X) = 〈αk1 − αk2 , X〉 − γ.

The main reason such analytic techniques arising from the formal analog of Schanuel’s
conjecture fail to imply Conjecture 1.2 (or more specifically Conjecture 1.4), is be-
cause they do not allow one to keep track of the arithmetic constraints. Though such
a goal can be (partially) achieved when adapting Nœther Normalization’s lemma to
the frame of exponential polynomials P (X1, ..., Xn, e

Y1 , ..., eYn) (as in Proposition
6.3 in [16]), it still seems far from providing enough information to make significant
advances towards Conjectures 1.2 or 1.4.

3Here again, additional arithmetic information on F does not impose any arithmetic constraint
on γ.
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4 Arithmetic rigidity and the D-module approach

4.1 Lindemann-Weierstrass theorem versus Ritt’s factoriza-
tion

The ubiquity that was pointed out in [4, 5] with respect to the well known Lindemann-
Weierstrass theorem suggests how arithmetic rigidity is reflected in Ritt’s factoriza-
tion of exponential sums in the one variable setting. Let us recall the classical
“numerical” formulation of Lindemann-Weierstrass theorem.

Theorem 4.1 (Lindemann-Weierstrass, “numerical” formulation)
Let α1, ..., αs be s algebraic numbers which are Q-linearly independent. Then their
exponentials eα1 , ..., eαs are algebraically independent over Q.

Here is its equivalent “functional” formulation, which appears to be an arithmetic
version of Ritt’s factorization theorem. In this situation, arithmetic conditions in-
deed impose drastic rigidity constraints.

Theorem 4.2 (Lindemann-Weierstrass, “functional formulation”)
Let f be a formal power series in Q[[X]], which corresponds to the Taylor development
about the origin of an exponential polynomial f with constant coefficients4, such that
f(1) = 0, that is f can be divided by z − 1 as an entire function. Then the quotient

z 7→ f(X)

X − 1

is also the formal power series at the origin of an exponential polynomial with con-
stant coefficients5.

4.2 A first ingredient for the proof of Theorem 4.2 : the
notion of “size” for a Xd/dX-module over K(X)

One of the major ingredients in the “modern” proof ([4, 5]) of Theorem 4.2 is the
notion of “being of finite size” for a Xd/dX module over K(X), where K is a number
field. We keep for the moment to the one variable setting.

Let K be such a number field, and M be a Xd/dX-module over K(X). Assume M
is such that the K(X) induced module is free with finite rank6. Thus, M can be

4Certainly, the coefficients and frequencies of such an exponential polynomial f are in Q.
5That is, of course, is identically zero. Nevertheless, it seems better to keep this formulation to

view the statement as the effect of arithmetic rigidity constraints in Ritt’s factorization theorem.
6More generally, one may replace K(X) by some unitary K-algebra containing K(X), such as

K [[X]], and introduce then the notion of Xd/dX-module of finite type over K [[X]].
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represented in terms of a basis Υ = (υ0, ..., υµ−1) with the action of the differential
operator Xd/dX being represented as

(Xd/dX)[υj] =

µ−1∑
k=0

Gjk(X)[υk].

Taking into account the fact that K is a number field (and thus the arithmetic
rigidity), one can introduce a notion of size σ(M) as

σ(M) = lim sup
N→∞

1

N

∑
v∈Σfinies(K)

log+ max
0≤p≤N

∥∥∥G(p)(X)

p!

∥∥∥
v
, (4.10)

where Σfinies denotes the set of non archimedian (conveniently normalized) absolute
values on the number field K, and Gp is the (µ, µ) matrix with entries in K(X),
corresponding to the action of Xp(d/dX)p, expressed within the basis Υ (see for
example [3, 33]). The size is in fact independent of the choice of the basis Υ. The
module M is said to satisfy the Galochkin condition when its size σ(M) is finite.

