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Abstract Variance-based global sensitivity analysis (GSA) aims at study-18

ing how uncertainty in the output of a model can be apportioned to di�erent19

sources of uncertainty in its inputs. GSA is an essential ingredient in model20

building: it helps to identify model inputs that account for most of model21

output variability. Yet this approach is not really appropriate for spatial22

models, as it cannot describe how uncertainty interacts with another key23

issue in spatial modeling: the issue of model upscaling and change of spa-24

tial support. In many environmental models, the end-user is interested in25

the spatial average or sum of model output over a given spatial unit (e.g.26

the average porosity of a geological block). Under a change of spatial sup-27

port, the relative contribution of uncertain model inputs to the variance of28

aggregated model output may change. We propose in this paper a simple for-29

malism to discuss this question within GSA framework by de�ning point and30

block sensitivity indices. We show that the relative contribution of an un-31

certain spatially distributed model input increases with its covariance range32

and decreases with the size of the spatial unit considered for model output33

aggregation. Results are brie�y illustrated by a simple example.34

Keywords Sensitivity analysis · Sobol' indices · Model upscaling · Change35

of support · Regularization theory · Spatial model36
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1 Introduction37

Variance-based global sensitivity analysis (GSA) aims at studying how un-38

certainty in the output of a model can be apportioned to di�erent sources of39

uncertainty in its inputs. Here model denotes any computer code in which a40

response variable is calculated as a deterministic function of input variables.41

Born in the 1990ies (Sobol' 1993), GSA is now recognized as an essential in-42

gredient in model building (European Commission 2009; US Environmental43

Protection Agency 2009) and is widely used in di�erent �elds (Cariboni et44

al 2007; Tarantola et al 2002). It is based on the decomposition of model45

output variance into conditional variances. So-called �rst-order sensitivity46

indices measure the main e�ect contribution of each uncertain model input47

to the model output variance. Based on these sensitivity indices, ranking of48

model inputs helps 1) identifying inputs that account for most of model out-49

put variability and need to be better scrutinized with extra data-gathering50

2) simplifying model by identifying model inputs that have little in�uence on51

model output variance.52

Although GSA was initially designed for models with scalar inputs and scalar53

output only, some work has been recently carried out on extending it to en-54

vironmental models where both inputs and output are spatially distributed55
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over a 2D domain (Lilburne and Tarantola 2009, for a review). In these56

works, spatial model inputs are usually maps derived from sampled �eld-57

data (e.g. digital elevation model, landuse map). They are uncertain due to58

measurement errors, lack of knowledge or aleatory variability (Brown and59

Heuvelink 2007; Refsgaard et al 2007), and are modeled as random �elds.60

Model output is also spatially distributed (e.g. a �ood map, a pollution map).61

Authors use geostatistical simulation to include spatially distributed model62

inputs into GSA approach (Ru�o et al 2006; Saint-Geours et al 2010)63

and display e�cient estimation procedures to compute sensitivity indices in64

a spatial context, either with respect to the spatial average of model out-65

put (Lilburne and Tarantola 2009), or with respect to the values of model66

output at each site of a study area (Heuvelink et al 2010; Marrel et al 2011;67

Pettit and Wilson 2010).68

Yet, to date none of these studies has reported on a key issue: the link69

between uncertainty propagation and model upscaling/downscaling. Model70

upscaling consists in the application of a spatial model, developed at a speci�c71

scale, to a larger scale. In many environmental models, physical quantities72

considered are additive (e.g. porosity, evapotranspiration), i.e. their large73

scale properties derive from small scale properties by simple averaging. In this74

case, model end-user is usually interested in the spatial linear average or sum75
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of spatial output over a given spatial unit (e.g. the average porosity of a block,76

the total evapotranspiration over a plot of land) and model upscaling is thus77

reduced to a change of support problem. Heuvelink (1998) pointed out that78

under a change of spatial support of model output, the relative contribution79

of uncertain model inputs to the variability of aggregated model output may80

change. Exploring how sensitivity analysis results interact with change of81

support issue is thus of great importance to check the robustness of model-82

based environmental impact assessment studies and give better con�dence in83

their results. It would allow the modeler to answer the following questions:84

what are the most in�uential model inputs over a given spatial support? For85

which support size does a spatially distributed model input contribute the86

most to model output uncertainty? Does spatial structure of uncertainty of87

a model input in�uence its contribution to model output variability?88

Change of support e�ect has been extensively discussed in geostatistics with89

the regularization theory (Journel and Huijbregts 1978, p.77). Hence, we try90

in this paper to bring together regularization theory and variance-based GSA91

frameworks. Our idea is to de�ne site sensitivity indices and block sensitivity92

