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Abstract Variance-based global sensitivity analysis (GSA) is used to study

how the variance of the output of a model can be apportioned to different

sources of uncertainty in its inputs. GSA is an essential component of model

building: it helps to identify model inputs that account for most of the

model output variance. However, this approach is seldom applied to spatial

models because it cannot describe how uncertainty propagation interacts

with another key issue in spatial modeling: the issue of model upscaling, i.e.,

a change of spatial support of model output. In many environmental models,

the end user is interested in the spatial average or the sum of the model output

over a given spatial unit (e.g., the average porosity of a geological block).

Under a change of spatial support, the relative contribution of uncertain

model inputs to the variance of aggregated model output may change. We

propose a simple formalism to discuss this issue within a GSA framework

by defining point and block sensitivity indices. We show that the relative

contribution of an uncertain spatially distributed model input increases with

its correlation length and decreases with the size of the spatial unit considered

for model output aggregation. The results are briefly illustrated by a simple

example.

Keywords Sensitivity analysis · Sobol’ indices · Model upscaling · Change

of support · Regularization theory · Spatial model
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1 Introduction

Variance-based global sensitivity analysis (GSA) is used to study how the

variance of the output of a model can be apportioned to different sources

of uncertainty in its inputs. Here, the term model denotes any computer

code in which a response variable is calculated as a deterministic function

of input variables. Originally developed in the 1990s (Sobol’ 1993), GSA

is now recognized as an essential component of model building (European

Commission 2009; US Environmental Protection Agency 2009) and is widely

used in different fields (Cariboni et al. 2007; Tarantola et al. 2002). GSA

is based on the decomposition of a model output variance into conditional

variances. So-called first-order sensitivity indices measure the main effect

contribution of each uncertain model input to the model output variance.

Based on these sensitivity indices, ranking the model inputs helps to identify

inputs that should be better scrutinized first. Reducing the uncertainty on

the inputs with the largest sensitivity indices (e.g., by collecting additional

data or changing the geographical pattern of data locations) will often result

in a reduction in the variance of the model output. More generally, GSA

helps to explore the response surface of a black box computer code and to

prioritize the possibly numerous processes that are involved in it.
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Although GSA was initially designed for models where both inputs and out-

put can be described as real valued random variables, some recent work has

extended GSA to environmental models for which both the inputs and output

are spatially distributed over a two-dimensional domain and can be described

as random fields (Lilburne and Tarantola 2009, for a review). In these works,

the computer code under study uses maps derived from field data (e.g., dig-

ital elevation models and land use maps). These maps are uncertain due to

measurement errors, lack of knowledge or aleatory variability (Brown and

Heuvelink 2007; Refsgaard et al. 2007). The uncertainty of these spatial in-

puts is usually modeled using random fields. Model output is also spatially

distributed (e.g., a flood map or a pollution map). Authors use geostatistical

simulation to incorporate spatially distributed model inputs into the GSA

approach (Ruffo et al. 2006; Saint-Geours et al. 2010) and they display esti-

mation procedures to compute sensitivity indices in a spatial context, either

with respect to the spatial average of the model output (Lilburne and Taran-

tola 2009) or with respect to the values of the model output at each site of

a study area (Heuvelink et al. 2010; Marrel et al. 2011; Pettit and Wilson

2010).

Nevertheless, to date, none of these studies has reported on a key issue:

the link between uncertainty propagation and model upscaling/downscaling.
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Model upscaling is the problem of translating knowledge from smaller scales

to larger (Heuvelink 1998). In many environmental models, the physical

quantities considered are spatially additive (e.g., porosity or evapotranspira-

tion), i.e., their large-scale properties derive from small-scale properties by

simple averaging (Chilès and Delfiner 1999, p.593). In this case, the model

end user is usually interested in the spatial linear average or the sum of spa-

tial output over a given spatial unit (e.g., the average porosity of a block

or the total evapotranspiration over a plot of land) and model upscaling is

thus reduced to a change of support problem (namely, a change of support

of the end user’s output of interest). Heuvelink (1998) observed that under

a change of spatial support of the model output, the relative contribution

of uncertain model inputs to the variance of the aggregated model output

may change. Exploring how sensitivity analysis results interact with such

a change of support is thus of great importance. It would allow the mod-

eler to check the robustness of model-based environmental impact assessment

studies and better assess the confidence of their results. Knowledge of this

interaction would also allow the modeler to answer the following questions:

What are the model inputs that explain the largest fraction of the variance

of the output over a given spatial support? For which output support size

does a given spatially distributed model input contribute to the largest frac-

tion of the variance of the model output? How does the contribution of a
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spatially distributed input to the variance of the model output depend on

the parameters of its covariance function?

The change of support effect has been extensively discussed in geostatis-

tics in the context of regularization theory (Journel and Huijbregts 1978,

p.77). Hence, we attempt in this paper to integrate regularization theory

with variance-based GSA framework. Our idea is to define site sensitivity

indices and block sensitivity indices to i) provide a simple formalism that

extends variance-based GSA to spatial models when the modeler’s interest

is in the spatial average or the sum of model output over a given spatial

support (Sect. 2) and ii) discuss how the relative contribution of uncertain

model inputs to the variance of model output changes under model upscaling

(Sect. 3). We limit our study to point-based models, i.e., models for which

the computation of the model output at some location uses the values of spa-

tial inputs at that same location only (Heuvelink, Brus, and Reinds 2010).

An example is used throughout this paper to illustrate formal definitions and

properties. Finally, we discuss the limits of our approach and its connections

to related works in Sect. 4.
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2 Variance-based sensitivity indices for a spatial model

2.1 Description of spatial model M

We want to study a computer code M whose output is a map and whose

inputs are a map and a set of n real valued variables. Both inputs and output

are uncertain and are described as random variables or random fields. More

precisely, we use the following notations: let D ⊂ R
2 denote a 2D spatial

domain, x ∈ D a site, h the lag vector between two sites x and x
′, and

v ⊂ D some spatial support (block) of area |v|. We consider the model Y =

M(U, Z) where U = (U1, . . . , Un) is a random vector and {Z(x) : x ∈ D} is

a second-order stationary random field (SRF) — that we will often simply

denote by Z(x). U and Z(x) are supposed to be independent. Covariance

function C(·) of Z(x) is assumed to be isotropic, characterized by correlation

length a ∈ R, nugget parameter η ∈ [0; 1[ and of the form:

C(h) =















C(0) if h = 0

(1− η) · C(0) · ρa (‖h‖) if h 6= 0

(1)

where ρa(·) is some valid correlogram (Cressie 1993, p.67). The model output

is a 2D random field {Y (x) : x ∈ D} that we will simply denote by Y (x). We

assume that the first two moments of Y (x) exist. Finally, as discussed in the

introduction, we limit our study to point-based models; hence, we assume
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that there exists a mapping ψ : Rn × R → R such that:

∀x ∈ D , Y (x) = ψ [U, Z(x)] (2)

A sensitivity analysis of the model M must be performed with respect to a

scalar quantity of interest derived from spatially distributed model output

Y (x). Here, we consider two different outputs of interest: the value Y (x∗)

at some specific site x
∗ ∈ D and the aggregated value Yv = 1/|v|

∫

v
Y (x) dx

over support v. Because model inputs U and Z(x) are uncertain, Y (x∗) and

Yv are both random variables; the sensitivity analysis will describe the rela-

tive contribution of uncertain model inputs U and Z(x) to their respective

variances.

