
HAL Id: hal-00618021
https://hal.science/hal-00618021

Preprint submitted on 31 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multidimensional Yamada-Watanabe theorem and its
applications

Piotr Graczyk, Jacek Malecki

To cite this version:
Piotr Graczyk, Jacek Malecki. Multidimensional Yamada-Watanabe theorem and its applications.
2011. �hal-00618021�

https://hal.science/hal-00618021
https://hal.archives-ouvertes.fr


MULTIDIMENSIONAL YAMADA-WATANABE THEOREM

AND ITS APPLICATIONS

PIOTR GRACZYK, JACEK MAŁECKI

Abstract. Multidimensional and matrix versions of the Yamada-Watanabe theorem
are proved. They are applied to particle systems of squared Bessel processes and to
matrix analogues of squared Bessel processes: Wishart and Jacobi matrix processes.

1. Introduction

In this note we prove a multidimensional and matrix analogues of the celebrated
Yamada-Watanabe theorem, ensuring the existence and uniqueness of strong solutions of
one-dimensional stochastic differential equations (SDEs) with a Hölder coefficient in the
Itô integral part. In Section 2 we prove a multidimensional Yamada-Watanabe theorem
(Theorem 2). In Section 3 we show the existence and uniqueness of a strong solution of
the matrix SDEs

dXt = g(Xt)dBth(Xt) + h(Xt)dB
T
t g(Xt) + b(Xt)dt

where g, h, b : R → R are such that g ⊗ h is 1/2-Hölder continuous symmetrized g2 ⊗ h2

and b are Lipschitz continuous and Bt is a Brownian p× p matrix, and establish in this
way a matrix Yamada-Watanabe theorem, see Theorem 5. Section 4 contains interesting
applications. We apply Theorems 2 and 5 to

(i) noncolliding particle systems of squared Bessel processes which are intensely studied
in recent years in statistical and mathematical physics (Katori, Tanemura [13, 14]).

(ii) the systems of SDEs for the eigenvalues of Wishart and Jacobi matrix processes,
as well as to the β-Wishart and β-Jacobi processes. We note the importance of the
β-Wishart systems in statistical physics: they are statistical mechanics models of “ log-
gases”, see the recent book of Forrester [11].

Surprisingly, the existence of strong solutions of SDEs for such “Hölder” non-colliding
particle systems was not established in general; only some cases of (ii) were treated by
Demni [7, 8]. In Sections 4.1 and 4.4 we prove the existence and uniqueness of a strong
solution to all these systems of SDEs.

The matrix Yamada-Watanabe theorem is applied in Sections 4.2 and 4.3 to some ma-
trix valued squared Bessel type processes. We improve the known results of Bru [2, 3],
Mayerhofer et al. [17] and Doumerc [10] on the existence and uniqueness of strong solu-
tions to Wishart and Jacobi matrix SDEs. We extend them to the whole range of the drift
parameter b(Xt). In the Wishart case we contribute in this way to realization of a pro-
gramme started by Donati-Martin, Doumerc, Matsumoto, Yor [9], claiming that Wishart
processes have similar properties as classical 1-dimensional squared Bessel processes.
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2. A multidimensional Yamada-Watanabe theorem

Let us recall the classical Yamada-Watanabe theorem, see e.g. [12], p.168 and [21].

Theorem 1. Let B(t) be a Brownian motion on R. Consider the SDE

dX(t) = σ(X(t))dB(t) + b(X(t))dt.

If |σ(x) − σ(y)|2 ≤ ρ(|x − y|) for a strictly increasing function ρ on R
+ with ρ(0) = 0

and
∫

0+
ρ−1(x)dx = ∞, and b is Lipschitz continuous, then the pathwise uniqueness of

solutions holds; consequently the equation has a unique strong solution.

No multidimensional versions of the Yamada-Watanabe theorem seem to be known,
even if their need is great (cf. [3], p. 738). We propose a useful generalization, however we
stress the fact that the Hölder continuous functions σi appearing in the following system
of SDEs are one-dimensional. The proof is based on the approach presented in Revuz,Yor
[20], in particular on the results of Le Gall [16]. By ‖ · ‖ we mean the Euclidean norm
‖ · ‖2 on R

d.