An important result by G. Chudnovsky [29, 30], one that relies on Siegel’s lemma7,
asserts that, if A is a (µ, µ) matrix with coefficients in K[X] such that the differential
system

(d/dX − A)[Y ] = 0 (4.11)

admits a solution Y0 in (K [[X]])µ with K(X)-linearly independent components,
then the size of the corresponding Xd/dX-module MA is bounded from above by
C(Γ) h(Y0), where h(Y0) denotes the maximum of the heights of the coefficients of
Y0, the height being understood here as the height of a formal power series with coef-
ficients in K (see [3]). In particular, MA satisfies the Galochkin condition when the
differential system admits a solution with K(X)-linearly independent components,
which are all G-functions (see [3] for various definitions8 of such an arithmetic no-
tion). Note that G. Chudnovsky’s theorem has been extended to the several variable
context by L. di Vizio in [32].

7See e.g. [33], Chapter VIII, for a pedestrian presentation and a proof.
8To say it briefly, a G-function is a formal power series in Q [[X]] which is in the kernel of some

element in Q[X, d/dX] and, at the same time, has a finite logarithmic height, when considered as
a power series in Q [[X]] (see [3] for the notion of logarithmic height for a power series).
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4.3 A second ingredient for the proof of Theorem 4.2 : a
theorem by N. Katz

Here again, one keeps to the one variable context. A differential operator with
coefficients in Mµ,µ(C[X])

L =
L∑
1

Al(X)(d/dX)q,

it is called fuschian if all its singularities a ∈ C∪{∞} are regular ones. That is, are
such that

min
l≥1

(vala(Al)− l) ≥ vala(AL).

A theorem by N. Katz [44] asserts that any Xd/dX-module over K(X) (K being a
number field) which satisfies Galochkin condition is necessarily fuschian.

This result has also an extension to the context of several variables ([32]). Such
an extension can be combined with Chudnovsky’s theorem in higher dimension, as
formulated in geometric terms also in ([32]).

The proof of Theorem 4.2 ([5]) follows from such a combination between Chud-
novsky’s and Katz’s theorems. It relies on the elementary proof proposed in [23],
which bypasses the p-adic methods based on the Bézivin-Robba criterion that were
previously introduced in [24].

4.4 The D-modules approach

Let us start here with a few observations about division questions in multivariate
complex analysis. This approach is reminiscent of pseudo-Wiener deconvolution
methods that involve as deconvolutors filters with transfer functions

ω ∈ Rn 7−→ Fj(ω)

‖F (ω)‖2 + ε2
,

where the Fj, j = 1, ..., N , are the transfer functions of the convolutor filters, and
ε2 << 1 stands here for a signal to noise ratio.

Let F1, ..., FN be N elements in the Paley-Wiener algebra Ê ′(Rn). Consider the
holomorphic map z 7→ F (z) := (F1(z), ..., FN(z)) as an holomorphic section of the
trivial bundle Cn × CN → Cn, equipped with its canonical basis. Let

σ(z) =

N∑
j=1

Fj(z)⊗ ej

‖F (z)‖2
, z ∈ Cn \ F−1(0).

10



It can be shown that there are bundle-valued currents PF and RF in Cn defined by
the formulas

PF :=
[
‖F (z)‖2λ

n∑
r=1

σ(z) ∧ (∂[σ(z)])r−1

(2iπ)r

]
λ=0

RF :=
[
∂ [‖F (z)‖2λ] ∧

n∑
r=1

σ(z) ∧ (∂ [σ(z)])r−1

(2iπ)r

]
λ=0

.

(4.12)

That is, one analytically continues the complex parameter λ from {Re λ >> 1} to
some half-plane {Re λ > −η} for some η > 0. Note that Supp RF ⊂ F−1(0) and
that PF and RF are related by ((2iπ)cF − ∂) ◦ PF = 1− RF , where cF denotes the
interior product with F .