2.2 Site sensitivity indices and block sensitivity indices

Before defining sensitivity indices for spatial model M, we briefly review the

mathematical basis of variance-based GSA. Let us consider a model Y =

G(X1, . . . , Xn), where Xi are independent random variables and where the

first two moments of Y exist. The first-order sensitivity index Si of model

input Xi is defined by:

Si =
Var [E(Y |Xi)]

Var (Y )
(3)
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Si ∈ [0; 1] measures the main effect contribution of the uncertain model

input Xi to the variance of model output Y . Sensitivity indices can be

used to identify the model inputs that account for most of the variance of

the model output (model inputs Xi with high first-order indices Si). Sum

of Si is always less than 1 and the difference 1 − ∑

i Si accounts for the

contribution of the interactions between model inputs Xi to model output

variance Var(Y ). Please refer to Saltelli et al. (2008) for more details on GSA

theory and on the estimation of sensitivity indices.

To extend GSA to spatial model M, we propose to use different types of sen-

sitivity indices to describe the relative contribution of the uncertain model

inputs U and Z(x) to the variance of the model output: an index on a point

support (i.e., with respect to output of interest Y (x∗)) and an index on a

larger support (i.e., with respect to output of interest Yv). First-order sensi-

tivity indices of model inputs with respect to Y (x∗) are called site sensitivity

indices. Under the stationary hypothesis on SRF Z(x), these indices do not

depend on site x
∗ and thus will simply be denoted by SU and SZ :

SU =
Var [E(Y (x∗) | U)]

Var [Y (x∗)]
; SZ =

Var [E(Y (x∗) | Z(x))]
Var [Y (x∗)]

(4)

First-order sensitivity indices of model inputs with respect to the block av-

erage Yv are called block sensitivity indices and are denoted by SU(v) and
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SZ(v):

SU(v) =
Var [E(Yv | U)]

Var [Yv]
; SZ(v) =

Var [E(Yv | Z(x))]
Var [Yv]

(5)

The ratio SZ(v)/SU(v) gives the relative contribution of model inputs Z(x)

and U to the variance of the output of interest Yv. When SZ(v)/SU(v) is

greater than 1, the variance of Yv is mainly explained by the variability of the

2D input field Z(x); when SZ(v)/SU(v) is less than 1, it is the non spatial

input U that accounts for most of Var (Yv).

2.3 Illustrative example

The proposed formalism for spatial GSA is illustrated by the following ex-

ample. A model Y = M (U, Z) is used for the economic assessment of flood

risk over a given floodplain D. Z(x) is the map of maximal water levels (m)

reached during a flood event. Z(x) is assumed to be a Gaussian random

field with mean µ = 50 and exponential covariance C(h) with C(0) = 100,

correlation length a = 5 and nugget parameter η = 0.1. U is a set of

three economic parameters U1, U2 and U3 that determine a so-called damage

function that links water levels to monetary costs. U1, U2 and U3 are as-

sumed to be independent random variables following Gaussian distributions

N (1.5, 0.5), N (55, 5) and N (10, 10), respectively. Random field Z(x) and

random vector U are supposed to be independent. Model output Y (x) is
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the map of expected economic damages due to the flood over the area; these

damages depend on U and Z(x) through the mapping ψ:

∀x ∈ D, Y (x) = ψ [U, Z(x)] = U1 · Z(x)− U2 · e−0.036·Z(x) − U3 (6)

Stakeholders are interested in two outputs: the flood damage Y (x∗) on a

specific building x
∗ ∈ D and the total damage |v| · Yv over a district v (here,

a disc of radius r = 50). Here, the expression of mapping ψ and the statistical

characterization of model inputs may be simple enough that exact values of

sensitivity indices could be derived, but this is usually not the case in real

applications in which the model is very complex. A usual alternative is to

consider model M as a black box and estimate sensivity indices with Monte-

Carlo simulation. We chose to use the estimators and the computational

procedure described by Lilburne and Tarantola (2009, Sect. 3.2), based on

a quasi-random sampling design, using N = 4096 model runs (Table 1). It

appears that on a given site x∗, the variability of the water level map explains

most of the variance of Y (x∗): SZ = 0.89. On a larger spatial support, the

variance of the total flood damage |v| · Yv is mainly due to the economic

parameters U1, U2 and U3: SU(v) = 0.86. Thus, to improve the accuracy

of damage estimation for a specific building, the uncertainty should first be

reduced on the water level map Z(x); however, to improve the accuracy of

total damage estimation over a large district v, the modeler should focus on
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reducing the uncertainty of economic parameters U1, U2 and U3.

3 Change of support effect on block sensitivity indices

In this section, we assess how the ranking of uncertain model inputs based

on their block sensitivity indices vary under a change of support v of model

output.

3.1 Relation between site sensitivity indices and block sensitivity indices

Site sensitivity indices and block sensitivity indices are related. Let EZY (x)

denote the conditional expectation of Y (x) given Z(x), that is:

∀x ∈ D, EZY (x) = E [Y (x) | Z(x)] (7)

EZY (x) is the transform of the input SRF Z(x) via the function ψ̄(z) =

∫

Rn ψ(u, z)fU(u)du (Eq. (2)) where fU(·) is the multivariate pdf of random

vector U. Under our assumptions concerning Y (x), EZY (x) is a second-order

SRF. Let C∗(·) denote its covariance function, σ2 = C∗(0) its variance and

σ2
v its block variance over support v, that is, the variance of block average

1/|v|
∫

v
EZY (x)dx. Block variance σ2

v is equal to the mean value of C∗(h)

when the two extremities of lag vector h describe support v, which we denote

by C∗(v, v) (Journel and Huijbregts 1978, p.78). Using these notations, it

12
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follows from Eq. (4) and (5) that site sensitivity indices and block sensitivity

indices are related by (see Appendix A for a proof):

SZ(v)

SU(v)
=

SZ

SU

· σ
2
v

σ2
=

SZ

SU

· C
∗(v, v)

C∗(0)
(8)

3.2 Change of support effect

Consider now that model M was initially developed to study the spatial

average Yv over the support v, and that after model upscaling the modeler

is interested in the spatial average YV over the support V , where V ≫ v.