Theorem 2. Let p, q, r ∈ N and the functions bi : R
p → R, i = 1, . . . , p and ck, dj :

R
p+r → R, k = p + 1, . . . , p + q, j = p + 1, . . . , p + r, be bounded real-valued and

continuous, satisfying the following Lipschitz conditions

|bi(y1)− bi(y2)| ≤ A||y1 − y2||, i = 1, . . . , p,

|ck(y1, z1)− ck(y2, z2)| ≤ A||(y1, z1)− (y2, z2)||, k = p+ 1, . . . , p+ q,

|dj(y1, z1)− dj(y2, z2)| ≤ A||(y1, z1)− (y2, z2)||, j = p + 1, . . . , p+ r,

for every y1, y2 ∈ R
p and z1, z2 ∈ R

r. Moreover, let σi : R → R, i = 1, . . . , p, be a set of
bounded Borel functions such that

|σi(x)− σi(y)|2 ≤ ρi(|x− y|), x, y ∈ R,

where ρi : (0,∞) → (0,∞) are Borel functions such that
∫

0+
ρ−1
i (x)dx = ∞. Then the

pathwise uniqueness holds for the following system of stochastic differential equations

dYi = σi(Yi)dBi + bi(Y )dt, i = 1, . . . , p, (2.1)

dZj =

p+q
∑

k=p+1

ck(Y, Z)dBk + dj(Y, Z)dt, j = p+ 1, . . . , p+ r. (2.2)

Proof. Let (Y, Z) and (Ỹ , Z̃) be two solutions with respect to the same Brownian motion
B = (Bi)i≤p+q such that Y (0) = Ỹ (0) and Z(0) = Z̃(0) a.s. For every i = 1, . . . , p we
have

Yi(t)− Ỹi(t) =

∫ t

0

(σi(Yi(s))− σi(Ỹi(s)))dBi(s) +

∫ t

0

(bi(Y (s))− bi(Ỹ (s)))ds. (2.3)

Then we get
∫ t

0

1{Yi(s)>Ỹi(s)}

ρi(Yi(s)− Ỹi(s))
d
〈

Yi − Ỹi, Yi − Ỹi

〉

=

∫ t

0

(σi(Yi(s))− σi(Ỹi(s)))
2

ρi(Yi(s)− Ỹi(s))
1{Yi(s)>Ỹi(s)}

ds ≤ t.

Thus, applying Lemma 3.3 from [20] p. 389 , we get that the local time of Yi − Ỹi at 0
vanishes identically. Consequently, by Tanaka’s formula we get

|Yi(t)− Ỹi(t)| =
∫ t

0

sgn(Yi(s)− Ỹi(s))d(Yi(s)− Ỹi(s)) +
1

2
L0
t (Yi − Ỹi)

=

∫ t

0

sgn(Yi(s)− Ỹi(s))d(Yi(s)− Ỹi(s)).
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Since σi is bounded, using (2.3), we state that

|Yi(t)− Ỹi(t)| −
∫ t

0

sgn(Yi(s)− Ỹi(s))(bi(Y (s))− bi(Ỹ (s)))ds

is a martingale vanishing at 0. This together with the Lipschitz conditions satisfied by bi
give

E|Yi(t)− Ỹi(t)| ≤ A

∫ t

0

E||Y (s)− Ỹ (s)||ds.

Summing up the above-given inequalities we arrive at

E||Y (t)− Ỹ (t)|| ≤ C

∫ t

0

E||Y (s)− Ỹ (s)||ds

and Gronwall’s lemma shows that Y (t) = Ỹ (t) for every t > 0 a.s.
Using in a standard way the properties of the Itô integral and the Schwarz inequality,

similarly as in [12], p. 165, we get that for every t ∈ [0, T ]

E|Zj(t)− Z̃j(t)|2 ≤ C

p+q
∑

k=p+1

E(

∫ t

0

ck(Y (s), Z(s))− ck(Ỹ (s), Z̃(s))dBk(s))
2

+ CE(

∫ t

0

dj(Y (s), Z(s))− dj(Ỹ (s), Z̃(s))ds)2

≤ C

p+q
∑

k=p+1

E

∫ t

0

(ck(Y (s), Z(s))− ck(Ỹ (s), Z̃(s)))2ds

+ CTE

∫ t

0

(dj(Y (s), Z(s))− dj(Ỹ (s), Z̃(s)))2ds

≤ CA2(q + T )E

∫ t

0

(||Y (s)− Ỹ (s)||2 + ||Z(s)− Z̃(s)||2)ds

Thus, using the previously proved fact that Y = Ỹ a.s. we get that

E||Z(t)− Z̃(t)||2 ≤ CA2(q + T )r

∫ t

0

E||Z(s)− Z̃(s)||2ds.

