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Abstract

We prove that, for a density of disordgrsmall enough, a certain class of
discrete random Schrodinger operatorsZshwith diluted potentials exhibits a
Lifschitz behaviour from the bottom of the spectrum up torgies at a distance of
the orderp® from the bottom of the spectrum, with> 2(d + 1)/d. This leads to
localization for the energies in this zone for these low dgmaodels. The same
results hold for operators on the continuous, and in pdsaicwith Bernoulli or
Poisson random potential.
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1 Introduction

The purpose of this paper is to prove localization on an valelocated at the
bottom of the spectrum for some discrete and continuousorandodels in a weak
disorder regime, and a quantitative estimate on the sizhisfiiterval in terms
of the disorder. This is achieved by showing a Lifschitzlizsehaviour of the

*The author wishes to thank his advisor Dr. Frédéric KloppHaving proposed this problem and the
myriad of helpful discussions, the Centre Interfacult@ernoulli at the EPFL where part of this work was
carried out and the ANR project ANR-08-BLAN-0261-01.



integrated density of states and, in the discrete case,rtite fiolume fractional
moment criterion, whereas in the continuous, the initiapsbf the multi-scale
analysis. Although the initial motivation was to study therBoulli—~Anderson and
the Poisson—Anderson model, in the discrete case we neesttain ourselves to a
certain class of diluted potentials, the random variabfestich possess a regular
distribution. Without this hypothesis, our main result ceming the exponential
decay of the integrated density of states still applies.

By weak disorder we understand here that the mean potestiadry small.
This can be achieved, for example, by considering that tmplsi site potential
is very small or that the disorder itself is very scarce. la tinst case (and to
which the terms weak disorder and weak localization arellysassociated) it is
very natural to multiply the potential in the Anderson maolgh positive coupling
constantl

H, =-A+ AV,

and study the behaviour for very smallThere has been a number of works which
establish localization (in chronological order: M. Aizeam[1], W. Wang [[24],

F. Klopp [13] [14], A. Elgart [10]) for this model in the wealoapling constant
regime, in the discrete as well as in the continuous spacesd hesults are ob-
tained using the Frolich—Spencer multiscale analysis@Aizenman—Molchanov
fractional moment criteria. Lifschitz tails are a main iedient and still the only
mechanism understood to prove localization in dimensioeatgr than 2.

In this paper we consider low density disorder (or diluted)deis. In these
models, the impurities are large and rare rather thand saméldense. To fix the
ideas, let us consider a protypical example. Hgtbe a smoothed out version of
the Bernoulli-Anderson model, defined by the Hamiltonian

H,=H+V,
whereH is the free Laplacian ofi¢ andV,, the diagonal matrix defined by
(Vo)n = @il fOr U = (Un)peze € £3(Z°%)

with (wn)neze iNdependent identically distributed random variableshwdistribu-
tion
P= (1 _p)(SO,p +P51,p,

wheres.,, = p™V((x — -)/p), v being a positive mollifier\( > 0,v € CJ(R),
J v(x)dx= 1, solim,_0 6., = 6.). Note thati(wo) ~ p.

Under these assumptions we know that there exists &,set R such that,
for almost everyw, the spectrum of the operatét,, is equal toZ,. Moreover, if
suppy) = [v-,V.], X, is given by

%, = 0(—Aza) + SUPPLo) = [-V_p,2d + 1 + V. p].

By shifting the energy, we can assume thaipt 0. This is no restriction as our
purpose is to study the spectral propertiesdgfnear the bottom of the spectrum
and these remain unchanged.

We will prove the following theorem.

Theorem 1.1 Fix @ > 2(d + 1)/d and se (0,1). There existp* = p*(«, )
and a > 0 such that foro € (0,p*), the Green’s function of H satisfies, for
(m,n) € 2% x Z4 and for E€ [0, p°],

supe [j(an, (H, — E—ig) ™ 5m>ﬂ < é T

Hereg, is the vector irf?(z) with all coordinates equal t0, except the n-th which
is equal tol.



The spectral consequences of this bound are well known [23]}, [hamely
that we have that in the energy interval 0] this model exhibits exponential
localization[4], [23], dynamical localization[1]. ]3] @rabsence of level repulsion
[19]. These properties are detailed[in][13].

That Lifschitz tails are a hallmark of localization has beeell known for
physicists and mathematicians for long nawl[18].1[20]. I theak disorder
regime, it is expected to find Lifschitz-like behaviour in imerval going from
the bottom of the spectrum up to a distance of the order of dinence from the
mean. This leads to localization in this band, as shown by lgaiEin [10] for
the discrete 3-dimensional model in a small coupling coristegime. The main
difference with the low density regime is that here the variancd the same or-
der of the mean. In previous works [13], [14] F. Klopp showesirailar result
in a smaller band of the spectrum, through a scheme involp@rgpdic approxi-
mations of the operator. This scheme have been proven auitest, as it is used
to handle the discrete and in the continuous model with naiefsign potential,
and has been useful in other works. We use this scheme to irevaain results
in this paper, but to get the best bound we needed to restiisetves to positive
potentials. This restriction allow us to get better resudtg it is not needed for the
methods to work.

Theoren L1 will be a consequence of an estimate ointegrated density of
states which we define as:

N(E) = lim #{eigenvalues oH,|, < E} )
IAl=>+e0 IAl
where A denotes a cube of centre ] = #A andH,|, the HamiltonianH,
restricted to the cub@ with Dirichlet boundary conditions. The limit exists—
almost everywhere, itis non-random and non-decreasingd@]. Our main result
in the discrete setting is:

Theorem 1.2 Leta > 2(d+ 1)/d. Then there exisfs = p*(a) > 0ande > Osuch
that forp €]0, p*[, we have

N < e

We now discuss the results on the continuous setting. WH Jedefined as
before

H, =Ho+V, 2

but hereH, is the free Laplacian oh?(RY) and we let, for the Bernoulli-Anderson
model,

V(¥ = ) wju(x - j), 3)

jezd
where:

HA wj are independent, identically distriouted Bernoulli ramdeariables with
probability o.