We know from Krige’s relation (Journel and Huijbregts 1978, p.67) that the

block variance σ2
v decreases with increasing size of support: σ2

V ≤ σ2
v . It

follows from Eq. (8) that:

SZ(V )

SU(V )
≤ SZ(v)

SU(v)
(9)

The fraction of the variance of the aggregated model output explained by

the input random field Z(x)—compared to the fraction explained by U—

is thus smaller on support V than on support v. More specifically, let us

suppose that the covariance function C∗(·) of the random field EZY (x) has

a finite effective range and that the support v is large with respect to this

range. To a first approximation, the block variance σ2
v is of the form σ2

v ≃

σ2A/|v|, where A is the so-called integral range of C∗(·) and is defined by
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A = 1/σ2
∫

C∗(h)dh (Chilès and Delfiner 1999, p.73). It follows from Eq. (8)

that:

SZ(v)

SU(v)
≃ |v|c

|v| with |v|c = A · SZ

SU

(10)

Equation (10) shows that the ratio |v|c/|v| determines the relative contribu-

tion of the model inputs Z(x) and U to the output variance Var(Yv). The

larger that this ratio is, the larger the part of the output variance Var(Yv) is

that is explained by the input random field Z(x). For a small ratio (i.e., when

the area of the support v is large compared with the critical size |v|c), the

variability of Z(x) is mainly local, and the spatial correlation of Z(x) over v is

weak. This local variability averages over the support v when the aggregated

model output Yv is computed; hence, input 2D random field Z(x) explains

a small fraction of the output variance Var(Yv). However, for a greater ratio

(i.e., when the area of the support v is small compared with the critical size

|v|c), the spatial correlation of Z(x) over v is strong. The averaging-out effect

is weaker; hence, model input Z(x) explains a larger fraction of the output

variance Var(Yv).

3.3 Link between covariance function and block sensitivity indices

Critical size |v|c = A · SZ

SU

depends on the covariance function C∗(·) of the

random field EZY (x), which is itself driven by the covariance function C(·)
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of the input SRF Z(x). Let us now assume that Z(x) is a Gaussian random

field (GRF). EZY (x) is then square-integrable with respect to the standard

normal density. It can be decomposed into an Hermitian expansion and

its covariance function C∗(·) can be written as (Chilès and Delfiner 1999,

p.396-399; see Appendix B for a proof):

C∗(h) =
∞
∑

k=0

λ2k · [C(h)]k (11)

For most of the usual transition covariance functions (e.g., spherical, expo-

nential and Gaussian models), the covariance C(h) is a monotically increas-

ing function of correlation length a. In this case, it follows from Eq. (11)

that the integral range A = 1/σ2
∫

C∗(h)dh also increases with correlation

length a. An increase in correlation length a thus leads to an increase in the

critical size |v|c, and the ratio of block sensitivity indices SZ(v) and SU(v)

satisfies (Eq. (10)):

∂

∂a

[

SZ(v)

SU(v)

]

≥ 0 (12)

The relative contribution of the uncertain model input Z(x) to the variance

of the output of interest Yv increases when the correlation length of Z(x)

increases. Indeed, when correlation length a increases, the averaging-out

effect that occurs when the model output is aggregated over spatial support v

weakens; thus, the fraction of the output variance Var(Yv) which is explained

by the input random field Z(x) increases.

15

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Nugget parameter’s impact on the block sensitivity indices can be interpreted

in the same manner. The nugget parameter η controls the relative part of

pure noise in the input random field Z(x) (Eq. (1)). The smaller η is, the

weaker the averaging-out effect will be when the block average Yv is computed

over the support v, and the larger the part of output variance Var(Yv) will be

that is explained by Z(x). The critical size |v|c is thus a decreasing function

of nugget parameter η, and the ratio of block sensitivity indices SZ(v) and

SU(v) satisfies (Eq. (1), (8), (11)):

∂

∂η

[

SZ(v)

SU(v)

]

≤ 0 (13)

3.4 Illustrative example

To illustrate the change of support effects on sensitivity analysis results, we

performed spatial GSA on our numerical example in the following settings:

varying disc-shaped support v of increasing size (Fig. 2); varying correlation

length from a = 1 to a = 10 (Fig. 3); varying nugget parameter from η = 0

to η = 0.9 (Fig. 4). For each setting, we computed estimates of the output

variance Var(Yv), the block sensitivity indices SU(v), SZ(v) and the ratio

SZ(v)/SU(v) over N = 4096 model runs. Mean values with a 95% confi-

dence interval were then computed for each estimate using bootstrapping

(100 replicas). In accordance with Eq. (9), (12) and (13), it appears that
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the block sensitivity index SZ(v) (i) decreases when the support v increases

(Fig. 2(b)), (ii) increases with the correlation length a (Fig. 3(b)), and (iii)

decreases with the nugget parameter η (Fig. 4(b)). The opposite trends are

observed for sensitivity index SU(v). The change of support effect is clearly

highlighted in Fig. 2(b): the contribution of the economic parameters U1, U2

and U3 to the variance of total flood damage |v| ·Yv exceeds the contribution

of the water level map Z(x) when the radius r of v is greater than rc ≃ 18; for

radius r < rc, the variance of total flood damage over the support v is mainly

explained by the variability of the water levels Z(x). Finally, Figure 2(c)

shows that the ratio SZ(v)/SU(v) is proportional to 1/|v| when the support

v is large enough. The theoretical curve SZ(v)/SU(v) = |v|c/|v| (Eq. (10))

was fitted (least squares - R2 = 0.99) on data points (for r ≥ 20 only), yield-

ing an estimate of the critical size |v|c ≃ 1, 068. All calculations and figures

were realized in R (R Development Core Team 2009): random realizations of

Z(x) were generated with the GaussRF() function from the RandomFields

package (Schlather 2001), while computation of sensitivity indices was based

on a modified version of the sobol() function from the sensitivity package.
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4 Discussion

Our first goal was to provide a formalism that extends the variance-based

GSA approach to spatial models when the modeler is mainly interested in

the linear average or the sum of a point-based model output Y (x) over some

spatial unit v. Our approach is strongly motivated by various prior publica-

tions. Other authors had already computed site sensitivity indices (Marrel

et al. 2011; Pettit and Wilson 2010) and block sensitivity indices (Lilburne

and Tarantola 2009), but did so without naming them or exploring their an-

alytical properties or their relationship. Our work is an attempt to do so.