indices, in order to i) provide a simple formalism to extend variance-based93

GSA to spatial models, when the modeler's interest is in spatial average or94

sum of model output over a given spatial support (section 2); ii) discuss the95
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in�uence of model upscaling on the relative contribution of uncertain model96

inputs to the variance of model output (section 3). We limit our study to97

point-based models, i.e. models where the computation of model output at98

some location uses the value of spatial inputs at that same location only99

(Heuvelink, Brus, and Reinds 2010). An example is used throughout the100

paper to illustrate formal de�nitions and properties. We �nally discuss the101

limits of our approach and its links with related work in section 4.102

2 Variance-based sensitivity indices for a spatial model103

2.1 Description of spatial modelM104

Let D ⊂ R2 denote a 2D spatial domain, x ∈ D a site, h the lag vector105

between two sites x and x′, and v ⊂ D some spatial support of area |v|. For106

sake of clarity, we consider a spatial model Y =M(U, Z) with n uncertain107

scalar inputs U1, . . . , Un that are grouped into a vector U ∈ Rn of joint108

pdf p(U), and a single uncertain spatial input {Z(x) : x ∈ D}, that we will109

often simply denote by Z(x). Z(x) is supposed to be a strictly stationary110

random �eld (SRF) of mean µ with �nite variance and covariogram C(·). Let111

assume its covariance structure, characterized by range a ∈ R and nugget112
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e�ect η ∈ [0; 1[, is isotropic and of the form:113

C(h) =


C(0) if h = 0

(1− η) · C(0) · ρa (‖h‖) if h 6= 0

(1)

with ρa(·) some valid correlogram (Cressie 1993, p.67). Model output is a114

2D random �eld {Y (x) : x ∈ D}, that we will simply denote by Y (x). As115

discussed in the introduction, we limit our study to point-based models, hence116

we assume there exists a mapping ψ : Rn × R→ R such that:117

∀x ∈ D , Y (x) = ψ [U, Z(x)] (2)

We also assume that ψ is such that for any site x ∈ D, random variables Y (x),118

E [Y (x) | Z(x)] and E [Y (x) | U] have �nite expectation and �nite variance.119

Sensitivity analysis of modelM must be performed with respect to a scalar120

quantity of interest derived from spatially distributed model output Y (x).121

Here we consider two di�erent outputs of interest: the value Y (x∗) at some122

speci�c site x∗ ∈ D and the aggregated value Yv = 1/|v|
∫

v
Y (x) dx over123

support v. As model inputs U and Z(x) are uncertain, Y (x∗) and Yv are both124

random variables: sensitivity analysis will discuss the relative contribution125

of uncertain model inputs U and Z(x) to their respective variances.126
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2.2 Site sensitivity indices and block sensitivity indices127

Before de�ning sensitivity indices for spatial model M, we very brie�y re-128

view the mathematical basis of variance-based GSA. Consider a model Y =129

f(X1, . . . , Xn) where Xi are independent random variables. First-order sen-130

sitivity index Si of model input Xi is de�ned by:131

Si =
Var [E(Y |Xi)]

Var (Y )
(3)

Si ∈ [0; 1] measures the main e�ect contribution of uncertain model input Xi132

to the variance of model output Y . It is the expected part of output variance133

Var(Y ) that could be reduced if input Xi was perfectly known. Sensitivity134

indices can be used to identify the model inputs that account for most of135

model output variability (model inputs Xi with high �rst order indices Si).136

Sum of Si is lower than 1: di�erence 1−
∑

i Si accounts for the contribution137

of interactions between model inputs Xi to model output variance Var(Y ).138

If needed, Saltelli et al (2008) will provide more details on GSA theory and139

on estimation of sensitivity indices.140

To extend GSA to spatial model M, we propose to use di�erent types of141

sensitivity indices to describe the relative contribution of uncertain model142

inputs U and Z(x) to the variability of model output: at site scale (i.e. with143

respect to output of interest Y (x∗)) and at larger scale (i.e. with respect144
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to output of interest Yv). First-order sensitivity indices of model inputs145

with respect to Y (x∗) are called site sensitivity indices. Under stationary146

hypothesis on SRF Z(x), they don't depend on site x∗, thus will simply be147

denoted by SU and SZ :148

SU =
Var [E(Y (x∗) | U)]