In order to justify such a construction, one takes a log resolution π : C̃n → Cn

for the subvariety {F1 = · · · = FN = 0}. Such a log resolution factorizes through
the normalized blow-up of Cn along the coherent ideal sheaf (F1, ..., FN)OCn . When
N ≤ n and F1, ..., FN define a complete intersection in Cn, the current RF reduces
to its (0, N) component, which coincides in this case with the current realized in a
neighborhhood of

⋃N
1 F−1

j (0) as the value at λ1 = · · · = λN = 0 of the analytically
continued current-valued holomorphic map

(λ1, ..., λN) ∈ {Re λ1 >> 1, ..., Re λN >> 1} 7−→ 1

(2iπ)N

1∧
j=N

∂
( |Fj|2λj

Fj

)
. (4.13)

When F1, ..., FN are polynomials (that is Fourier transforms of distributions with
support {0}), all distribution coefficients of the current PF belong to S ′(Cn ' R2n),
in which case the ideal (F1, ..., FN) is of course closed in the Paley-Wiener algebra.
The current PF is said to have Paley-Wiener growth in Cn if and only if all its
distribution coefficients T satisfy the weaker condition

∃ p ∈ N, , ∃A > 0,∃C > 0, such that

|〈T, ϕ〉| ≤ C sup
|l|+|m|≤p

sup
Cn

[
(1 + ‖z‖)peA‖Im z‖

∣∣∣∂l+m [ϕ]

∂ζ l ∂ζ
m (z)

∣∣∣].
(4.14)

If PF has Paley-Wiener growth, so has RF , since ((2iπ)cF − ∂) ◦ PF = 1 − RF .
Division methods such as developped in [19, 20, 1, 2], show that, if PF (hence RF )
has Paley-Wiener growth in Cn,(

[I(F1, ..., FN)]loc

)min(n,N)

⊂ I(F1, ..., FN). (4.15)

In the particular case where N ≤ n and (F1, ..., FN) define a complete intersection
in Cn, the fact that PF (hence RF ) has Paley-Wiener growth in Cn implies that
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I(F1, ..., FN) is closed in the Paley-Wiener algebra (one can replace the exponent
min(n,N) by 1 in (4.15)). When (F1, ..., FN) have no common zeroes in Cn, it is
therefore equivalent to say that I(F1, ..., FN) is closed in the Paley-Wiener algebra or
to say that PF has Paley-Wiener growth (here RF ≡ 0 since F−1(0) = ∅). Conjecture
1.2 suggests then the following conjecture.

Conjecture 4.1 Let F1, ..., FN be N exponential polynomials such as in Conjecture
1.2. The current PF (hence also RF ) has Paley-Wiener growth.

Remark 4.1 Conjecture 4.1 implies Conjecture 1.4 : when n = 1, take N large
enough and F1, ..., FN the list of successive derivatives of the exponential polynomial
f : z 7→

∑M
k=0 bk(z) eiαkz (see e.g. [15]).

In order to rephrase Conjecture 4.1 in more algebraic terms, let us recall the following
trick. If Re β > 0, and t1, . . . , tN are N strictly positive numbers, then one has, for
any (γ1, . . . , γN−1) ∈]0,∞[N−1 such that γ1 + · · ·+ γN−1 < Re β,

(t1 + · · ·+ tN)−β (4.16)

=
1

(2iπ)N−1Γ(β)

∫
γ1+iR

· · ·
∫

γN−1+iR
Γ∗N(ζ) t−ζ1

1 · · · t−ζN−1

N−1 tζ
∗

N dζ1 · · · dζN−1,

where

Γ∗N(ζ) = Γ(ζ1) · · ·Γ(ζN−1)Γ(β − ζ1 − · · · − ζN−1) , ζ∗ =
N−1∑
k=1

ζk − β .