Equation (8) provides an exact relation between the site and block sensitiv-

ity indices, it may prove useful in the case of a model with a simple enough

analytical expression.

Our research also sought to account for the change of support effects in the

propagation of uncertainty through spatial models, within a variance-based

GSA framework. We proved that the fraction of the variance of the model

output that is explained by a spatially distributed model input Z(x) de-

creases under model upscaling; when the support v is large enough, the ratio

of the block sensitivity index of spatially distributed input to the block sensi-

tivity index of non-spatial inputs is proportional to |v|c/|v|. The critical size
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|v|c depends on the covariance function of the input SRF Z(x); it usually

increases with an increase of the correlation length a or a decrease of the

nugget parameter η. These findings are a translation into GSA formalism of

the averaging-out effect clearly exhibited by Journel and Huijbregts (1978)

in the regularization theory. Our contribution is to discuss this issue from

the point of view of GSA practitioners. Formalizing the effect of a change of

support on sensitivity analysis results may help modelers when they consider

model upscaling; it will orientate future data gathering by identifying model

inputs that will explain the largest fraction of the variance of the model out-

put over a new spatial support. Our contribution also promotes an increased

awareness of the issue of sharing out efficiently, among the various inputs

used by a complex computer code, the cost of collecting field data. At some

point of the model building process, the modeller will usually aim at reduc-

ing the variance of the output below a given threshold, that will depend on

the model use. To do so, the modeller may have to improve his knowledge

on the real value of some of the model inputs, usually by collecting extra

data. In this case, gathering extra field data on inputs maps that have small

sensitivity indices (SZ(v) < 0.1) would be unefficient, as it would be costly

but could not reduce the variance of the model output by a large fraction.

Saint-Geours et al. (2011) discuss this issue on a flood risk assessment case

study.
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It should be noted that our approach is based on conditions that may not be

met in some practical cases. First, we considered a model M with a single

spatially distributed input Z(x). In real applications, modelers may have to

deal with several spatial inputs Z1(x), . . . , Zm(x), with different covariance

functions Ci(·), correlation lengths ai and nugget parameters ηi. In this

case, it can be shown that Eq. (8) still holds separately for each spatial input

Zi(x). However, no conclusion can be drawn a priori regarding how a change

of support affects the relative ranking of two spatial inputs Zi(x) and Zj(x);

the ratio of their block sensitivity indices SZi
(v)/SZj

(v) will depend on the

ratio of block variances σ2
v,i/σ

2
v,j . Second, some environmental models are not

point-based and involve spatial interactions (e.g., erosion and groundwater

flow models). In this case, it still may be possible to build a point-based

surrogate model as a coarse approximation of the original model; if not, then

the change of support properties discussed in Sect. 3 may not hold. Third,

we assumed the input random field Z(x) to be stationary; if it is not, site

sensitivity indices depend on site x
∗ (Eq. (4)). It is then possible to compute

maps of these indices (Marrel et al. 2011; Pettit and Wilson 2010) to discuss

the spatial variability of model inputs sensitivities.

Finally, we focused on the case in which the modeler’s interest is in the

spatial linear average or the sum of model output Y (x) over the support
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v. As discussed by Lilburne and Tarantola (2009), other outputs of interest

may be considered, such as the maximum value of Y (x) over v (e.g., maximal

pollutant concentration over a zone), some quantile of Y (x) over v (Heuvelink

et al. 2010), or the percentage of v for which Y (x) exceeds a certain threshold.

To our knowledge, no study has investigated the properties of sensitivity

indices computed with respect to such outputs of interest.

5 Conclusion

This paper provides a formalism to apply variance-based global sensitivity

analysis to spatial models when the modeler’s interest is in the average or the

sum of the model output Y (x) over a given spatial unit v. Site sensitivity

indices and block sensitivity indices allow us to discuss how a change of

support modifies the relative contribution of uncertain model inputs to the

variance of the output of interest. We demonstrate an analytical relationship

between these two types of sensitivity indices. Our results show that the

block sensitivity index of an input random field Z(x) increases with the ratio

|v|c/|v|, where |v| is the area of the spatial support v and the critical size

|v|c depends on the covariance function of Z(x). Our formalization is made

with a view toward promoting the use of sensitivity analysis in model-based

spatial decision support systems. Nevertheless, further research is needed to
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explore the case of non-point-based models and extend our study to outputs

of interest other than the average value of model output over support v.
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Appendix A: Proof of the relation between site sensitivity indices

and block sensitivity indices

As mentioned in Sect. 2, we assume that the first two moments of Y (x) exist.

The ratio of block sensitivity indices gives (Eq. (5)):

SZ(v)

SU(v)
=

Var (E [Yv | Z(x)])
Var (E [Yv | U])

(14)

The conditional expectation of block average Yv given Z(x) gives:

E [Yv | Z] = E

[(

1/|v|
∫

v

Y (x)dx

)

| Z(x)
]

(definition of Yv)

= 1/|v|
∫

v

E [Y (x) | Z(x)] dx (for a point-based model)

= 1/|v|
∫

v

EZY (x)dx (definition of EZY (x))

Thus we have Var (E [Yv | Z]) = Var
(

1/|v|
∫

v
EZY (x)dx

)

= σ2
v (definition of

σ2
v). Moreover, the conditional expectation of block average Yv given input

U gives:

E [Yv | U] = E

[(

1/|v|
∫

v

Y (x) dx

)

| U
]

(definition of Yv)

= 1/|v|
∫

v

E [Y (x) | U] dx (Fubini’s theorem)

E [Y (x) | U] does not depend on site x under the stationarity of SRF Z(x);

thus, we have in particular E [Yv | U] = E [Y (x∗) | U], and Var (E [Yv | U]) =

Var (E [Y (x∗) | U]). Combining these expressions with Eq. (14) yields:

SZ(v)

SU(v)
=

σ2
v

Var(E [Y (x∗) | U])
(15)
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The ratio of site sensitivity indices gives (Eq. (4)):

.
SZ

SU

=
Var(E [Y (x∗) | Z(x)])
Var(E [Y (x∗) | U])

(16)

We notice that for point-based models Var [E(Y (x∗) | Z(x)] = Var [EZY (x∗)] =

σ2 (definition of EZY (x) (Eq. (7))). Finally, it follows from Eq. (15) and (16)

that:

SZ(v)

SU(v)
=
SZ

SU

· σ
2
v

σ2

Appendix B: Hermitian expansion of random field EZY (x)

The random field EZY (x) can be written (Eq. (2), (7)) as a transformation

of the Gaussian random field Z(x) through the function ψ̄ : z 7→
∫

Rn ψ(u, z) ·

fU(u) du:

EZY = ψ̄ (Z)

where fU(·) is the multivariate pdf of random vector U. Under the hypothesis

that the first two moments of Y (x) exist, random field EZY (x) has finite

expected value and finite variance. Thus, ψ̄ belongs to the Hilbert space

L2(G) of functions φ : R → R, which are square-integrable with respect to

Gaussian density g(.). Hence, ψ̄ can be expanded on the sequence of Hermite

polynomials (χk)k∈N, which forms an orthonormal basis of L2(G) (Chilès and
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Delfiner 1999, p.399):

ψ̄ =
∞
∑

k=0

αk · χk with χk(z) =
1√
k!