HB ue L*(RY R) is a compact supported simple-site potential andferR we
have

U-1a, () S UKX) < U a0 4)
with 0 < 7_ < 7, and O< u_ < u,. The set
AL = (X =(X,....,X) eRY: -L-1/2< x—X < L+1/2)

denotes the-cube centered orand edge sizel2+ 1.



Now let, for the Poisson—Anderson model,

Vo) = D u(x-y). (5)

Y€lw
where:

HC T, is a Poisson process @ with densityo > 0, i.e., forA c R
P (#T, N B} = k) = e® (p|B|)* /K! (6)

andu as in (HB).
We define the integrated density of states aglin (1) (iitfmow meaning the
volume of the cube). Our main result in the continuous sgisn

Theorem 1.3 The conclusion of Theordm 1.2 is still valid for the Berniedlhderson
model under assumptions (HAHB) and for the Poisson—Anderson model under
assumptions (HB)(HC).

An inmediate consequence will be the initial length scaterete needed as input
for the multiscale analysis. This is shown in sectionl 3.2. pAeviously com-
mented, we are able to show localization in much more genethlnks to very
recent progress [2]. 6], [11]. [12]. For a detailed diséaswf the consequences
of the mulstiscale analysis and the localization propettiat follows, we refer the
reader to Theorem 1.2(B) and Corollary 1.4[inl[12].

2 Discrete setting.

2.1 Assumptions.

Let H = ¢3(Z%) andH : H — H a translational invariant Jacobi matrix —the
Laplacian, for example— with exponentiafaliagonal-decay, i.e.

H = ("e-eze

such that,
HO h_y = h; k € ZP, and for somex # 0, h # 0 and there exists > 0 such that
fork e Z4 .
hd < Ze .
[l < o¢
By Fourier transform
F : 12(2%) - L3(TY) @)

whereT? = RY/(27Z%) we have
Hu=F"hFu

where the dfusion lawh is real analytic or¢.
We assume futhermore that
H1 the minima oh : T¢ — RY are quadratic non-degenerate.
Let V be defined by

(un)n = wnpUn

for u = (Un)neze € 12(Z%)



H2 The random variablas, are independent, identically distributed, non trivial
and bounded byw.,. We assume furthermore that their essential infimum is
0. There is no loss of generality as we may add a constant téah®ltonian
without changing its spectral properties, as soon as ttdorarvariables are
lower semibounded. Furthermore we assume that they satisfy

E[wn] = Ewo] =p < co.

Our main result is

Theorem 2.1 Assume (H1) and (H2). Let > 2(d + 1)/d. Then there exists
p* =p*(a) > 0ande > 0 such that forp €]0, p*[, we have

N(p?) <&’

Unfortunately, in the discrete case, a proof of localizatior models with
arbitrary random variables has yet to be proven. In ordesé&oaur results to get
localization we need some regularity assumptions on thgldition of the random
variables:

H3 The common distributiof of (wy) is Holder-continuous fop € [0, 1], with
the constant depending in the following fashion: Theretexi<]0, 1[ and
C > 0 such that, foa < b, one has,

Pl{wo€[ab]}]] <Chlb—a"p™"

Remark 2.2 The motivation for this dependence @nomes from the small
coupling constant regime. One may reinterpret this regisa ehange of the
probability distribution by a change of random variablés = Aw,. If one
assumes—Holder continuity of the probability distribution, théhe change
of the Holder constant with respect Adake this form.

Our second result deals with the decay of the Green’s fumctio

Theorem 2.3 Assume (H1), (H2) and (H3). Fix > 2(d + 1) and s€]0, 7/4[.
There existg* = p*(a, s) and a> 0 such that forp €]0, p*[, the Green’s function
satisfies, fo(m, n) € Z4 x 9 and for E< [0, p*],

EngE [|<5n, (Hw -E- is)_l 6m>'s] < gefab'(E)lnFn\

Theorem§T]1 arfld 1.2 are corollaries of Theoremis 2.8 ahapkctively.

2.2 Localization
Proof of Theorem[2.3

One way of showing localization from Lifschitz tails is toeuthe finite volume
fractional moment localization criterion inl[5]. L&, be a cube irZ¢ centered at
0 and of sidelengthl2+ 1. Let HB|CQL be the random HamiltoniaH,, restricted
to the boxCo with Dirichlet condition, i.e.H2|c,, = e, HOTg,, .

Even though our model lacks a coupling constant (or it is etpuane), the
small disorder parameterplays the same role and appears through the constants
involved in the criterion. So the mainfirence with the calculation in [13] is that
these constants may grow whemets small; they are nevertheless bounded by a
polynomial inp~3, s €]0,7/4[. This is because we have chosen the distribution



to behave explicitly as in (H3) in function ¢f. We recall from [[5] that, under
assumptions (H2)—(H3), the followirgypriori fractional moment bound

E“(én,(Hfjm —E-ig) " 5m>

holds. Let us call for the sake of brevity

] <Cy ®

.\1
G, = <5n,(H5|CQL —E-ie) 5m>.
With our notation, we need to check that

DLZdE(p’S) Z e—clnkn\E“Gun)]nls] gEM/D . q
meco,L
nez4\Co .

whereD is a constant depending ¢rand the Holder constaft,, and=(-) grows
at most polynomially.
Define,

QoL = {there exists an eigenvalue Hf,|c,, in [O,p"]}.