Formula (4.16) allows the transformation of the additive operation between the tj
(namely (t1 + · · · + tN)−β) into a multiplicative one (namely t−ζ1

1 · · · t−ζN−1

N−1 tζ
∗

N , once
in the integrand). One can view it as a continuous version of the binomial formula
(with negative exponent). Taking for example tj = |Fj(z)|2, j = 1, ..., N , it follows
that one way then to tackle Conjecture 4.1 could be to study (first formally, then
numerically in Cn, pairing antiholomorphic coordinates with holomorphic ones in
order to recover positivity) the analytic continuation of

λ = (λ1, ..., λN) 7−→
N∏

j=1

(Fj(z1, ..., zn))λj . (4.17)

When F1, ..., FN are polynomials in K[X1, ..., Xn] = K[X], where K is a number
field, one may consider the K(λ)〈X, d/dX〉-module M(F ) freely generated by a
single generator (formally denoted as Fλ = Fλ1

1 ⊗ · · · ⊗ FλN
N ), namely

M(F ) = K(λ)[X]
[ 1

F1

, ...,
1

FN

]
· Fλ.
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This K(λ)〈X, d/dX〉-module is holonomic (i.e. dim M(F ) = n). A noetheriannity
argument (see e.g. [35]) implies then that there exists a set of global Bernstein-Sato
algebraic relations

Qj(λ, X, d/dX)
[
Fj · Fλ

]
= B(λ) · Fλ, j = 1, ..., N, (4.18)

where B ∈ K[λ] and Qj ∈ K[λ] 〈X, d/dX〉, j = 1, ..., N . Such a set of algebraic rela-
tions (4.18) can be used in order to express (via (4.16) with tj = |Fj(z)|2, t=1, ..., N)
the current PF as a current with coefficients in S ′(Cn).

Local analytic analogs of global Bernstein-Sato algebraic relations (4.18) indeed
exist. When f1, ..., fN are N elements in OCn,0 and t is an holonomic distribution
about the origin in Cn (for example, a distribution coefficient of some integration
current [V ], or of some Coleff-Herrera current, see [27]), then there exists a set of
local Bernstein-Sato analytic equations

qt,j(λ, ζ, ∂/∂ζ)
[
fj · fλ ⊗ t] = bt(λ) · fλ ⊗ t, j = 1, ..., N, (4.19)

where qt,j denotes a germ at the origin of a holomorphic differential operator with
coefficients analytic in ζ and polynomial in λ, and bt is a finite product of affine
forms κ0 +κ1λ1 + · · ·+κnλn, with κ0 ∈ N∗, (κ1, ..., κM) ∈ NM \{0} ([25, 55, 42, 26]).
Unfortunately, such a local result does not provide any algebraic information about
the qt,j, when for example the fj’s represent the germs at the origin of exponential
polynomials of the form (1.3), as in Conjecture 1.2 or Conjecture 1.3.

One intermediate way to proceed in this case is to consider the case of formal
power series. For example, let us suggest an approach to tackle Conjecture 1.4 for
exponential sums. Consider an exponential sum

f : ζ ∈ C 7−→
M∑

k=0

bke
iαkζ ,

with algebraic coefficients bk, and purely imaginary algebraic distinct frequencies
iαk. Let K be the number field generated by the bk’s, the αk’s, and i. Let n ≥ 1
be the rank of the subgroup Γ(f) = Zα0 + · · ·+ ZαM , and (γ1, ..., γn) be a basis of
Γ(f). For each j = 1, ...,M , let Pj ∈ K[X1, ..., Xn] such that

dj−1f

dζj−1
(z) = Pj(e

iγ1z, ..., eiγnz), ∀ z ∈ C,

and P := (P1, ..., PM) : Cn → CM . Let N = M + n − 1, and the exponential
polynomials F1, ..., FN be defined as follows:

• for j = 1, ...,M , Fj is the exponential sum in n variables, with coefficients in
K,

(z1, ..., zn) 7−→ Fj(z) = Pj(e
iz1 , ..., eizn) ;
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• for j = 1, ..., n− 1, FM+j is the linear form, also with coefficients in K,

(z1, ..., zn) 7−→ γn zj − γj zn.