One more application of the Gronwall’s lemma ends the proof. �

3. Matrix stochastic differential equations

Consider the space Sp of symmetric p× p real matrices. Recall that if g : R → R and
X ∈ Sp then g(X) = Hg(Λ)HT , where X = HΛHT is a diagonalization of X, with H an
orthonormal matrix and Λ a diagonal one. Denote by Bt a Brownian p×p matrix. Let Xt

be a stochastic process with values in Sp such that X0 ∈ S̃p, the set of symmetric matrices
with p different eigenvalues. Let Λt = diag(λi(t)) be the diagonal matrix of eigenvalues
of Xt ordered increasingly: λ1(t) ≤ λ2(t) ≤ . . . ≤ λp(t) and Ht an orthonormal matrix of
eigenvactors of Xt. Matrices Λ and H may be chosen as smooth functions of X until the
first collision time τ = inf{t : λi(t) = λj(t) for some i 6= j}, cf. [19].

3.1. Eigenvalues and eigenvectors of Xt. In order to prove a matrix Yamada-
Watanabe theorem we need to consider the SDEs satisfied by the processes of eigenvalues
and eigenvectors of Xt.
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Theorem 3. Suppose that an Sp-valued stochastic process Xt satisfies the following ma-
trix stochastic differential equation

dXt = g(Xt)dBth(Xt) + h(Xt)dB
T
t g(Xt) + b(Xt)dt (3.1)

where g, h, b : R → R, and X0 ∈ S̃p.
Let G(x, y) = g2(x)h2(y) + g2(y)h2(x). Then, for t < τ the eigenvalues process Λt and

the eigenvectors process Ht verify the following stochastic differential equations

dλi = 2g(λi)h(λi)dνi +

(

b(λi) +
∑

k 6=i

G(λi, λk)

λi − λk

)

dt (3.2)

dhij =
∑

k 6=j

hik

√

G(λj, λk)

λj − λk

dβkj −
1

2
hij

∑

k 6=j

G(λj, λk)

(λk − λj)2
dt (3.3)

where (νi)i and (βkj)k<j are independent Brownian motions and βjk = βkj.

Proof. The proof generalizes ideas of Bru [1] in the case of Wishart processes. Following
[10] in the case of matrix Jacobi processes, it is handy to use the Stratonovich differential
notation X ◦ dY = XdY + 1

2
dXdY . We then write the Itô product formula

d(XY ) = dX ◦ Y +X ◦ dY.
We also have dX ◦ (Y Z) = (dX ◦ Y ) ◦ Z and (X ◦ dY )T = dY T ◦XT .
Define A, a stochastic logarithm of H , by

dA = H−1 ◦ dH = HT ◦ dH.

Observe that by Itô formula applied to HTH = I, the matrix A is skew-symmetric. By
Itô formula applied to Λ = HTXH , setting dN = HT ◦ dX ◦H , we get

dΛ = dN + Λ ◦ dA− dA ◦ Λ.
The process Λ ◦ dA − dA ◦ Λ is zero on the diagonal. Consequently dλi = dNii and
0 = dNij + (λi − λj) ◦ dAij, when i 6= j. Thus

dAij =
1

λj − λi

◦ dNij, i 6= j. (3.4)

For further computations we need the quadratic variation 〈Xst, Xs′t′〉 which is easily
computed from (3.1):

dXstdXs′t′ = g2(X)ss′h
2(X)tt′ + g2(X)st′h

2(X)s′t + g2(X)s′th
2(X)st′ + g2(X)tt′h

2(X)ss′.

The martingale part of dN equals the martingale part of HTdX H and by the last formula

dNijdNkm = g2(Λ)ikh
2(Λ)jm+ g2(Λ)imh

2(Λ)jk + g2(Λ)jkh
2(Λ)im+ g2(Λ)jmh

2(Λ)ik. (3.5)

From (3.5) it follows that

dNiidNjj = 4δijg
2(λi)h

2(λi)dt. (3.6)

Now we compute the finite variation part dF of dN

dF = HT b(X)H +
1

2
(dHTdX H +HTdXdH)

= b(Λ) +
1

2

(

(dHT H)(HTdX H) + (HTdX H)(HTdH)
)

= b(Λ) +
1

2
(dNdA+ (dNdA)T ).
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Using (3.4) and (3.5) we find, writing G(x, y) = g2(x)h2(y) + g2(y)h2(x),

(dNdA)ij =
∑

k 6=j

dNikdAkj = δij
∑

k 6=i

G(λi, λk)

λi − λk

.

It follows that the matrix dNdA is diagonal, so also dF is diagonal,

dFii = b(λi)dt+
∑

k 6=i

G(λi, λk)

λi − λk

dt

and by (3.4), A is a martingale. Finally, using (3.6) and the last formula, there exist
independent Brownian motions νi, i = 1, . . . , m, such that (3.2) holds.