· 1

g(z)
· ∂

k

∂zk
g(z)

where coefficients αk are given by: αk =
∫

R
χk(z)ψ̄(z)g(z) dz. It follows that

EZY (x) can be written as an infinite expansion of polynomials of Z(x):

∀x ∈ D, EZY (x) =

∞
∑

k=0

αk · χk [Z(x)]

Its covariance then gives (Chilès and Delfiner 1999, p.396, Eq. (6.23) and

p.399, Eq. (6.25)):

Cov (EZY (x), EZY (x+ h)) =
∞
∑

k=0

α2
k ·

[

C(h)

C(0)

]k

=
∞
∑

k=0

λ2k · [C(h)]k

where C(h) is the covariance function of GRF Z(x) and λk = αk · C(0)−k/2.
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Captions of tables

Tab. 1 Sensitivity analysis results over N = 4096 model runs with respect to

the outputs of interest Y (x∗) and |v| · Yv. Mean values with ±s.d. computed

by bootstrapping (100 replicas).
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TABLE 1

Support Site x
∗ Block v

Output of interest Y (x∗) |v| · Yv

Mean of output 66.5± 4.2 539 · 103 ± 3.6 · 103

Variance of output 1393± 188 9 · 109 ± 0.2 · 109

Site indices: Block indices:

Sensitivity indices SU = 0.09± 0.03 SU(v) = 0.86± 0.02

SZ = 0.89± 0.02 SZ(v) = 0.12± 0.02
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Captions of figures

Fig. 1 Spatial model with uncertain inputs U and Z(x) and spatial output

Y (x). The modeler is interested in the block average of Y (x) over some

spatial unit v

Fig. 2 GSA results depending on the size of disc-shaped support ν (with

radius r and area |ν| = πr2), for a = 5, η = 0.1: (a) total variance of Yv,

(b) block sensitivity indices SU(v) (solid line) and SZ(v) (dashed line), (c)

ratio SZ(v)/SU(v) with fitted curve SZ(v)/SU(v) = |v|c/|v| (dashed line).

Error bars show 95 % confidence interval computed by bootstrapping (100

replicas)

Fig. 3 GSA results depending on correlation length a, for η = 0.1 and a

disc-shaped support v of radius r = 50: (a) total variance of Yv, (b) block

sensitivity indices SU(v) (solid line) and SZ(v) (dashed line). Error bars

show 95 % confidence interval computed by bootstrapping (100 replicas)

Fig. 4 GSA results depending on covariance nugget parameter η, for a = 5

and a disc-shaped support v of radius r = 50: (a) total variance of Yv, (b)

block sensitivity indices SU(v) (solid line) and SZ(v) (dashed line). Error bars

show 95 % confidence interval computed by bootstrapping (100 replicas)
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Figure 1
Click here to download high resolution image
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Figure 2
Click here to download high resolution image
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Figure 3
Click here to download high resolution image
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Figure 4
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MATG731
“Change of Support in spatial variance-based sensitivity analysis”

N. Saint-Geours, C. Lavergne, J.-S. Bailly and F. Grelot

Response to reviewer’s comments

We would like to thank the reviewer for his comments and suggestions. Our comments and answers are
provided in the response below (in blue).

-------------

Conditional Expectation
Let f X,Y(x,y) be the joint probability density function for random variables X, Y. To compute E[X |Y ] we must
first consider the conditional probability density function for X (given Y = y). This
is
f X | Y(x | y) = f X,Y(x,y)/ f Y(y) for f Y(y) ≠ 0
= 0 for f Y(y) = 0
Where f Y(y) = ∫ f X,Y(x,y)dx (the marginal probability density for Y)
Then E[X | Y = y] = ∫ xf X | Y(x |y)dx provided ∫| x|f X | Y(x |y)dx is finite.
While some properties of conditional expectation can be presented/discussed without explicitly mentioning
the joint probability density it is always implicitly involved. In particular a proof of the “Total Law of Variance”,
i.e. the decomposition of the variance of X does not require a particular joint probability density function. But
to compute Var{E[X |Y]}  for  a particular  pair  of  random variables does require knowing the joint  density
function and both marginals.
Var{E[X | Y = y]} = EY{(E[X | Y])2 - (EY{E[X | Y]})2
The subscripting “EY” is a reminder that to compute this expectation the marginal density for Y must be
used,
While (EY{E[X | Y]})2 = (E[X])2 , EY{(E[X | Y])2 ≠ E[X2] (unless X, Y are independent)

--> Thank you for  this clarification. Some notations and explanations have been modified in the revised
manuscript. U and Z(x) are supposed to be independent thoughout the manuscript (we forgot to make it clear
in the initial submission). See the answers below for more details.

VARIOUS CONCERNS

• Page 2, lines 9-14 “Variance-based global sensitivity analysis” is an inanimate object or concept,
hence it can’t “aim” to do anything. The user of this methodology might have a particular goal or
object in mind but the method itself does not. While variance is somewhat related to “uncertainty” it is
not the same. “Uncertainty” would have to be quantified in terms of probabilities.

-->  Thank  you.  We replaced  "aim"  by  "is  used  to"  in  the  revised  manuscript.  We also  changed  most
occurrences of the term "uncertainty" --  that was indeed too vague -- by "variance" when it was appropriate.

• Page 3, line 29 The referenced document from EPA is no longer available at that URL. Elsewhere on
the EPA site  it  indicates  that  this  was a document  put  out  to  solicit  public  comment.  It  did not
represent adopted policy or guidance.