Let ξ be a point in Cn, such that eiξ ∈ Kn ∩ {P = 0}. The Taylor developments
of F1, ..., FM at ξ correspond to power series f1,ξ, ..., fM,ξ in K[[X1, ..., Xn]], while the
Taylor developpements at ξ of FM+1, ..., FN correspond to the affine power series

fM+j,ξ : X = (X1, ..., Xn) 7−→ uj + (γn Xj − γjXn), j = 1, ..., n− 1,

where uj = γn ξj − γjξn is a linear combination of logarithms of algebraic numbers
with algebraic coefficients. Here u1, ..., un−1 can be interpreted as parameters. In-
spired by [11], one could conjecture9 the existence of a set of global formal generic
Bernstein-Sato relations:

Qξ,j(λ, X, u1, ..., un−1, d/dX)
[
fj,ξ · Fλ

ξ

]
= gξ(u1, ..., un−1) bξ(λ) · Fλ

ξ , j = 1, ..., N,
(4.20)

where Fλ
ξ = fλ1

1,ξ⊗. . . fλN
N,ξ, Qξ,j is a differential operator with coefficients in K[λ] [[u, X]],

gξ ∈ K[[u]], bξ ∈ K[λ]. Moreover, an argument based on Siegel’s method (and prin-
ciple), as that developed by L. Ehrenpreis10 in [37], could be then used in order to
ensure then that the formal power series coefficients (in X, u) of the Qj (considered
as polynomials in λ and d/dX) have indeed a radius of convergence which is bounded
from below by ρ > 0, independently of ξ, provided eiξ belongs to a compact subset
of (C∗)n. Then (4.20) would provide a semi-global Bernstein-Sato set of relations.
The results quoted in section 4, which rely on Siegel’s lemma (see e.g. the proof
of Chudnovsky’s theorem in [33], or the approach to Gelfand-Shidlovsky theorem
as in [21]) give indeed some credit to the conjectural existence of such a collection
(indexed by ξ, with eiξ ∈ Kn∩P−1(0)) of Berntein-Sato sets of semi-global relations
Bξ as (4.20). One could then identify terms with lower degree in u in (4.20) and
thus assume, in each set of relations Bξ such as (4.20), that gξ is homogeneous in u.
In the particular case n = 3 (where we recall almost nothing is known concerning
Conjecture 1.4, see section 2), one could thus assume that gξ factorizes as a product
of linear factors βξ,1u1+βξ,2u2, where βξ,1 and βξ,2 belong to K. Combining this with
A. Baker’s theorem (take (u1, u2) = (log ξ1 + 2ik1π, log ξ2 + 2ik2π), (k1, k2) ∈ Z2),
one would get (with (4.20)) some way to control the analytic continuation procedure
(4.17), leading to the conjectural lower estimates

M∑
j=1

|Pj(e
γ1z, ..., eγnz)| =

M∑
1

∣∣∣dj−1f

dζj−1
(z)

∣∣∣ ≥ c
e−A|Im z|

(1 + |z|)p
,

9The lines which follow intend just to sketch what could be a conjectural approach to Conjecture
1.4 for exponential sums f such that Γ(f) has small rank.

10Note that this work of L. Ehrenpreis appeared in the Lecture Notes volume where appeared
also the important results by G. Chudnovsky [29, 30].
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that ensure (1.5) (see [15]).

The conjectural approach proposed above can be seen as an attempt to take into
account the intrinsic arithmetic rigidity of such problems that the results quoted in
section 4 suggest.

Another approach, one that would seem more direct, would be to try to mimic the
algebraic construction that leads to the construction of a global set of Bernstein-
Sato relations such as (4.18) when F1, ..., FN belong to K[X1, ..., Xn]. That is, let
F1, ..., FN be N exponential polynomials of the form

Fj(z) = Pj(z1, ..., zn, e
i γ1,1 z1 , ..., ei γ1,N1

z1 , ..., ei γn,1 zn , ..., ei γn,Nn zn), j = 1, ..., N,

where Pj ∈ K[X1, ..., Xn, Y1,1, ..., Y1,N1 , ..., Yn,1, ..., Yn,N ], the γj,k being also elements
in K such that γj,1, ..., γj,Nj

are Q-linearly independent for any j = 1, ..., n. Instead
of the Weyl algebra K(λ)〈X, d/dX〉, one could introduce a non commutative algebra
such as