In order to find SDEs for Ht, we deduce from the definition of dA that

dH = H ◦ dA = HdA+
1

2
dHdA = HdA+

1

2
HdAdA.

By (3.5) we find dNijdNij = g2(λi)h
2(λj) + g2(λj)h

2(λi) and dNijdNkm = 0 when the
ordered pairs i < j and k < m are different. We infer from (3.4) that

dAij =

√

G(λi, λj)

λj − λi

dβij, (3.7)

where the Brownian motions (βij)i<j are independent and βji = βij . Moreover, when
k < m, we have dλidakm = dNiidNkm/(λm − λk) = 0 by (3.5), so the Brownian motions
(βij)i<j and (νi)i are independent. From (3.7) we deduce that the matrix dAdA is diagonal
and

(dAdA)ii = −
∑

k 6=i

dAikdAik = −
∑

k 6=i

G(λi, λk)

(λk − λi)2
.

Now we can compute dH = HdA+ 1
2
HdAdA and prove (3.3). �

3.2. Complex case. In this subsection we study the eigenvalues process for a process
Xt with values in the space Hp of Hermitian p× p matrices.

Theorem 4. Let Wt be a complex p× p Brownian matrix (i.e. Wt = B1
t + iB2

t where B1
t

and B2
t are two independent real Brownian squared matrices).

Suppose that an Hp-valued stochastic process Xt satisfies the following matrix stochastic
differential equation

dXt = g(Xt)dWth(Xt) + h(Xt)dW
∗
t g(Xt) + b(Xt)dt, (3.8)

where g, h, b : R → R, and X0 ∈ H̃p.
Let G(x, y) = g2(x)h2(y) + g2(y)h2(x). Then, for t < τ the eigenvalues process Λt

verifies the following system of stochastic differential equations

dλi = 2g(λi)h(λi)dνi +

(

b(λi) + 2
∑

k 6=i

G(λi, λk)

λi − λk

)

dt, (3.9)

where (νi)i are independent Brownian motions.

Proof. We will need the following formula for the quadratic variation 〈Xst, Xs′t′〉 which
is computed from (3.8), using the fact that for a complex Brownian motion Wt, the
quadratic variation processes satisfy d〈W,W 〉 = 0 and d〈W, W̄ 〉 = 2dt.

dXstdXs′t′ = 2
(

g2(X)st′h
2(X)s′t + g2(X)s′th

2(X)st′
)

. (3.10)

Define A, a stochastic logarithm of H , by

dA = H−1 ◦ dH = H∗ ◦ dH.
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By Itô formula applied to H∗H = I, the matrix A is skew-Hermitian. In particular, the
terms of diag(A) are purely imaginary (recall that in the real case they were 0). By
Itô formula applied to Λ = H∗XH , we get, setting dN = H∗ ◦ dX ◦H

dΛ = dN + Λ ◦ dA− dA ◦ Λ.
We have

dN = H∗dXH +
1

2
(dH∗dX H +H∗dXdH)

so the process N takes values in Hp. In particular its diagonal entries are real. The
process Λ ◦ dA− dA ◦Λ is zero on the diagonal, so dλi = dNii. Moreover, when i 6= j, we
have 0 = dNij + (λi − λj) ◦ dAij and

dAij =
1

λj − λi

◦ dNij, i 6= j. (3.11)

The martingale part of dN equals the martingale part of H∗dX H and by formula (3.10)
we obtain

dNijdNkm = 2
(

g2(Λ)imh
2(Λ)jk + g2(Λ)jkh

2(Λ)im
)

. (3.12)

From (3.12) it follows that

dNiidNjj = 4δijg
2(λi)h

2(λi)dt. (3.13)

Now we compute the finite variation part dF of dN

dF = H∗b(X)H +
1

2
(dH∗dX H +H∗dXdH)

= b(Λ) +
1

2
((dH∗H)(H∗dX H) + (H∗dX H)(H∗dH))

= b(Λ) +
1

2
(dNdA+ (dNdA)∗).

Recall that G(x, y) = g2(x)h2(y) + g2(y)h2(x). We get

(dNdA)ij =
∑

k

dNikdAkj = 2δij
∑

k 6=i

G(λi, λk)

λi − λk

+ dNijdAjj.

When i = j, the term dNii is real and dAii ∈ iR. It follows that

dFii = b(λi)dt+ 2
∑

k 6=i

G(λi, λk)

λi − λk

dt.

Finally, using (3.13) and the last formula, there exist independent Brownian motions νi,
i = 1, . . . , m, such that (3.9) holds. �

The Theorem 4 may be applied in a special case g(x) =
√
x, h(x) = 1 and b(x) =

2δ > 0, when the equation (3.8) is the SDE for the complex Wishart process, called also
a Laguerre process. This process and its eigenvalues were studied by König-O’Connell
[15] and Demni [5].