To check the finite volume fractional moment localizatiortezion, we will
estimate the following expectation:

E (|G| = E[|Gid 10,.. | + E[|Gi Loa,... | 9)

We proceed as follows: to estimate the first term we use thereqgial bound
for the integrated density of states we proved in Thedrena@dLfor the second
term we use a Combes—Thomas estimate. By using Holdegmiatiey, the first
termin [9), for fixed O< s< s < 1 and some > 0,

(s-9/¢

£[lGad" 10,0 ] < 2[lesl ] B[] (10)

We will need the following theorem [13], [16]:

Theorem 2.4 There exists C> 0 such that, for L> 1, p € [0,1] and E€ R one
has

P [{ HB|CO,L admits an eigenvalue belovw}:g CLIN(E).

Let o > 2(d + 1)/d. Our main result (Theorein 2.1) together with the last
theorem imply that there exisgs > 0 ande > 0 such that for O< p < p*,
1<L < e’ one has

P [Qp,a,L] < Céjpis/z eﬁpiE < Cei%piE

and now, using tha priori estimation[(B), we conclude th&f{10) may be bounded
by
Ce2™.
Now, by a Combes—Thomas estimate (Lemma 6.1 in [13]), welgst for
E € [0, p*], the second term ifi{9) satisfies
E “G?{m|s 1Qp,a,L] < Cpne— V/IE-p?|Im-n|/C

with o > a.



Summing these bounds over € Cy, forn e Zd\CQL, and taking 1< L <
ep_dz, for p small enough, we obtain:

CL¥E(p™) ) e ™ ||Gy,["| @ (11)
meCo
nez9\Co.

< CE(p™9) [ LM %Cer ™ 4 7S]
where

S = Z @ aIm-nl o=8(E)Im//C H(E)ini/8C

meCo L
nez9\CoL

~clm-nl 4~3(E)Im/C H(E)Ini/8C
+ Z Z e e e

m<L  |m<L/2L/2<m<L
In>2L In>L L<|n|l<2L

< CeleLd-t 4 cLigB/ee, (12)
If we takep™ < L < e*“* with y > a/2, then, forE € [0,p”], one has
S(E)L > p~¢ for somee > 0 andp suficiently small. Hence using this if{fL1) and
(I2), forp small enough, we obtain

CL¥E(p9) > e™B[Gy|e®m® < 1/16
meCo L
neZd\CoJ_

So the finite volume criterion is satisfied if we takeso that & > D. Hence
Theoren Z1l implies Theordm 2.3.

We now turn to the proof of Theordm 2.1.

2.3 Klopp’s Periodic Approximations

Letw € Q andN € N*. Define the periodic operatét associated to
H,=H+V,
as

HY=H+VY =H+ > wn Y 1un) Gl

d d
NEZoy . 1 le(2N+1)Z:

whereZg,,,, = Z%/(2N + 1)Z°. For the periodic operator, we define the integrated
density of states (as ifl(1)) and denote itdf). The following lemma from[[13]
yields a very good approximation for the integrated densftstates.

Lemma 2.5 Leta > 0. There exists € (0, 1) andy > 0 such that, fop € [0, 1],
EeR,v e (0,v0) and N> v one has

ENNE-v) - < NE) <EWNE+v)+e”"



2.4 Floguet Theory

In this section we introduce some standard notions (se¢l&h.[21]). We follow
the notations in[13]. The operatét being periodic, we can use Floquet theory
to reduce it to an operator acting on

d
L2 [_ 4l ’ 4l ] 2(74 )
( N1 ol )2 (T)
Define the unitary transformation:
.12 d 2 n n 2 (d
UL () = L ([_2N+1’ 2N+1] )w (Zon.a)

by (Uu)(0) = (Uk)(9)keng ¥ where the I(Ik(b‘))keng are defined by

u(6) = Z dku, (9) (13)

d
keZon1

. 2x ol s
and the functionsy(+— uk(e))keng+1 are 5 Z°-periodic.

Now the operatotJ #HNF*U* —F being the Fourier transforrhl(7)— is the
multiplication by the matrix:

MN@) = HY(O) + VN
where

HY(6) = ((hi-5 () jyeces

2
N+1)

and
Vi = (@i651)) ez

Here, the functionsi*@kezgN jare the components bfdecomposed according

to (T3). The (A + 1) x (2N + 1) matricesHN(¢) andV" are non-negative.
Floquet theory gives us a useful characterizationvgif (see [22]):

2.
N+1)

1 .
NY(E) = 5= f #e.v. of M}} ,(6) in [0, E]} dé. (14)
(27T) - 2N”+1’2N”+1]d

ConsideringH as (N + 1)-periodic oriz¢, we see that the Floguet eigenvalues

of H (for the quasi-momenturs) are(h(6 + 5% )) _, ; the Floquet eigenvalue
2N+1

h(6 + 2% ) is associated to the Floquet eigenveat®), k € Z3,,, defined by

1 il 2K i
w(0) = m (e (o 2N+1)J)

4 -
J€Zon41

In the sequel, the vectors Iﬁ(Zg,M) are given by their components in the or-
thonormal basisw(((v‘))kezgN g The vectors of the canonical basis denoted by
(v|(9))|€ZgN ) have the following components in this basis

1 i(04 27 )|
(O =GN 1y () <y,

We define the vectorm(}lEZgN ) by

. 1 i 27k Y
_ il - AN+
v =0 = e (g,



Proof of Theorem[2.1

As we have seen, the periodic approximation allows us toidensE(NN(E))
instead of\V in order to show the scarcity of eigenvalues. By taking theeesation
in (I4) (seel[1B] for more details), we get the following bdun

E(NJ(E)) < CP{Q(p",p, N)}
where we define the event
Q(E.p,N) = {w: 36 € R? such that}} () has an e.v. in [0E]}.