--> Thank you. On April, 2012, 12th, we found the referenced document still available on the Web, at the URL

which is given in the manuscript: http://www.epa.gov/crem/library/cred_guidance_0309.pdf

This document is a final version approved by EPA, after they collected public comments:
"A draft version of this document was reviewed by an independent panel of experts established by EPA's
Science Advisory Board and revised by CREM in response to the panel’s comments. This final document is
available in printed and electronic form." (extract from the document preface)

The referenced document  does not  represent  any legal  requirement,  yet  it  provides official  guidance to
develop and evaluate environmental models: 
"This document provides guidance to those who develop, evaluate, and apply environmental models. It does

*Response to Reviewer Comments



not impose legally binding requirements; depending on the circumstances, it may not apply to a particular
situation. The U.S. Environmental Protection Agency (EPA) retains the discretion to adopt, on a case-by-
case basis, approaches that differ from this guidance." (extract from the document disclaimer)  

• Page 3,  lines 45-47 Since the authors  are  using the terms “model”,  “input”,  “output”  in  only an
abstract, vague way there is no assurance that collecting additional data will reduce the fraction of
the variance of the output that is attributable to a particular input. It may also be a question of the
nature  of  the”data”.  Since  the  authors  are  specifically  concerned  with  spatial  models,  the
geographical pattern of the data locations may be very important and changing that pattern may
result in a reduction in the variance of the output.

--> Thank you. Indeed, there is no assurance that collecting additional data will reduce the fraction of the
variance of the output that is attributable to a particular  uncertain input -- even if  it  is  the case in many
applications. The question of the spatial pattern of the data locations is also very important, and exploring
how sensitivity indices vary under a change of these data locations would be interesting. 

Yet our goal in this paragraph was just to give a general -- and probably too vague as you mentioned it --
overview of what sensitivity analysis is and what it is usually used for. In most cases, sensitivity analysis is
used to identify the main processes involved in a complex computer code, and to select the inputs that
contribute the most to the variance of the model outuput. Then the modeller will try to get a more accurate
estimation of the 'real' value of these inputs. In most cases (yet not always) reducing the variance of these
uncertain inputs will result in a reduction of the variance of the model output. We changed this sentence in
the revised manuscript, to try and be more precise:

"Based on these sensitivity indices, ranking the model inputs helps to identify inputs that should be better
scrutinized first. Reducing the uncertainty on the inputs with the largest sensitivity indices (e.g, by collecting
additional data or changing the geographical pattern of data locations) will often result in a reduction in the
variance of the model output."

• Page  3,  line  50  “influence”  is  a  vague  term.  Presumably  the  authors  mean  that  the
presence/absence of the inputs in question don’t cause the variance of the output to increase or
decrease. They should be much more precise.

--> Thank you. Here we wanted to explain that if a model input has a very small sensitivity index compared to
the other inputs, then trying to reduce the uncertainty on this input is of small interest : in any case it wouldn't
cause the variance of the output to decrease much. As it was not clear enough and not really important, we
removed this sentence in the revised manuscript.

• Page  3,  line  52  “Model  behavior”  is  a  very  vague  term  and  can  have  a  variety  of  meanings.
“Understanding behavior” is at least partially a characteristic of the person(s) using the model.

--> Thank you. Our sentence was too vague. What we tried to say briefly is the following: global sensitivity
analysis (GSA) is useful to explore the "response surface" of a complex computer code with many inputs, no
simple analytical expression, that may represent various physical or  anthropic processes. By performing
GSA,  the  modeller  will  usually  get  a  better  idea  of  what  are  the  main  processes  in  his  model,  which
processes strongly interact with others, which process may be simplified or even removed from the model,
etc. We changed this sentence in the revised manuscript :

"More generally, GSA helps to explore the response surface of a black box computer code and to prioritize
the possibly numerous processes that are involved in it."

• Page 3, line 56. Presumably in using the term “scalar inputs” the authors are contrasting those with
“vector inputs”. In the example on page 7 the inputs are either random variables or a random field
hence the term “scalar inputs” is not appropriate. However the inputs in this example are presumably
“scalar valued”, i.e. each of the random variables is real valued and the random field is real valued.
Also see line 9 on page 7

--> Thank you. What we wanted to oppose is: on one side, uncertain inputs that are modeled as real valued
random variables; on the other side, uncertain inputs that are modeled as random functions or random fields
(real valued or not). We changed the sentence in the revised manuscript:

"Although GSA was initially designed for models where both inputs and output can be described as real
valued random variables, some recent work has extended GSA to environmental models for which both the



inputs and output are spatially distributed over a two-dimensional domain and can be described as random
fields."

We also changed the description of inputs U and Z(x) on section 2.1.

• Page 4, line 14 Delete “sampled”. The field data is likely already a sample. Note that digital elevation
models and land use maps might refer to physical presentations, e.g. printed on paper or they might
refer to a visual representation in electronic form. In either case the maps are not the actual inputs.
To  actually  determine/choose  a  random  field  model  will  likely  require  collecting  data  and  then
estimating parameters. Moreover there are different types of random field models and those different
types might result in different variances for the output, this could result in a significant amount of
“uncertainty” that is not quantified.

-->Thank  you.  We removed  the  word  "sampled" in  the  revised  manuscript,  and  rephrased  the  whole
sentence:

"In these works, the computer code under study uses maps derived from field data (e.g., digital elevation
models and land use maps)."

We couldn't make a clear distinction in the manuscript (to try keep things simple and short enough) between
the actual computer code inputs (which may be numbers or maps), and the description of the uncertainty on
these inputs (using random variables or random fields).
From a very practical point of view, maps (digital elevation model, landuse map) are stored as layers in a GIS
software. These layers are the actual inputs that the computer code uses to calculate its output. Then, for
real valued inputs, uncertainty is described by representing the input with a real valued random variable with
a given pdf. For spatially distributed inputs (maps), the uncertainty can be described by representing the
input with a given random field model. In this case, describing properly the random field model will indeed
require collecting data and estimating parameters. The choice of the random field model will also result in
additional "uncertainty" that is not quantified.

We rephrased section section 2.1 in the revised manuscript to make a clearer distinction between these two
different notions. 

• Page 4, line 35 Does “efficient estimation procedures” pertain to the meaning used in the statistical
literature or does it  have some other meaning? In the statistical  literature one might refer to an
“efficient estimator”, i.e., one which has a smaller variance than other estimators but that would not
make sense with respect to “procedures”.

-->  Thank  you.  We misused  the  word  "efficient"  in  this  sentence.  We didn't  intend  to  talk  about  the
"efficiency" of estimators with the meaning used in the statistical litterature. Thus we just removed the word
"efficient" from this sentence in the revised manuscript.

• Page 4, line 54 Note that the term “scale” has multiple (and sometimes contradictory) meanings.
That is one of the reasons why the term “support” is used in the geostatistical literature as opposed
to scale.