3.3. Collision time. In this subsection we show that under some mild conditions on the
functions g and h in the SDE (3.1), the eigenvalues of the process Xt never collide.

Proposition 1. Let Λ = (λi)i=1...p be a process starting from λ1(0) < . . . < λp(0) and
satisfying (3.2) with functions b, g, h : R → R such that b, g2, h2 are Lipschitz continuous
and g2h2 is convex or in class C1,1. Then the first collision time τ is infinite a.s.
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Proof. We define U = −
∑

i<j log(λj −λi) on t ∈ [0, τ ]. Applying Itô formula, using (3.2)

and the fact that d 〈λi, λj〉 = δij4g
2(λi)h

2(λj)dt we obtain

dU =
∑

i<j

dλi − dλj

λj − λi

+
1

2

d 〈λi, λi〉+ d 〈λj, λj〉
(λj − λi)2

= dM + dA(1) + dA(2) + dA(3),

where

dM = 2
∑

i<j

g(λi)h(λi)dνi − g(λj)h(λj)dνj
λj − λi

,

dA(1) =
∑

i<j

b(λi)− b(λj)

λj − λi

dt,

dA(2) = 2
∑

i<j

(g2(λj)− g2(λi))(h
2(λj)− h2(λi))

(λj − λi)2
dt,

dA(3) =
∑

i<j

1

λj − λi

∑

k 6=i,k 6=j

(

G(λi, λk)

λi − λk

− G(λj , λk)

λj − λk

)

dt

=
∑

i<j<k

G(λj, λk)(λk − λj)−G(λi, λk)(λk − λi) +G(λi, λj)(λj − λi)

(λj − λi)(λk − λi)(λk − λj)
dt.

We will show that the finite variation part of U is bounded on any interval [0, t]. Lipschitz

continuity of b, g2 and h2 implies that A
(1)
t ≤ Kp(p− 1)t/2 and A

(2)
t ≤ K2p(p− 1)t, where

K is a constant appearing in the Lipschitz condition. Observe also that if for every x, y, z
we set

H(x, y, z) = [(g2(x)− g2(z))(h2(y)− h2(z)) + (g2(y)− g2(z))(h2(x)− h2(z))](y − x),

then H(x, y, z) = (G(x, y)−G(x, z)−G(y, z) +G(z, z))(y − x) and

H(x, y, z) +H(y, z, x)−H(x, z, y) = 2(z − y)G(y, z)− 2(z − x)G(x, z)

+ 2(y − x)G(x, y) +G(x, x)(z − y)−G(y, y)(z − x) +G(z, z)(y − x).

Using the last equality and the fact that |H(x, y, z)| ≤ 2K2|(y− x)(z− y)(z−x)| we can

write 2dA(3) = dA(4) + dA(5), where 0 ≤ A
(4)
t ≤ K2p(p− 1)(p− 2)t/6 and

dA
(5)
t =

∑

i<j<k

G(λj, λj)(λk − λi)−G(λi, λi)(λk − λj)−G(λk, λk)(λj − λi)

(λj − λi)(λk − λi)(λk − λj)
dt

=
∑

i<j<k

(

G(λj, λj)−G(λi, λi)

λj − λi

− G(λk, λk)−G(λj, λj)

λk − λj

)

1

λk − λi

dt

If G(x, x) = 2g2(x)h2(x) is convex then obviously the expression under the last sum and
A(5) is non-positive. When G(x, x) is C1,1, (i.e. |G′(x, x) − G′(y, y)| ≤ C|x − y|) then it

is bounded by C and |A(5)
t | ≤ Ct.

Since finite-variation part of U is finite whenever t is bounded, applying McKean
argument, we obtain that U can not explode in finite time with positive probability and
consequently τ = ∞ a.s. �

Remark 1. Note that if p = 2 then the assumptions on g2h2 can be dropped since in
that case dA(3) ≡ 0. Observe also that the Proposition 1 holds also in the complex case.
The eigenvalues of the process Xt on Hp verify the system (3.9) and the proof of the
Proposition 1 remains valid.
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3.4. Matrix Yamada-Watanabe theorem.

Theorem 5. Consider the matrix SDE (3.1) on Sp

dXt = g(Xt)dBth(Xt) + h(Xt)dB
T
t g(Xt) + b(Xt)dt

where g, h, b : R → R and X0 ∈ S̃p. Suppose that

|g(x)h(x)− g(y)h(y))|2 ≤ ρ(|x− y|), x, y ∈ R, (3.14)

where ρ : (0,∞) → (0,∞) is a Borel function such that
∫

0+
ρ−1(x)dx = ∞, that the

functions G(x, y) = g2(x)h2(y) + g2(y)h2(x) is locally Lipschitz and strictly positive on
{x 6= y} and that b is locally Lipschitz. Then, for t < τ , the pathwise uniqueness holds
for the SDE (3.1).