Var [Y (x∗)]
; SZ =

Var [E(Y (x∗) | {Z(x) : x ∈ D})]
Var [Y (x∗)]

(4)

First-order sensitivity indices of model inputs with respect to block average149

Yv are called block sensitivity indices and are denoted by SU(v) and SZ(v):150

SU(v) =
Var [E(Yv | U)]

Var [Yv]
; SZ(v) =

Var [E(Yv | {Z(x) : x ∈ D})]
Var [Yv]

(5)

Ratio SZ(v)/SU(v) gives the relative contribution of uncertain model in-151

puts Z(x) and U to the variability of the output of interest Yv: when152

SZ(v)/SU(v) > 1, variance of Yv is mainly explained by uncertainty on 2D153

input �eld Z(x); when SZ(v)/SU(v) < 1, it's the uncertainty on non-spatial154

input U that accounts for most of Var (Yv).155

2.3 Illustrative example156

The proposed formalism for spatial GSA is illustrated through the following157

example. A model Y = M (U, Z) is used for economic assessment of �ood158

risk. Z(x) is the map of maximal water levels (m) reached during a �ood159
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event over a given area D. It is assumed to be a Gaussian random �eld160

with mean µ = 50 and exponential covariance C(h) with C(0) = 100, range161

a = 5 and nugget η = 0.1. U is a set of three economic parameters U1,162

U2 and U3, assumed to be independent random variables following Gaussian163

distributions N (1.5, 0.5), N (55, 5) and N (10, 10) respectively. Model output164

Y (x) is the map of expected economic damages due to the �ood over the165

area, which depend on U and Z(x) through mapping ψ:166

∀x ∈ D, Y (x) = ψ [U, Z(x)] = U1 · Z(x)− U2 · e−0.036·Z(x) − U3 (6)

Stakeholders are interested in two outputs: �ood damage Y (x∗) on a speci�c167

building x∗ ∈ D, and total damage |v| ·Yv over a district v (here a disc of ra-168

dius r = 50). Here, analytical expression of modelM may be simple enough169

to derive exact values of sensitivity indices, but it is usually not the case in170

real applications. Thus we considered modelM as a black box and estimated171

site sensitivity indices and block sensitivity indices with a sampling-based ap-172

proach (Lilburne and Tarantola 2009), using N = 4096 model runs (Table 1).173

All calculations were carried out in R (R Development Core Team 2009).174

It appears that at site scale, uncertainty on the map of water levels explains175

most of the variance of Y (x∗): SZ = 0.89. At a larger scale, uncertainty176

on total �ood damage |v| · Yv is mainly due to the uncertainty on economic177

parameters U1, U2 and U3: SU(v) = 0.86. To improve accuracy of damage178
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Saint-Geours et al. - Manuscript submitted on August 22, 2011 11

estimation on a speci�c building, uncertainty should thus be �rst reduced on179

the map of water levels Z(x); on the contrary, to improve accuracy of total180

damage estimation over a large district v, modeler should focus on reducing181

uncertainty on economic parameters U1, U2 and U3.182

3 Change of support e�ect on block sensitivity indices183

We assess in this section how the ranking of uncertain model inputs based184

on their block sensitivity indices vary under a change of support v.185

3.1 Relation between site sensitivity indices and block sensitivity indices186

Site sensitivity indices and block sensitivity indices are related. Let EZY (x)187

denote the conditional expectation of Y (x) knowing Z(x), that is:188

∀x ∈ D, EZY (x) = E [Y (x) | Z(x)] (7)

EZY (x) is the transform of input stationary random �eld Z(x) through func-189

tion ψ̄(z) =
∫
ψ(u, z)p(u)du [Eq. (2)]. Under our assumptions on ψ, EZY (x)190

is a SRF with �nite variance. Let C∗(·) denote its covariogram, σ2 = C∗(0)191

its variance and σ2
v its block variance over support v, that is, the variance192

of block average 1/|v|
∫

v
EZY (x)dx. Block variance σ2

v is equal to the mean193

value of C∗(h) when the two extremities of lag vector h describe support v,194
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which we denote by C∗(v, v) (Journel and Huijbregts 1978, p.78). Using195

these notations, it follows from Equations (4) and (5) that site sensitivity196

indices and block sensitivity indices are related by (see Appendix A for a197

proof):198

SZ(v)