K(λ1, ..., λn)
〈
X1, ..., Xn, Y1,1, ..., Y1,N1 , ..., Yn,1, ..., Yn,Nn , ∂1, ..., ∂n

〉
,

with the following commutation rules: for any j, k ∈ {1, ..., n}, for any l ∈ {1, ..., Nj},

[∂k, Xj] = −δjk , [Xk, Yj,l] = 0 , [∂k, Yj,l] = − γj,l δkl Yj,l.

One may consider, as in the Weyl algebra case, the K(λ)〈X, Y, ∂〉-module

M(F ) = K(λ)[X, Y, ∂]
[ 1

F1

, ...,
1

FN

]
· Fλ.

Nœtheriannity arguments based on the concept of dimension11 for such a module
lead (inspired by the argument described by F. Ehlers in [35]) to the existence,
in some very particular cases, of what would be a substitute for a set of global
Bernstein-Sato relations such as (4.18) (see [18]). Unfortunately, the results ob-
tained here cover only situations basically quite close of that of Conjecture 1.4 when
rank Γ(f) ≤ 2. Here are the results obtained that way :

• the current PF attached to any system F = (F1, ..., FN), Fj(z1, ..., zn) =
Pj(z1, ..., zn, e

i zn), j = 1, ..., N , where Pj ∈ C[X1, ..., Xn, Y ], has Paley-Wiener
growth in Cn;

• the current PF attached to any system F = (F1, ..., FN), Fj(z1, ..., zn) =
Pj(z1, ..., zn−1, e

i zn , ei γ zn), j = 1, ..., N , where Pj ∈ Q[X1, ..., Xn−1, Y1, Y2] and
γ ∈ (Q ∩ R) \Q, has Paley-Wiener growth in Cn.

11That is on concepts of algebraic, not really arithmetic, nature, though arihmetics is deeply
involved.
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Note that only the second situation carries an arithmetic structure. The methods
developed in [18] failed, at least for their intended purpose of making progress to-
wards Conjectures 1.2 or even 1.4. For example, they do not seem to be of any
help towards Conjecture 1.4, when rank (Γ(f)) = 2 and f is a true exponential
polynomial (not an exponential sum). The main reason for such a failure is that
these methods take into account only the concept of dimension, and ignore that of
logarithmic size. On the other hand, the conjectural approach towards Conjecture
1.4 when rank Γ(f) = 3 (such as sketched above) was taking into account such con-
cepts, basically through Siegel’s lemma. It is natural to ask the following question:
can some argument based on a filtration with respect to the size lead to what would
be a substitute for a set of global Bernstein-Sato relations such as (4.18) or (4.20) ?
That would indeed provide a decisive step towards all conjectures mentioned here.

5 Some other miscellaneous approaches

This paper is intended to give brief, up-to-date discussions of the fascinating conjec-
tures arising from arithmetic considerations added to L. Ehrenpreis’s contributions
to the study of the “slowly decreasing condition” in the Paley-Wiener algebra. One
should add that recent developments in amœba theory [49, 50, 43], in relation with
tropical geometry, might also be of some interest for such conjectures. Unfortu-
nately, they usually are more adapted to the case of complex frequencies12 than to
the most delicate so-called “neutral case” where all frequencies are purely imaginary
as in the questions discussed here. The most serious stumbling block is that, from
the combinatorics point of view, when dealing with “algebraic” cones in Rn, one
is missing Gordon’s lemma. One needs then to bypass such a difficulty; see, for
example, [12] for the construction of toric varieties associated to non rational fans.
In this connection, we mention some references that might inspire ideas for deciding
such conjectures about exponential sums [38, 43, 41, 45, 46, 49, 50, 51, 54, 56]. Un-
fortunately, most of them do not really take into account the arithmetic constraints,
and are more in the spirit of C. Moreno’s papers [47, 48].
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