Remark 2. The hypothesis in Theorem 5 on the strict positivity of G(x, y) off the
diagonal {x = y} is equivalent to the condition that g and h have no more than one zero
and their zeros are not common.

Remark 3. In the matrix SDE (3.1) the functions g and h appear only in the martingale
part, whereas in the equations (3.2) and (3.3) they intervene also in the finite variation
part. That is why a Lipschitz condition on the symmetrized function g2 ⊕ h2 cannot be
avoided in a matrix Yamada-Watanabe theorem on Sp.

Proof. We diagonalize X0 = h0λ0h
T
0 . We first show that the equations (3.2) and (3.3)

have unique strong solutions when Λ0 = λ0 and H0 = h0. The functions

bi(λ1, . . . , λp) = b(λi) +
∑

k 6=i

G(λi, λk)

λi − λk

,

cij(λ1, . . . , λp, h11, h12, . . . , hpp) = δkjhik

√

G(λj, λk)

λj − λk

,

dij(λ1, . . . , λp, h11, h12, . . . , hpp) = −1

2
hij

∑

k 6=j

G(λj , λk)

(λk − λj)2

are locally Lipschitz continuous on D = {0 ≤ λ1 < λ2 < . . . < λp} × [−1, 1]r, r = p2.
Thus, they can be extended from the compact sets

Dm = {0 ≤ λ1 < λ2 < . . . < λp < m, λi+1 − λi ≥ 1/m} × [−1, 1]r

to bounded Lipschitz continuous functions on R
p+r. We will denote by bmi , cmik and dmij

such extensions for m = 1, 2, . . ..
We consider the following system of SDE (recall that βkj = βjk)

dλm
i = g(λm

i )dνi + bmi (Λ
m)dt, i = 1, . . . , p,

dhij =
∑

k 6=j

cmij (Λ
m, H) dβkj(t) + dmij (Λ

m, H) dt, 1 ≤ i, j ≤ p.

Since |g(x)h(x) − g(y)h(y))|2 ≤ ρ(|x − y|) and
∫

0+
ρ(x)−1dx = ∞, by Theorem 2 with

q = 1
2
p(p − 1), we obtain that there exists a unique strong solution of the above-given

system of SDEs. Using the fact that Dm ⊂ Dm+1, limm→∞Dm = D and the standard
procedure we get that there exists a unique strong solution (Λt, Ht) of the systems (3.2)
and (3.3) up to the first exit time from the set D. This time is almost surely equal to τ ,
the first collision time of the eigenvalues.

Suppose that X and X̃ are two solutions of (3.1) with X0 = X̃0 = h0λ0h
T
0 . Consider

the corresponding eigenvalues and eigenvectors processes (Λ, H) and (Λ̃, H̃) with Λ0 =
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Λ̃0 = λ0 and H0 = H̃0 = h0. We have just proved that Λ(t) = Λ̃(t) and H(t) = H̃(t) for

every t > 0 a.s., so X(t) = X̃(t) a.s. �

The Theorem 5 and the Proposition 1 imply the following global strong existence result
for matrix SDEs on the positive cone S+

p .

Corollary 1. Consider functions g, h : R+ → R
+. Suppose that b, g2, h2 are Lipschitz

continuous, g2h2 is convex or in class C1,1 and that G(x, y) is strictly positive on {x 6= y}.
Then the matrix SDE (3.1) on S+

p admits a unique strong solution on [0,∞).

Proof. Recall that if a non-negative function F is Lipschitz continuous then
√
F is 1/2-

Hölder continuous. Observe that if g2 and h2 are Lipschitz continuous then g2h2 is locally
Lipschitz and gh is 1/2-Hölder. Thus (3.14) is verified and the Theorem 5 applies on [0, τ).
By the Proposition 1, τ = ∞ almost surely. �

4. Applications

4.1. Noncolliding particle systems of squared Bessel processes. In a recent paper
by Katori,Tanemura [14], particle systems of squared Bessel processes BESQ(ν), ν > −1,
interacting with each other by long ranged repulsive forces are studied. If there are N

particles, their positions X
(ν)
i are given by the following system of SDEs, see [14] p.593:

dX
(ν)
i (t) = 2

√

X
(ν)
i (t)dBi(t) + 2(ν + 1)dt+ 4X

(ν)
i (t)

∑

j 6=i

1

X
(ν)
i (t)−X

(ν)
j (t)