SU(v)
=

SZ

SU

· σ
2
v

σ2
=

SZ

SU

· C
∗(v, v)

C∗(0)
(8)

3.2 Change of support e�ect199

Consider now that modelM was initially developed to study spatial average200

Yv over support v, and that after model upscaling the modeler is interested in201

spatial average YV over support V such that V � v. We know from Krige's202

relation (Journel and Huijbregts 1978, p.67) that block variance σ2
v decreases203

with the size of support: σ2
V ≤ σ2

v . It follows from Equation (8) that:204

SZ(V )

SU(V )
≤ SZ(v)

SU(v)
(9)

The relative contribution of input random �eld Z(x) to the variability of205

aggregated model output - compared to the contribution of uncertain scalar206

input U - is thus smaller on support V than on support v. Model upscal-207

ing results in a lower in�uence of uncertain spatial input Z(x) on model208

output uncertainty. More speci�cally, let suppose that covariogram C∗(·)209

of EZY (x) random �eld has �nite range and that support v is large with210
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respect to this range. To a �rst approximation, block variance σ2
v is of the211

form σ2
v ' σ2A/|v| where A is the so-called integral range of C∗(·) de�ned212

by A = 1/σ2
∫
C∗(h)dh (Chilès and Del�ner 1999, p.73). It follows from213

Equation (8) that:214

SZ(v)

SU(v)
' |v|lim
|v|

with |v|lim = A · SZ

SU

(10)

Equation (10) shows that ratio |v|lim/|v| drives the relative contribution of215

model inputs Z(x) and U to output variance Var(Yv). The larger this ratio,216

the larger the part of output variance Var(Yv) explained by the uncertainty217

on input random �eld Z(x). For a low ratio (i.e. when the area of support218

v is large compared to critical size |v|lim), variability of Z(x) is mainly local,219

and spatial correlation of Z(x) over support v is weak. This local variabil-220

ity averages over support v when aggregated model output Yv is computed:221

hence the uncertainty on input 2D-�eld Z(x) has a small in�uence on output222

variance Var(Yv). On the contrary, for a greater ratio (i.e. when the area of223

support v is small compared to critical size |v|lim), spatial correlation of Z(x)224

over v is strong. The averaging-out e�ect is weaker, hence the uncertainty225

on model input Z(x) has a larger in�uence on output variance Var(Yv).226
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3.3 In�uence of covariance range and nugget e�ect227

Critical size |v|lim = A · SZ

SU
depends on the covariance structure C∗(·) of228

EZY (x) random �eld, which is itself driven by covariogram C(·) of input229

SRF Z(x). Let us assume now that Z(x) is a Gaussian random �eld (GRF).230

As EZY (x) is a transform of GRF Z(x) through function ψ̄ [Eq. (7)], it can231

be decomposed into an Hermitian expansion and its covariogram C∗(·) can232

be written as (Chilès and Del�ner 1999, p.396-399; see Appendix B for a233

proof):234

C∗(h) =
∞∑

k=0

λ2
k · [C(h)]k (11)

For most usual transition covariogram models (e.g. spherical, exponential,235

Gaussian models), covariance C(h) is a monotically increasing function of236

range parameter a. In this case, it follows from Equation (11) that integral237

range A = 1/σ2
∫
C∗(h)dh also grows with range a. An increase in range238

parameter a thus leads to a growth of critical size |v|lim, and ratio of block239

sensitivity indices SZ(v) and SU(v) veri�es [Eq. (10)]:240

∂

∂a

[
SZ(v)

SU(v)

]
≥ 0 (12)

The relative contribution of uncertain model input Z(x) to the variance of241

output of interest Yv gets larger when covariance range of Z(x) increases.242

Indeed, when range a increases, the averaging-out e�ect that occurs when243
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model output is aggregated over spatial support v gets weaker, thus the244

in�uence of input random �eld Z(x) on output variance Var(Yv) grows.245

The impact of nugget e�ect on block sensitivity indices can be interpreted246

the same way. Nugget parameter η controls the relative part of pure noise in247

input random �eld Z(x) [Eq. (1)]. The lower η, the weaker the averaging-out248

e�ect will be when block average Yv is computed over support v, hence the249

larger the part of output variance Var(Yv) that will be explained by Z(x).250

Critical size |v|lim is thus a decreasing function of nugget parameter η, and251

ratio of block sensitivity indices SZ(v) and SU(v) veri�es [Eq. (1), (8), (11)]:252