Soin order to prove Theordm 2.1, itfiues to prove the following:

Proposition 2.6 Picka > o/(d + 1)/d > 2(d + 1)/d andy given by LemmB&2]5.
There existp* = p*(a,y) > 0ande > 0 such that fop € (0, p*) we have

PO, p.N)] < &7

where
2N+ 1= [ [ o[
Here[n], denotes the smallest odd integer greater than or equal to n.

2.5 Proof of Proposition2.6

Picka > 2%1, y as in Lemmd 2J5, and lefa > o/ > 2. By (HO), hiis real
analytic onT. Let Z be the finite set of minima df

Z=1{0,...,0m).
By (H1), we know that there exis® > 0 such that, foB € T¢
i _ 2
h(6) > Clglil"bl |6 — 6;]°. (15)

C is a constant that may change from line to line.
Let
2L+1=[p“" 2 [p ", , 2K +1=[p"]o

andw € Q(p% p,N). Note that N + 1 = (2L + 1)(2K + 1). Hence, there exists
6 € RY anda = 3, axu(6) such that

° ”aulz(zgml) = VZkEZgNu |ak|2 =1
° (MU")‘(G)a, a>|2(ZgN+1) <p®
As the operatorsi™(¢) andVN are non negative, one gets:
(HY(0)a, A(zg, ) S P (16)
and
Voa, Az ) <P 7

By (@5), we know that, for < J < M, 6 € [ 55,
small enough, one has

1%, someC > 0 andp

2rk

1 2k '
- a—a’ /2
2N +1 22L+1:(h(0+2N+1)2p /C)' (18)

For 1< J < M, letk; € Z¢ be the unique vector satisfying

0;

27ky — (2N + 1)fp, € [-7, )8



and let
5[ a iflk-kl<K
(@ )k_{ 0 ifnot

For p suficiently small, the vector@J) are pairwise orthogonal. B{Z{lL6) and
(@8), we have that

M
a-» a

J=1

<Cp"/* (19)

2(7d
12(Zon,0)

Now we write

(Via a) = <va ZM: aJ) [

J=1 J=1
o)
M M
+2Re<vﬂ Z aJ) , [a— Z a"]>
=1 =1

M M
+<V£‘ a—ZaJ),[a—ZaJD. (20)
(iii)
Using [19), the third termii{) in the sum satisfies, fqr small enough,

2

M M M
<Vo’f (a— ZaJ],[a— Za"]> <lla- ZaJ
J=1 J=1 J=1 2
< Cp”12.

Now assume for a moment that the second teiir( the sum[(ZD) satisfies

M M
pitF < 2Re<Vo’j‘ (Z aJ] , [a— Z a3]> ) (21)
J=1 J=1
Since, by Cauchy—Schwarz
M M
2 Re<Vu'f ( aJ) , (a— Z a3]>
J=1 J=1
M M M
<2 <Vu'j (Z aJ),[Z a3]> a- ZaJ ,
J=1 J=1 J=1 2
we have that
M M c
N J J L 64
PR

but the probability that this term is of the ordeY is exponentially small, see
RemarlZ.B later on. Note that8+a’/8 > 1 and (6- «’)/4 < 1.
On the other hand, if{21) is not true, in order to satitfyl (1#® must have, for

b (e M2

J=1 J=1

Sp(a’+6)/8 =p1+e (23)

as this is the order of the largest term (note that (b’ + 6)/8 < o’ /2).
We will show that this happens with an exponentially smatigability. To do
so, we will need the following lemma,

10



Lemma 2.7 ([13]) Assume NL, K, L’, K’ positive integers such that:
e 2N+1=(2L+1)(2K +1) = (2L" + 1)(2K’ + 1),
e K<K'andl <L.

For a € I1?(Zyn,1) Such that supp ac Cog, there existsi € 12(Zan,1) With the
following properties:

o we have thalla - 8lliz(z,,,,) < Ckxllaliz@z,y,,) With Ckk: = K/K’,
o the vectord is constant over cubes,Cwithy € (2K + 1)Z¢,
o we havélalie(z,,,) = [18lzz,y,.)-
Define
2L +1=[p“"7?], and K’ +1=[p"""*lo[o "o

We now translate each of tred by k; so as to centre their support at 0. The
vector obtained is denoted again &y This allows us now to apply the lemma to
eacha’, ask/K’ ~ p”/%, we havela’ - &I2 < p”"/2 Now we write,

) -

+2Re<vﬂ isﬁ],[

J=1 J=1
an
M M
+ <Vu’f Z al - "J] , (Z al - ”J]>. (24)
=1 =1

By Lemmal[Z.Y, the third term in this sum is bounded®Wp® /2. Now, re-
peating the same trick as before, should the absolute vathe second terri{l1)|

be greater thap%*%, we would have, by Cauchy—Schwarz,
M M ,
<vjj (Z aJ) , [Z a3]> >Cp? 7.
J=1 J=1

On the other hand, if the conditidil )| > p%*% is not fulfilled, the first term must
be smaller thaiCp(®+9/8 for some constar€ > 0 andp small enough. We thus
conclude that there exis& > 0 and at least one pair J’ for which either

or
(vha'.a") > cpt %

for p small enough. These implies the two conditions
+ <Vﬂé3, éy> < +Cp™**

with € = (¢’ — 2)/8.