= 2

√

X
(ν)
i (t)dBi(t) + 2(ν +N)dt + 2

∑

j 6=i

X
(ν)
i (t) +X

(ν)
j (t)

X
(ν)
i (t)−X

(ν)
j (t)

, i = 1, . . . , N

with a collection of independent standard Brownian motions {Bi(t), i = 1, . . . , N} and,
if −1 < ν < 0, with a reflection wall at the origin. It is shown in [14] and it follows
from the Proposition 1 that the collision time τ = ∞ a.s. The Theorem 2 applied to
such systems, with a standard use of localization techniques as in the proof of Theorem
5, gives the following

Corollary 2. The system of SDEs for a particle system of N squared Bessel processes
BESQ(ν) admits a unique strong solution on [0,∞).

4.2. Wishart stochastic differential equations. Wishart processes on S+
p are matrix

analogues of squared Bessel processes on R
+. Wishart processes with shape parameter

n (which corresponds to the dimension of a BESQ on R
+) are simply constructed as

Xt = NT
t Nt where Nt is an n × p Brownian matrix. Let α > 0 and B = (Bt)t≥0 be

a Brownian p × p matrix. The Wishart stochastic differential equation for a Wishart
process with a shape parameter α is







dXt =
√
XtdBt + dBT

t

√
Xt + αIdt

X0 = x0.
(4.1)

It was introduced by Bru [3] by first writing the SDE for Xt = NT
t Nt and next replacing

the parameter n by α. It was shown in [3] that if x0 ∈ S̃p and α ∈ (p−1, p+1) then there
exists a unique weak solution of (4.1) and the condition α ≥ p+ 1 implies that (4.1) has
a unique strong solution. We reinforce considerably these results. Our methods apply
with g(x) =

√
x, h(x) = 1 and G(x, y) = x+ y for x, y ∈ R

+. These functions satisfy the
hypotheses of the Theorem 5 and the Proposition 1. First, using the Theorem 3 and the
Proposition 1 we obtain
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Corollary 3. For α > 0 and 0 ≤ λ1(0) < λ2(0) < . . . < λp(0) the eigenvalues λi(t) never
collide, i.e. the first collision time τ = ∞ almost surely.

Next, the Theorem 5 implies

Corollary 4. The Wishart SDE (4.1) with x0 ∈ S̃p has a unique strong solution on
[0,∞) for α > 0.

Remark 4. Bru [3] showed that for α > p−1 the Wishart processes have the absolutely
continuous Wishart laws which are very important in multivariate statistics, see e.g. the
monograph of Muirhead [18]. The singular Wishart processes corresponding to α =
1, . . . p − 1 are obtained as Xt = NT

t Nt where Nt is an α × p Brownian matrix. Then
X0 = NT

0 N0 has eigenvalue 0 of multiplicity p− α so x0 6∈ S̃p.
Thanks to our matrix Yamada-Watanabe Theorem, we discover a new and unexpected

class of Wishart processes for α ∈ (0, p − 1] and x0 ∈ S̃p, whose study is an interesting
research objective.

Remark 5. Let Q ∈ S+
p . As observed in Bru [3] p.746-747, Xt is a solution to the matrix

SDE (3.1) if and only if Yt = QXtQ is a solution of

dYt =
√

YtdBtQ +QdBT
t

√

Yt + αQ2dt. (4.2)

The process Yt is a Wishart process with shape parameter α and scale parameter Q2.
Observe that if Q 6= αI, the matrix SDE (4.2) has not the form (3.1) for any b, h : R+ →
R

+. However, using the relation Yt = QXtQ and Theorem 5 it is easy to see that the
SDE (4.2) has a unique strong solution.

Another perturbation of the Wishart SDE (4.1) is the equation for the Wishart process
with constant drift c > 0, which may be also viewed as a squared matrix Ornstein-
Uhlenbeck process

dXt =
√

XtdBt + dBT
t

√

Xt + αIdt+ cXtdt, X0 ∈ S̃p. (4.3)

This equation has the form (3.1) with g(x) =
√
x, h(x) = 1 and b(x) = cx. By Theorem

5 and Proposition 1, it has a unique strong solution with t ∈ [0,∞) for any α, c > 0.
More general squared matrix Ornstein-Uhlenbeck processes were first studied by Bru [3]
and recently by Mayerhofer et al. [17]. Our strong existence and uniqueness result for
(4.3) is not covered by these papers.