∂

∂η

[
SZ(v)

SU(v)

]
≤ 0 (13)

3.4 Illustrative example253

To illustrate change of support e�ects on sensitivity analysis results, we per-254

formed spatial GSA on our numerical example in the following settings: vary-255

ing disc-shaped support v of increasing size (Fig. 2); varying range from a = 1256

to a = 10 (Fig. 3); varying nugget parameter from η = 0 to η = 0.9 (Fig. 4).257

For each setting, we computed estimates of output variance Var(Yv), block258

sensitivity indices SU(v), SZ(v) and ratio SZ(v)/SU(v) over N = 4096 model259

runs. The whole process was repeated 100 times and mean values with 95%260
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con�dence interval are shown for each estimate. In accordance with Equa-261

tions (9), (12) and (13), it appears that block sensitivity index SZ(v) (i)262

decreases when support v gets larger (Fig. 2b) (ii) increases with covariance263

range a (Fig. 3b) (iii) decreases with nugget parameter η (Fig. 4b), while264

sensitivity index SU(v) has the opposite behaviour. Change of support e�ect265

is clearly highlighted in Figure 2b: contribution of economic parameters U1,266

U2 and U3 to the variability of total �ood damage |v| · Yv exceeds the contri-267

bution of water level map Z(x) when the radius r of support v is greater than268

rlim ' 18; for radius r < rlim, uncertainty on total �ood damage over support269

v is mainly due to the uncertainty on water levels Z(x). Finally, Figure 2c270

illustrates that ratio SZ(v)/SU(v) is proportional to 1/|v| when support v is271

large enough. Theoretical curve SZ(v)/SU(v) = |v|lim/|v| [Eq. 10] was �tted272

(least squares - R2 = 0.99) on data points (for r ≥ 20 only), yielding an273

estimate of critical size |v|lim ' 1068.274

4 Discussion275

Our �rst goal was to provide a formalism to extend variance-based GSA276

approach to spatial models when the modeler is mainly interested in the277

linear average or the sum of model output Y (x) over some spatial unit v.278

Our approach is strongly inspired from previous related works. Other authors279
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had already computed site sensitivity indices (Marrel et al 2011; Pettit and280

Wilson 2010) and block sensitivity indices (Lilburne and Tarantola 2009),281

but without naming them nor exploring their analytical properties or their282

relationship. Our paper is an attempt to do so. Equation (8) gives an exact283

relation between site and block sensitivity indices: it may prove useful in the284

case of a model with a simple enough analytical expression.285

Our research also sought to account for change of support e�ects in the prop-286

agation of uncertainty through spatial models, within variance-based GSA287

framework. We proved that the relative in�uence of spatially distributed288

model input Z(x) decreases under model upscaling: when support v is large289

enough, the ratio of block sensitivity index of spatially distributed input with290

block sensitivity index of scalar inputs is proportional to |v|lim/|v|. Critical291

size |v|lim depends on the covariance structure of input SRF Z(x): it usually292

grows with an increase of range parameter a or a decrease of nugget parame-293

ter η. These �ndings are translation into GSA formalism of the averaging-out294

e�ect clearly portrayed by Journel and Huijbregts (1978) in the regulariza-295

tion theory. Our contribution is to discuss this issue from the point of view296

of GSA practitioners. Formalizing the e�ect of a change of support on sen-297

sitivity analysis results may well help modelers when they consider model298

upscaling: it will orientate future data gathering by identifying model inputs299
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that will have major in�uence on model output variability over a new spatial300

support. It also promotes an increased awareness on the issue of choosing the301

appropriate accuracy of spatial model inputs for a given scale: when block302

sensitivity index of spatial input Z(x) is small (SZ(v) < 0.1), it may mean303

that it is over-accurate compared to the uncertainty of other model inputs,304

and that costs associated with �eld data gathering could have been avoided.305

It should be noted that our approach is based on conditions that may not306

be met in some pratical cases. First, we considered a simple modelM with307

a single spatially distributed input Z(x). In real applications, modelers of-308

ten have to deal with several spatial inputs Z1(x), . . . , Zm(x), with di�erent309