Remark 2.8 We show by the same method tha(@l) holds, then22) leads to
the last inequality. Indeed]!1) is alwayss p'*< and we saw that ifl1) is not
< pt*< it lead to one of the last inequalities. By assum{&d) we must then have

Nz pte

11



Remembering that we have translatedahéy k;, we expand

o 2in(ky—ky )! . —_—
<Va’fa3,a3>= Z e 2N w|<a“’,v|><a3,v|>

lEZgN+1
2in(ky—ky K
= > s@J, k)eJ—L;K/Sl @L +1)°
KeZdr iy
x (&, i@, )
where
o, 1 2in(ky-ky )V
S(J, J . K ) = m Z w|’+k’(2L’+l)e 2U+1
vezg,
If we define
1 ! ,
2(J,J.K) = Prea— Z w|/+k'(2|_/+1)é(gj_gy)l
2L +1) e

2L7+1

we note that

2(J,J,K) - S(3J,K) =O%”)

. 2in(ky—ky )l ~
since JZET;L - 0| < zk5- Asllayll = llayll < 2 we get that
2in(ky—kq JK
£y ¥A7, k)eJ—sz«fl L + 1)
KeZg .y
(25)
x (&, )@, w) < £Cp*** (26)

and we conclude that b € Q(p, %, N) then for some 1< J < J < M and
K €Z3..,, we have

1

Hor g O k@ | < 2Cp

d
,
VeZo

By a reduction similar to the one found in the proof of Profiogi4.2 in [13],
we can get rid of the exponential terms in the left-hand sile.summarize what
we have obtained in the following lemma.

Lemma 2.9 Picka > o’ > 2and N as in the Proposition. Let land K defined
as before. There exists £0 andp, such that fol0 < p < pg we have

op",p,N) | QM ¥y Q“’*’)

K |<K’ (1<J<J’<M

where forl < J < J < M and|K'| < K we define

i 1
JJ K _ . , , 1+e
Q; = {w : ii(ZL' Ty E wi@L++r < £Cp }

|I"|sL’
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If there existse > 0 such that, fop suficiently small,
PloM ¥} <er.

the theorem is proven as the number of sets in the union inastelémma is
bounded by 1. This means that we need to prove that the following prokias!

1
P[m Z Wi L1l < C.Ol“)

<L

1
P[m Z Wi @LL 2 CPH]

[I”1<L”
are exponentially small. This can be done using classicgéldeviation theory.
We will do it succinctly for one of the inequalities. We readthe random vari-
ables asuy, U = 1,...,R = (2L’ + 1); then use Markov’s inequality to obtain:

1 &R
Pl =
&

wy < Cp1+e] < E(e—tZwu ) eCRt<>1+E (27)
u=1

R
[eemen
u=1

where we have used the fact that the random variables arpendent, identically
distributed.

Now, as long asw, < 1, we get that there is@ such that exp{two) < 1—twg
and thus

E (e70) < 1 — CtE(wp)
=1-Ctp<e®, (28)

Note that we have used (H2). Plugging this irifal (27), theiste:aC such that,
18 ; ;
Pl = § <C l+e | e—CRt(p+p +€) < e_ECRp.
(R U=1 s ) N -

Noting now that, aR ~ p%'~?/2 and by hypothesid(e’ — @)/2 > //2 > 1, this
probability is exponentially decaying. This proves thegasition.

3 Continuous setting.

3.1 Assumptions.

We start by setting our hypotheses in the continuous setbedine anormalized
Anderson Hamiltonian Has in [1) in the introduction but we assume from now
on:

(HD) The operatoHy = —Agd + Vper Whereaga denotes the free Laplacian on
RY andV, is a boundedjz?-periodic potential wittg = (24 + 1) > 1, an
integer which we take odd for convenience sake. We assurntteefarore
thatHy has the unique continuation principle (UCP), that is, foy Bne R
and for any functio € H2 (RY), if (Ho — E)¢ = 0, and if¢ vanishes on an
open set, thep = 0.

13



The UCP has been used to obtain Wegner estimates (a$ in [phri8 it is in
particular verified under our hypotheses tbr 3 (|25]).

(HE) The potentiaV,, is defined as in[{3) in the introduction but we tet be
non degenerate, independent and identically distribué@dom variables
satisfying{0, 1} € suppwo C [0, 1] andE [wg] = 0 < 0.

We would like to stress that (HD) is not really restrictiveéssection 2 in[12]).

(HE) the analog of (H2) in the discrete case, but we will nacany regularity of

the random variables distribution (as in (H3)).

From now on we will refer to the operatdt, together with (HD), (HE), as
normalized Anderson HamiltoniaandH,, together with (HB), (HC), afoisson—
Anderson Hamiltonian

The purpose of this section is to proof the following:

Theorem 3.1 Assume (HB}(HC) or (HBx(HD)+(HE). Fix @ > 2(d + 1)/d.
There exist®* = ¢*(a) > 0andy > 0 such that, fop € (0, ¢*), we have
N(?) <e?”. (29)

Theoren_LB is just a corollary bf 3.1.

3.2 Localization

As discussed previously, exponential and dynamical leatiin are a consequence
of the multiscale analysis with a Wegner estimate develdpedBourgain and
Kenig in [6] for the Bernoulli-Anderson model, and by GergtinHislop and
Klein in [11]] for the model with Poisson potential. Being awdiiction procedure,
we only need to check that some ’a priori’ finite volume estieséholds. In order
to use the results of these works, we need to be able to pravidenber of 'free
sites’ with the initial length scale estimate. First we @ed with the normalized
Anderson model.

Free sites

We follow the proof of Theorem 4.3 in[12]. Given a bax= A (x) in RY, we
denote byA the setA N Z%. GivenS c A, ts = {t;},cs € [0, 1], set

Hoted i= —=Ap + Vpera + Vtga  ON L%(A)

wherea, is the restricted Laplacian with Dirichlet boundary coiai, Vs is
the restriction oV to A and

Votsa = XaVopts
with
Vw/\,ts (X) L= Vu),\/ts (X) + Vts (X) (30)
= D wl(X= )+ ) teu(x= ).

eA/S {es

We need to show that the probability that the operétgg; o has an eigenvalue
undero” is exponentially small and that this happens uniformly witkpect to
ts € [0, 1]%, for S dense enough (s€e[12]).