4.3. Matrix Jacobi processes. Let 0p and Ip be zero and identity p × p matrices.

Define Sp[0, I] = {X ∈ Sp| 0p ≤ X ≤ Ip}. Denote by Ŝp[0, I] = {X ∈ Sp| 0p < X < Ip}
and by S̃p[0, I] the set of matrices in Sp[0, I] with distinct eigenvalues. A matrix Jacobi
process of dimensions (q, r), with q ∧ r > p − 1, and with values in Sp[0, I], was defined
and studied by Doumerc [10] as a solution of the following matrix SDE, with respect to
a p× p Brownian matrix Bt







dXt =
√
XtdBt

√

Ip −Xt +
√

Ip −XtdB
T
t

√
Xt + (qIm − (q + r)Xt)dt

X0 = x0 ∈ Sp[0, I].
(4.4)

In [10] Th.9.3.1, p.135 it was shown that if q ∧ r ≥ p+ 1 and x0 ∈ Ŝp[0, I] then (4.4) has

a unique strong solution in Ŝp[0, I]. In the case q or r ∈ (p− 1, p + 1) and x0 ∈ S̃p[0, I]
the existence of a unique solution in law was proved in [10]. Our methods allow one to
strengthen the results of Doumerc.

Corollary 5. Let q ∧ r > p − 1 and x0 ∈ S̃p[0, I]. Then the matrix SDE (4.4) has a
unique strong solution for t ∈ [0,∞).
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Proof. We apply Theorem 5 and Proposition 1 with g(x) =
√
x, h(x) =

√
1− x and

b(x) = q − (q + r)x. �

4.4. β-Wishart and β-Jacobi processes. As known from [1] and by Theorem 3, the
eigenvalues of the Wishart process verify the following system of SDEs

dλi = 2
√

λidνi +

(

α+
∑

k 6=i

λi + λk

λi − λk

)

dt.

Let β > 0. One calls a β-Wishart process a solution of the system of SDEs

dλi = 2
√

λidνi + β

(

α +
∑

k 6=i

λi + λk

λi − λk

)

dt. (4.5)

The β-Wishart processes were studied by Demni [7]. In the theory of random matrices
and its physical applications, the β-Wishart processes are related to Chiral Gaussian En-
sembles, which were introduced as effective (approximation) theoretical models describing
energy spectra of quantum particle systems in high energy physics. Usually a symmetry
of Hamiltonian is imposed and it fixes the value of β to be 1, 2 or 4, respectively in real
symmetric, hermitian and symplectic cases. On the other hand, from the point of view
of statistical physics, β is regarded as the inverse temperature, β = 1/(kBT ), and should
be treated as a continuous positive parameter. In this sense, the β-Wishart systems are
statistical mechanics models of “ log-gases” (The strength of the force between particles
is proportional to the inverse of distances. Then the potential, which is obtained by
integrating the force, is logarithmic function of the distance. So the system is called a
“ log-gas”). For more information on log-gases, see the recent monograph of Forrester [11].

In [7] the existence and uniqueness of strong solutions of the SDE system (4.5) was
established for β > 0 , α > p− 1+ 1

β
and t ∈ [0, τ ∧R0), where R0 = inf{t| λ1 = 0}. Our

Theorem 2 and Proposition 1 imply the following

Corollary 6. The SDE system (4.5) with 0 ≤ λ1(0) < λ2(0) < . . . < λp(0) has a unique
strong solution for t ∈ [0,∞), for any α > 0 and β > 0.

The β-Jacobi processes (λi), i = 1, . . . , p are [0, 1]p-valued processes generalizing pro-
cesses of eigenvalues of matrix Jacobi processes defined by (4.4):

dλi = 2
√

λi(1− λi)dνi + β

(

q − (q + r)λi +
∑

k 6=i

λi(1− λk) + λk(1− λi)

λi − λk

)

dt. (4.6)

Indeed, for β = 1 the formula (4.6) was shown in [10] and it follows directly from the
Theorem 3. β-Jacobi processes were recently studied by Demni in [8]. He showed that the
system (4.6) has a unique strong solution for all time t when β > 0 and q∧r > m−1+1/β.
As an application of Theorem 2 and Proposition 1 we strengthen essentially this result.

Corollary 7. The SDE system (4.6) with 0 ≤ λ1(0) < λ2(0) < . . . < λp(0) ≤ 1 has a
unique strong solution for t ∈ [0,∞), for any β > 0 and q ∧ r > m− 1.

Remark 6. It would be interesting to extend our generalization of the Yamada theorem
to the SDE’s considered by Cépa-Lépingle [4]. On the other hand the Jacobi eigenvalues
processes being an important example of the radial Cherednik processes, we conjecture
that the strong existence and unicity would hold for radial Cherednik processes. For
radial Dunkl processes this is proved by Demni [6], using [4].

Acknowledgements. We thank N. Demni, C. Donati, M. Katori and M. Yor for
discussions and bibliographical indications.
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