--> Thank you.  We replaced most occurrences of  the term "scale"  by the term "support"  in the revised
manuscript. We kept the terms "scale" and "model upscaling/dowscaling" on p.4, line 54, because we are
citing a paper (Heuvelink 1998, p.1) and we don't want to modify the expression used by the original author.
We also kept the terms "small-scale properties" and "large-scale properties" on p.4, line 55, because we are
citing a definition from Chilès & Delfiner (1999, section 8.1, p.593) that we don't want to modify either.

• Page 5, lines 43 & 53. What do “influential” and “influence” mean in this context? Also see line 22 on
page 6 and many other  places.  “Influence”  could  mean deterministic,  i.e.  actual  cause-effect  or
simply correlated or some other vague idea. The authors are using the wrong word

--> Thank you. Manuscript was modified according to this recommendation: we removed all occurrences of
the terms "influential" and "influence" in the revised manuscript. 

• Page 5, lines 48-50. Change”most to model output uncertainty” to “largest fraction of the variance of
the output of the model”



--> Thank you, manuscript was modified according to this recommendation.

• Page 5, line 50 What is “spatial structure of uncertainty of a model input”? Moreover the authors
never  actually  consider  “uncertainty”  they  only  consider  the  variance  of  the  model  output.  All
references to “uncertainty” should be omitted or appropriately changed.

--> Thank you. Our sentence was too vague. What we wanted to denote by the expression "spatial structure
of uncertainty of a model input" is more precisely the shape and parameters of the covariance function C(.)
of  the  random  field  model  Z(x) that  is  used  to  describe  an  uncertain  spatial  input.   We modified  this
expression in the revised manuscript to be more precise:

"How does the contribution of a spatial input to the variance of the model output depend on the parameters
of its covariance function?"

Moreover, we replaced all occurences of the term "uncertainty" by "variance" when it was appropriate to do
so (not in the very begining of the introduction which we want to be very general).

• Page 6, lines 27-33. The description of “point-based” models is incorrect.

--> Thank you. We took the term "point-based model" from the following paper (p.1):
Heuvelink GBM, Brus DJ, Reinds G (2010)  Accounting for spatial sampling effects in regional uncertainty
propagation analysis. In: Tate NJ, Fisher PF (eds) Proceedings of the 9th international symposium on spatial
accuracy assessment in natural resources and environmental sciences (Accuracy2010), pp 85--88

where the authors say:
"Many environmental models involve spatial interactions. Examples are erosion, groundwater flow and plant
dispersal models. However, there are also many environmental models that are essentially point-based. For
instance, models that predict crop growth, greenhouse gas emission, soil acidification or evapotranspiration
at some location typically use soil, landuse, management and climate input data at that same location only."

We want to limit our study to models that can be described by Eq.(2) in our manuscript:

for all x in D, Y(x) = f [ U, Z(x) ]

We don't want to discuss the case where  Y(x*) (model output at some location  x*) would be a function of
Z(x*) (model input at that same location) and Z(y) with y ≠ x* (model input at some other location). Thus we
want to limit our study to the kind of models where "the computation of the model output at some location x*
uses the values of spatial inputs at that same location x* only".

We don't know if that family of models has a name in the geostatistical litterature. We would be happy to
change the term "point-based" to a more appropriate term if it exists. As we don't know which other term to
use so far, we didn't modify this term in the revised manuscript.

• Page 7, lines 14-17. Although there is some variation in the statistical literature of the definition of
strict stationarity, it always includes the condition that the joint distribution of Z(x1), …, Z(xn), for any
finite collection of points in D, is translation invariant. It may or may not include the requirement that
Z(x) have finite expected value and finite variance. If it does then it is also second order stationary. In
most  applications  the  statistical  characteristics  of  the  random  field  will  not  be  known,  e.g.  the
multivariate probability distribution and its parameters. Since it is unlikely that one can collect data
from multiple realizations of the random field, one can’t use the data to determine characteristics of
the multivariate probability distribution.

--> Thank you for this clarification. We want to use the notion of "second-order stationary random field" as it
is defined in Chilès & Delfiner (1999, p.17 section 1.1.4.). If we understood properly:

– "strict  stationarity"  with  finite  first-order  and  second-order  moments  implies  "second-order
stationarity"

– "second-order stationarity" does not necessarily implies "strict stationarity"

– under the hypothesis of second-order stationarity, it is possible to use the data of a single realization
of the random field to determine its mean and the characteristics of its covariance function. Without
this hypothesis, one can’t use the data to determine characteristics of the multivariate probability
distribution.

We rephrased the whole section 2.1 in the revised manuscript.



• Page 7, lines 17-49. Since Y(x) is purportedly a function of U and Z(x), in order to consider statistical
properties of Y(x) one must assume that U and Z(x) are defined on the same probability space. Are
the authors assuming that U and Z(x) are independent or is there some unstated joint probability
distribution? In any case, if Y(x) has finite expected value then both of the conditional expectations
must  exist.  To  actually  compute  any  of  these  expectations  one  needs  to  know the  probability
densities and the conditional densities. All of this material needs to be re-written in a more careful
way (and statistically correct).

--> Thank you for this question.  Random vector  U and random field  Z(x) are supposed to be independent
throughout the paper, but we unfortunately forgot to make it appear in the initial manuscript. We added the
following sentence in the revised manuscript (section 2.1):

"U and Z(x) are supposed to be independent."

Under  this  hypothesis,  the  conditional  density  of  U  given  Z(x)  is  the  marginal  density  for  U  and  the
conditional density of Z(x) given U is the marginal density for Z(x). 

Also, when we wrote the initial manuscript, we were not sure that when Y(x) has finite expected value and
variance, then E[ Y(x) | Z(x)] and E[Y(x) | U] (which are both random variables) necessarily both have finite
expected value and finite variance. After some more careful examination, it appears that this property simply
derives from conditional Cauchy-Schwarz inequality. Thus we removed the additionnal conditions on E[ Y(x) |
Z(x)] and E[Y(x) | U]  in the revised manuscript.

Finally, we are not really interested in discussing the expression of the conditional densities of Y(x) knowing
U or Z(x), so we don't think there is a need to explicitly mention these conditional densities in the manuscript.

• Page 7, line 17. Change “covariogram” to “covariance function”, see page 70 of Chiles and Delfiner
for the definition of “covariogram” which is not the same as “covariance function”. Also see the same
problem on page 12, line 28 and page 13, line 37, page 14, line 54.

--> Thank you.  Manuscript  was modified according to this  recommendation: all  occurrences of  the term
"covariogram" were replaced by "covariance function".