Setq = max3, g}, with q as in (HD). For a given a box = A () in RY we let

H® = Ho+ V@ with V@ := Z w (X =),
zeqze

14



which is a normalized Anderson Hamiltonian for which the ertying lattice is
gz instead ofZ® and so its integrated density of state€)(E) is well defined. We
will only consider scalet € GN. Let

HE = —an + Voen + VO on L2(A)
whereV'? is the restriction ot/{? to A.. We clearly have that, for arty, € [0, 1]°,

Hw,ls,/\ > _AA + Vper,A + Vu) (31)

A/S*

Finally, define the (non-normalized) counting function

N©@ (E) :=1tr x]-co (H(q) )

w,AL WAL
SettingS = A((x)\§Z¢, we claim that there exists> 0 such that,
P {vats’,\ > Q(Y for all ts € [0, l]S} >1- e—Q_E

for o small enough. To prove this, we remark first that the conotusi Theorem
B is valid forH@ (by changing the constants) and we remind that (see (VIrL5) i
[rd)} i i

E(N9, (B) < NO(E) A,

and thus callind? := {w : Hf,')A has an e.v. in [©?]} and using[(29) and Markov’s
inequality we see that indeed

—€/2 —€/2

P@<e?e <e? (32)
for AL < e “/?andL € GN; so, by [31), we get that, uniformly in tie
P(Hw,ts,/\ > g“) <1-ge 2 -

As shown in[[12], this is also true for anyin this range. This range of scales is
enough to start the mulstiscale analysis (see Proposit®im412]).

Poisson—Anderson model

The existence of localization for the Poisson—Anderson Hanian is a conse-
guence of the same phenomenon, namely that with very godbildy the dfect

of the random potential on finite volume operators is to “gubk spectrum away
from zero, uniformly with respect to free sites (suitablyided for this model).
We will explain briefly what is needed to proof, taking notatiand definitions
from [12]. We will show that forE € [0,0%'] the scalep— < |A| < & are

E-localizing (see definition 3.16 in [11]), for a fixed > a ande small enough.

The idea is the following. We start by subdividing a big cube: A| in RY in
non overlapping cubeA(j) of siden := e*Lde, indexed by:

Joi={j ex+n2%: A(j) C A}

and, with very little cost in probability, we only need to sigter configurationX
such that the number of points ik are< oLY and at most there is one point in
eachA(j), i.e.

Nx (A) < oL9,  Nx(A(j) < 1.
HereNx(A) is the random variable giving the number of points the caméigon
X puts inA. These configurations are thus in bijection with

Ta={Jc T, #I <ol

15



The next crucial observation by Germinet, Hislop and Klaithiat we only need
to consider the configurations having their points centémezachA(j). We can
indeed 'wiggle’ the points inside each baxj) and by doing so move the eigen-
values by no more thag e, They introduced then an equivalence relation
(eqg. (3.29)) in the space of configurations, the equivaleasses of which are
then indexed by7,. We write [J], for the equivalence class of the configuration
having a point in the center @(j) wheneverj € Jand [J], LU[J']A for the disjoint
union.

We define now the 'basic events’ which take care of the fr@ssior a given
setB, let Py(B) the collection of its countable subsets. Given two confifons
XY € Po(RY) andty = {t;},ev € [0,1]" defineHx v, a@s in equation (3.10) in
[L7]:

Hxovipa i= =84 + Vxpya - Where: Vxeuya 1= XaVx, (v ty,)

and
V) = Vx(X) + Z tu(x—2).
LeY

Let us recall that a Poisson proc&gswith density 2 can bethinneddown to a
Poisson proceds, c T, with densityo by deleting pointsi € I, ¢ Y, with prob-
ability 1/2 and furthermore, we have thef = T, \ I, is also a Poisson process
with densityp andrl’,,, I, are independent. Following[lL1], we use this representa-
tion of I', to take care of the free sites. Bt S € 7, we define the\-bconfsets
(definition 3.9 in[[11])

CA,B,S = I_I [B U S]A,

S’'cS
and we define tha-beventgdefinition 3.10) as those such that, foBLB' LS €
J, we have thar, puts exactly one point in eack(j) with j € B, I", puts exactly
one pointin eact(j) with j € B’, andY,, puts exactly one point in eacty(j) with
j € S (so either,, orI',)); and no points elsewhere, i.e.

Cagps ={T, € [BUB LUSJA}N{T, € ChpsiN(, € Cap sl

Now we proceed to the proof of the a priori estimate. We neeshtav that
there exists a union of basic events inside which the resbtiecays exponentially,
and that this union have good probability. As usual, once n@kwe are at a
certain distance from the spectrum, the exponential decayconsequence of the
Combes—Thomas estimate. Defjﬁg

Ja={Se€Tn: Ns(As)(j) <1foralljeJandHg, > 20°).
As for anyts € [0, 1]° we have that
Hg(st)a = Hea

we conclude that the set

Qp = u Crgrs
(BB .S)eda

is E-localizing forE < [0, 0*']. Now, to prove that this happens with good proba-
bility, we see that iB € Po(RY) is such that

inf o(Hga) < 20°
then for allX € [B]a, (see Lemma 3.8 i [11])

HX,/\ < C',Q0
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and thus
| | Crses clw:info(Hr, @aa) < Co™.
TANIA
To estimate the probability of this set proceed as in the atimed Anderson case.