covariance structures Ci(·), ranges ai and nuggets ηi. In this case, it can be310

shown that Equation (8) still holds separately for each spatial input Zi(x).311

Yet no conclusion can be drawn a priori on how a change of support im-312

pacts the relative ranking of two spatial inputs Zi(x) and Zj(x): ratio of313

their block sensitivity indices SZi(v)/SZj(v) will depend on the ratio of block314

variances σ2
v,i/σ

2
v,j. Second, some environmental models are not point-based315

and involve spatial interactions (e.g. erosion, groundwater �ow models). In316

this case, it still may be possible to build a point-based surrogate model as317

a coarse approximation of the original model; if not, then change of support318

properties discussed in section 3 may not hold. Third, we assumed input319
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random �eld Z(x) to be stationary: if not, site sensitivity indices depend on320

site x∗ [Eq. (4)]. It is then possible to compute maps of these indices (Marrel321

et al 2011; Pettit and Wilson 2010) to discuss the spatial variability of322

model inputs sensitivities.323

Finally, we focused on the case where the modeler's interest is in the spatial324

linear average or the sum of model output Y (x) over support v. As dis-325

cussed by Lilburne and Tarantola (2009), other outputs of interest may be326

considered, such as maximum value of Y (x) over v (e.g. maximal pollutant327

concentration over a zone), some quantile of Y (x) over v (Heuvelink et al328

2010), the percentage of v where Y (x) exceeds a certain threshold, etc. Up to329

our knowledge, no investigation has been done on the properties of sensitivity330

indices computed with respect to such outputs of interest.331

5 Conclusion332

This paper provides a formalism to apply variance-based global sensitivity333

analysis to spatial models when the modeler's interest is in the average or the334

sum of model output Y (x) over a given spatial unit v. Site sensitivity indices335

and block sensitivity indices allow us to discuss how a change of support336

in�uence the relative contribution of uncertain model inputs to the variance337

of the output of interest. We give an analytical relationship between these338
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two types of sensitivity indices. Our results show that block sensitivity index339

of input random �eld Z(x) increases with ratio |v|lim/|v|, where |v| is the area340

of spatial support v and critical size |v|lim depends on the covariance structure341

of Z(x). Our formalization is made with a view towards promoting the use342

of sensitivity analysis in model-based spatial decision support systems. Yet343

further research is needed to explore the case of non point-based models and344

extend our study to outputs of interest other than the average value of model345

output over zone v.346
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Appendix A: proof for relation between site sensitivity indices and399

block sensitivity indices400

As mentioned in section 2, we assume that mapping ψ is such that for401

any site x ∈ D, random variables Y (x), E [Y (x) | Z(x)] and E [Y (x) | U]402

have �nite expectation and �nite variance. Ratio of block sensitivity indices403

writes [Eq. (5)]:404

SZ(v)

SU(v)
=

Var (E [Yv | {Z(x) : x ∈ D}])
Var (E [Yv | U])

(14)

Conditional expectation of block average Yv knowing {Z(x) : x ∈ D} writes:

E [Yv | Z] = E
[
1/|v|

∫
v

Y (x)dx | {Z(x′) : x′ ∈ D}
]

(de�nition of Yv)

= 1/|v|
∫

v

E [Y (x) | {Z(x′) : x′ ∈ D}] dx

= 1/|v|
∫

v

E [Y (x) | Z(x)] dx (for a point-based model)

= 1/|v|
∫

v

EZY (x)dx (de�nition of EZY (x))

Thus we have Var (E [Yv | Z]) = Var
(
1/|v|

∫
v
EZY (x)dx

)
= σ2

v (de�nition of

σ2
v). Moreover, conditional expectation of block average Yv knowing scalar

input U writes:

E [Yv | U] = E
[
1/|v|

∫
v

Y (x) dx | U
]

(de�nition of Yv)

= 1/|v|
∫
v

E [Y (x) | U] dx
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E [Y (x) | U] does not depend on site x under stationarity of SRF Z(x),405

thus we have in particular E [Yv | U] = E [Y (x∗) | U], and Var (E [Yv | U]) =406