3.3 Klopp’s Periodic Approximations

From now on we will také\ € N* such that (Rl +1) is a multiple ofg (we will take
g large but fixed for the Poisson potential). Define the pedeagliproximation, for

w e Qand
HY=Ho+ > @ > u(x-¢-))

jezdy,,  Ce(@N+1)zd

=Ho + V)

for the normalized Anderson model and

HY=Ho+ > > ux-¢-j)

ze(2N+1)z9 jerN

=Hp+ VY

for the Poisson—Anderson model, with = T,, N An(0). We write N the inte-
grated density of states of this periodic operator.
From [14], [15], we have the following:

Lemma 3.2 Leta > 0. There exists, € (0, 1) andy > 0 such that, fop € [0, 1],
EeR,v e (0,v) and N> v we have

ENNE-v) - < NE) <EWNE+v)+e"
As shown in section 2.3 in[14], we estimate
E(NY(B)) < CP(Q(e".0.N))

where
Q(E,0,N) := {w: a(HY) N[0, E] # 0.

or, by Floquet (see next section), we know that
Q(E,0,N) = {w: 36 e RYs.t. HV(9) has an e.v. in [(E]}. (34)

Theoren 31 is thus a consequence of the following resuilt.

Proposition 3.3 Picka > 2"%,1 andvy given by the last lemma. There exigts=
o*(a,y) > 0ande > 0 such that foro € (0, 0*) we have

P[Q(0" 0. N)] < e?”

where
2N+ 1= gle“ " olo™" “lo[o ™o
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3.4 Floguet theory.

We recall the corresponding Floquet theory for periodicrafzgs on the continu-
ous. Ford € T¢ = RY/qz9, solving the problem:

Hoop = ¢
p(x+]) = €2(x) ;(VxeRI)(V]jeqz?)
yields Floguet eigenvaluds;(0) < ... Eq(0) < ... together with Floguet eigenvec-
tors (¢x(0)),0- We recall also the following facts ([14]):
o We writeXo = Uno En(TY), the spectrum oHo.
e We have that the bottom of the spectrum is a simple non degtnedge.
This means that there exigEs> 0 such that:
(P1) Foranyp > 0 andd e T¢, |Ey(6)| > 1/C .
(P2) There exists a sét = {#;; 1 < j < n,} such thatEy(;) = infX, = 0

and forg e T¢,
o
|Eo(6)] > Clrir}lsrgzw 6l

e The density of states ¢y satisfies ([22]):

No(E) =Cq )| fT L oe 0.

k>1
For6 e RY, let,
Cro®?) = {¢ € C™(®Y) |p(x+ j) = €9(); j € (2N + 1)z°)

and denote by % ,(R?) (resp. HZ,(R?)) the closure of this space in the (R?)

(resp.Hlic(Rd) Sobolev norm) norm, so

HI,RY) - LE,RY

HNo) : { p L ho

Now considerH, as a (N + 1)z%-periodic operator, which we writd), and
we write

Hi RY)  — L, R

¢ - Ho (35)

{Hyw):

for its restriction to these spaces. We can verify thajferzd, ., = 2%/(2N +1)z¢
andd € TS, = R/ oxiyZ°, the Floguet eigenvalues and eigenvectors!$e):

Hodwj (-, 6) = Exj(@)u (-, 6)

where
{ Ej@) = E(@+0qj/@2N+1)
im0 = Gaph(.0+ mig)-
Finally, fory € L2(RY), we will use the decomposition:
o= 3 [ A0 (36)
keo VT

2 2 fr . U ix(O)¢jx(-, 6) d6.

ic7d k>0
J€Zony N+
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3.5 Proof of Proposition[3.3

The strategy of the proof of the Proposition follows the laiehe proof of Propo-
sition[2.6 and we will therefore omit some details (see atsgisn 2.4 in[[14]).

Picke > 2% | o satisfingga > o/ > 2 and largey. We define, as for the
discrete case,

2L+1=[0"""[0"]o et K +1=qlo7]o.

Letw € Q0% 0, N). We have thus that there exists a normalized H2(RY)
such that

(HYy.p) < o™
by positivity, we also have

(HYw.v) <o, (37)
as well as

(Viwp) <o".
Using [37), decompositiofl (86) and (P1), (P2), we see that o H? ando smalll
enough, we know that,

> [ weras [ GolO) do < "L,
Td min|6-6;|>1/L

k>0

and decomposing

Y= D Wi+ e

1<j<nz

with
vi = f 7,(6)60(6) o,
10-6;l<1/L

we have that, by the definition &f, [yll, < 0*/*.
As we did in the discrete setting, we expand

(Vﬂw,w>=<VE DD, wj>+2Re<VEwe, > wj>+<Vﬂwe,we>
1

1<j<ng 1<j<ng 1<j<nz

0 () mn

and similarly — as we did aftel {20) — we conclude, on the onedhthati(111)] <
072, and, on the other, that|ifi1)] = 0®*)/8 we would have

<V0’:‘ Z sz Z w]> > Q(G—a/)/4
1<j<nz 1<j<nz
or else
<Va':l Z wj, Z w]> $9(6+0/)/8.
1<j<nz 1<j<nz

We now quote Lemma 2.1 in [14], which says:
Lemma3.4 Fix1<j<n, Forl<L’<L,there exists{?i € L2(RY) such that,
1. The functionj; is constant on each cub®. (y); y € (2L’ + 1)z¢.
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2. There exists G 0 such that
() = i), 6l < CL'/L
wherego(-, 8;) is the periodic componewi (-, 6), i.e.
¢o(-,6) = €po(-,6). (38)

For the proof of this lemma we refer the reader to the end optbef of Proposi-
tion 2.1 in [14].

Let 2" + 1 = [0©@9/?], and K’ + 1 = qlo~*/*]o[o"]o. By using the first
point of Lemma 3.4, we write:

Wi = F5(00(% 05) = $o(x.6) Y (2L’ + 1) (B) 1, L1y (¥,

pezd

and by posingt = Y, ¥; anda(B) = }, () we have,

W) = > 51(60(x 6) = do(x.6) D (2L + 1) Pa(B)1a, ar19(%)-
j

ﬂeZd
Again, writing
<vﬂ > Y] ¢j>:<vﬂ PRI ‘{’j>+2Re<Va':‘ ey (wj—ly,-)>
1<j<n; 1<j<ng 1<j<ng 1<j<ng 1<j<ng 1<j<ng
3 =) Y o)
1<j<nz 1<j<nz

we see that, by the second point of Lenimd 3.4,

<Vﬂ Z (v - %)), Z (v, —l{'j)> <o,

1<j<nz 1<j<ng
and doing as i{24) and thereafter, we conclude that
+ (V. ) < +o™. (39)

We will now separate both cases. Consider first the Genedhllmderson
model. Fork € Zg, define:

V= >0 wguw ). u(x-n-qj-K)

jez% ., ze(2N+1)zd

q

so that

Vi =V

d
keZq

and so the inequalities i (B9) imply the same vwm instead ofVY, at least for
onek (and diferent constants). Note thmg| = ¢ is finite and independent of
o so the probabilities, after the union bound, will just chafyy a constant. As
the calculation is very similar for eveilywe will assume thak = 0 and we will
drop it from the notation. Furthermore, we will assume tlet support of the
simple site potential is entirely contained in the celi4(0), and we remember
that 2+ 1 = g. If this is not the case we can changéy a multiple ofq large
enough at the beginning of the analysis.
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We will denote from now oW/N := VN — E[Vpe] = VI — 0Vper WhereVpe is
the periodic operator which results if we take all randomialdes equal to 1. A
consequence of the unique continuation principle, is that

o <Vper\1"7 \IJ> =0 <Vper‘//’ lﬁ> + 0(93/2)
2 Q(Vper‘//’ w> + (How, ¢y — 0" + O(Qa/z)
= <(HO + QVper) v, ‘/’> + O(Qa/z) > Co

and we obviously hav@<Vper‘P, ‘I’> <o.

Remark 3.5 Even without the unique continuation principle, the bebawf the
bottom of the spectrum of the perturbed operator is of theiood the perturbation
for a generic simple site potential u, as proven[ini[14], setb.

Using this, we conclude froni (B9) that, there existssaich that for smal
l(\?ﬂ\l’, ‘I’>' > co. (40)

We will show this happens with very low probability. As forezy j we have
¥ € L3(RY), let us calculate

2
U,y = > @+ 1) f Vﬂ(x—i)’ZwJ(ﬁ)%(xﬂj) dx
Bezd Ap(@L+1)8) f
= > > @+
prEZgK,ﬂ B e(2K’+1)zd
2
f Ul (x- DIZ (8 + B )po(%.67)| dx
A (@U+DE +87) ]

where, using the (4 + 1)-periodicity of VN and the fact that (2 + 1)(2K’ + 1) =
2N + 1, the last line is equal to

PIRCERE IR f L,«ZLW)W(X—i)’Zjl“i(ﬁ’W"Wo(x"’ﬂ

] 1t (o 1170
BeZSs .y B (2K +1)Z

= >y (2L’+1)’df Wx-i) D]

N /LB
ﬁmedeLH-l ﬁ/eZgK,+1 Aq((2|— +1)8'+08"") ﬁ”G(ZK’+1)Zd

= _ZﬁmeszUrl X(ﬂ )

(2L + 1)
The random variablex(8”’) are independent, bounded, non trivial and their expec-
tationE [X(8”")] = 0. As usual we will prove only one side of the large deviation

inequality. Reindex the random variablesXas U = 1,...,R = (2L’ + 1)%; then
use Markov's inequality to obtain:

2
dx

2

Dlai( + B )polx.05)| dx

i

R
P[% Z Xy > cg) <EB(eXXv)eRe (41)
u=1

R
< 1_[ E(eXv)eCRe.
L1 (e )e

Now if we taket small enough, thus

E (elwu) < ectzE(XlzJ)’
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and thus, noting th&(X3) < o,
1 R
pl= Z Xy > col < ecR?g-CRp < g R
R u=1 - N -

HereR ~ p~1-¢; this probability is exponentially decaying. This —and suimg up
all the probabilities— proves what we wanted for the noreeliAnderson model..
We turn our attention now to the Poisson—Anderson model. &fiaelV", in
a similar way: '
V= > > ux=£-1))
ze(2N+1)z9 j€Twk

where we have defined

Tok:=T,N (unezdmTﬂ Ao(ng + k))

for k € Z§. (Note thatAo(") is a unit cube.) We have thus the equality = 3 V[},

with eachVﬂ'jk positive. Inequalities[(39) lead to the same inequalitiés W
replaced bwﬂk, for at least oné € Z4. We suppose as before that 0 and we
drop it from the notation, the others being similar. Agahe probability will be
bounded by the union bound on a finite number of events.

As hereHg = 4, there is only one minimum of the Floquet eigenvalue at 0, and

¢o(x, 0) is a constant function. Define the random variable

XB.R) =#

[ U meAR(n+ﬂ)]mAN(O)

ne(2N+1)zd

SO

(VWP = > (2L + 1) fao(B) Vi (x ) dx
jezd AL (2L +1)8)

= > D@+ eoB)P VI(x— j) dx
gz, | pez Aq((2L+1)8+08")
=c > D@L+ 1) laoB)Px (2L + 1) +68”.0).
B7€ZY, 4 BT

So [39), foro small enough, becomes

Z X(ﬁ ) < iniE,
<4 (2L’ +1)

B€Zy 00
with X(8") = €Y peza lo(B)x ((2L7 + 1)8 + 8, 0). Note that we have chosen
large enough —but independent@f so these random variables are independent.
This probability can be again estimated by a large devidijpe estimate to get
the desired result.
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