Var (E [Y (x∗) | U]). Combining these expressions with Equation (14) yields:407

SZ(v)

SU(v)
=

σ2
v

Var(E [Y (x∗) | U])
(15)

Ratio of site sensitivity indices writes [Eq. (4)]:408

.
SZ

SU

=
Var(E [Y (x∗) | {Z(x) : x ∈ D}])

Var(E [Y (x∗) | U])
(16)

We notice that for point-based models, Var [E(Y (x∗) | {Z(x) : x ∈ D}] =

Var [EZY (x∗)] = σ2 (de�nition of EZY (x) [Eq. (7)]). It �nally follows from

Equations (15) and (16) that:

SZ(v)

SU(v)
=
SZ

SU

· σ
2
v

σ2

Appendix B: Hermitian expansion of random �eld EZY (x)409

EZY (x) random �eld can be written [Eq. (2), (7)] as a transformation of

Z(x) Gaussian random �eld through function ψ̄ : z 7→
∫

Rn ψ(u, z) · p(u) du:

EZY = ψ̄ (Z)

We previously assumed that for any site x ∈ D, EZY (x) has �nite expectation

and �nite variance. Under this condition, function ψ̄ belongs to Hilbert space
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L2(G) of functions f : R → R which are square-integrable with respect to

Gaussian density g(.). Hence ψ̄ can be expanded on the sequence of Hermite

polynomials (χk)k∈N, which forms an orthonormal basis of L2(G) (Chilès and

Del�ner 1999, p.399):

ψ̄ =
∞∑

k=0

αk · χk with χk(z) =
1√
k!
· 1

g(z)
· ∂

k

∂zk
g(z)

where coe�cients αk are given by: αk =
∫

R χk(z)ψ̄(z)g(z) dz. It follows that

EZY (x) can be written as an in�nite expansion of polynomials of Z(x):

∀x ∈ D, EZY (x) =
∞∑

k=0

αk · χk [Z(x)]

Its covariance then writes (Chilès and Del�ner 1999, p.396 Eq. (6.23) and

p.399 Eq. (6.25)):

Cov (EZY (x), EZY (x + h)) =
∞∑

k=0

α2
k ·
[
C(h)

C(0)

]k

=
∞∑

k=0

λ2
k · [C(h)]k

where C(h) is the covariogram of GRF Z(x) and λk = αk · C(0)−k/2.410
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Captions of tables411

Tab. 1 Sensitivity analysis results over N = 4096 model runs with respect412

to the outputs of interest Y (x∗) and |v| · Yv. Mean values with ±s.d. over413

100 replicas.414
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TABLE 1415

Output of

interest
Mean Variance

Type of

indices
Sensitivity indices

Y (x∗) 66.5±4.2 1393± 188 Site S.I.
SU = 0.09± 0.02

SZ = 0.89± 0.02

|v| · Yv 68.6±0.4 145± 4 Block S.I.
SU(v) = 0.86± 0.01

SZ(v) = 0.12± 0.02
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Captions of �gures416

Fig. 1 Spatial model with uncertain inputs U and Z(x) and spatial output417

Y (x). The modeler is interested in the block average of Y (x) over some418

spatial unit v419

Fig. 2 GSA results depending on the size of disc-shaped support ν (with420

radius r and area |ν| = πr2), for a = 5, η = 0.1: (a) total variance of421

output of interest Yv, (b) block sensitivity indices SU(v) (solid line) and422

SZ(v) (dashed line), (c) ratio SZ(v)/SU(v) with �tted curve SZ(v)/SU(v) =423

|v|lim/|v| (dashed line). Error bars show 95 % con�dence interval over 100424

replicas425

Fig. 3 GSA results depending on covariance range a, for η = 0.1 and a426

disc-shaped support v of radius r = 50: (a) total variance of Yv, (b) block427

sensitivity indices SU(v) (solid line) and SZ(v) (dashed line). Error bars428

show 95 % con�dence interval over 100 replicas429

Fig. 4 GSA results depending on covariance nugget η, for a = 5 and a430

disc-shaped support v of radius r = 50: (a) total variance of Yv, (b) block431

sensitivity indices SU(v) (solid line) and SZ(v) (dashed line). Error bars432

show 95 % con�dence interval over 100 replicas433
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FIGURE 1434
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FIGURE 2436
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FIGURE 3438
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FIGURE 4440
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