For information, we took the definition of "covariogram" from Cressie (1993, p.53, eqn. 2.3.3) :
" The function C(.) is called a covariogram or a stationary covariance function:

cov(Z(s1),Z(s2)) = C(s1 – s2) for all s1, s2 in D"

and also p.67:
" Call the function C(.) given by (2.3.3) (provided it is well defined), a covariogram. (Notice that it has also
been called an autocovariance function by time-series analysts.)"

• Page 8, line 31. It is essential to restrict the possible choices for the function f,  for example if  f(X1,
X2) = X1/X2 where X1, X2 are independent standard normal random variables then f(X1, X2) does
NOT have  either  an  expected  value  nor  a  variance.  Thus  all  of  the  discussion  that  follows  is
erroneous.

--> Thank you. The discussion holds if  Y has finite expected value and finite variance. The manuscript was
modified according to this recommendation: 

"Let us consider a model Y = f(X1, ..., Xn) where Xi are independent random variables and where the first two
moments of Y exist."

• Page 8, lines 43-45. The statement “It is the expected part of the output variance Var(Y) that could
be  reduced”  is  incorrect  The  sensitivity  index  is  really  based  on  the  following  
Var(Y) = E(Var (Y | X)) + Var(E(Y |X)) The two terms on the right hand side are the “fraction of
variance unexplained” and “fraction of variance explained”. This relationship is sometimes called the
“Total law of variance”. See most text books on probability theory for more details.

--> Thank you. We took most of the material of this paragraph from the following book, which is very often
cited if the field of sensitivity analysis:

Saltelli  A, Ratto M, Andres T, Campolongo F, Cariboni J,  Gatelli  D, Saisana M, Tarantola S, eds (2008)
Global sensitivity analysis, the primer. Wiley, New York



In  the  literature  of  sensitivity  analysis,  the  definition  of  sensivity  indices  is  usually  built  from  the
decomposition of the function f(.) into what is often called "high dimensionnal model representation" (HDMR)
(that was originally suggested by Hoeffding (1948), see also Sobol (2001, 2003), references below):

f(x1,...xn) = f0 +  f1(x1) + ... + fn(xn) + f1,2(x1,x2) + ... + f1,...n(x1,....,xn)

where the integral of each function fi1,...,ik() is equal to 0. The decomposition of the variance of f(X) that derives
from this functional decomposition is very close to the ANOVA framework: 

Var[ f(X) ]= Var[ f1(X1) ] + ... + Var[ fn(Xn) ] + Var[ f1,2(X1,X2) ] + ... + Var[ f1,...n(X1,....,Xn) ]. 

First-order sensitivity index of input Xi is then defined as the ratio Var[ fi(Xi) ] / Var [ f(X) ], which is the same
as the Equation (3) in our manuscript, written in terms of conditional expectations.

Higher-order sensitivity indices can also be defined from this decomposition, to characterize the contribution
of the interactions between several uncertain inputs Xi1,...,Xik to the variance of the output f(X).

The statement “It is the expected part of the output variance Var(Y) that could be reduced” may be incorrect.
In the revised manuscript, we just removed it. 

References :

W. Hoeffding. A class of statistics with asymptotically normal distribution. Annals of Mathematical Statistics,
19 :293–325, 1948.

Homma, T. & Saltelli, A.  Importance measures in global sensitivity analysis of nonlinear models Reliability
Engineering & System Safety, 1996, 52, 1 - 17

Saltelli  A, Ratto M, Andres T, Campolongo F, Cariboni J,  Gatelli  D, Saisana M, Tarantola S, eds (2008)
Global sensitivity analysis, the primer. Wiley, New York

Sobol,  I.  Global  sensitivity  indices  for  nonlinear  mathematical  models  and  their  Monte  Carlo  estimates
Mathematics and Computers in Simulation, 2001, 55, 271 - 280

Sobol', I. M.  Theorems and examples on high dimensional model representation Reliability Engineering &
System Safety, 2003, 79, 187 - 193

• Page 9, lines 47-50. See the comment just above.

--> OK.

• Page 9, eqs 4 & 5. Delete the “:x’ ε D”, that is logically incorrect

--> Thank you, the manuscript was modified according to this recommendation. 

• Page 10, lines 24-26. The exponential covariance function does not have a true range in the sense
that there is no spatial dependence beyond that distance. However in the geostatistical literature it is
common to refer to the “effective range”, i.e. the distance at which the value of covariance function
has decreased to .05C(0). If a is the parameter in the functional form of the covariance function then
it is not the effective range, however it is what is called the correlation length. The authors need to
clarify which it is, “effective range” or “correlation length/integral range”. In any case it appears that
the authors have chosen a range that is quite small in comparison to the scale of the “block” used
later.

--> Thank you. We misused the term "range", denoted by 'a', to refer to the parameter in the functional form
of the covariance function C(.). In our illustrative example, the "effective range" is thus close to 3*a (as we
use an exponential covariance function:

C(h) = C(0) . [ η δ(|h|) + (1-η)exp(-|h|/a) )]

We changed the manuscript according to the recommendation, replacing all occurrences of the term "range"
by "correlation length" or "effective range" depending on the intended meaning.



The term "integral range", denoted by A in our manuscript, was taken from Chilès and Delfiner (1999, p.73): 

A = 1/σ² ∫ C(h) dh

where C(.) is a covariance function. If we understood properly this definition, for a given covariance function
C(.), the integral range A is not necessarily equal to the parameter a in the functional form of C(.)  (that we
now call "correlation length").  If C(.) is an exponential covariance function with correlation length a, then the
integral range is equal to  A =  π a².  We didn't change the occurrences of the term "integral range" in the
revised manuscript.

In the illustrative example, we chose a  correlation length varying from  a=1 to  a=10,  corresponding to an
effective range varying from 3 to 30. The radius of the disc-shaped "block" was varying from r = 1 to r = 50.
The ratio between the range and the size of the block is of the same order of magnitude than in the real
case-study that we work on (not described in the manuscript), where Z(x) is a map of water levels and M is a
model that computes total flood damage over a large study area.

• Page 10, section 2.3. Are the random variables and the random field dependent or independent?
They have not sufficiently characterized the random field Y(x)

--> Thank you for this question. Random vector  U and random field  Z(x) are supposed to be independent
throughout  the  paper,  but  we  unfortunately  forgot  to  make it  appear  in  the  manuscript.  We added  the
following sentence in the revised manuscript (section 2.1):

"U and Z(x) are supposed to be independent."

• Page 10, line 29 Change “describe” to “determine”, very different meanings

--> Thank you. Manuscript was modified according to this recommendation.

• Page 10, line 31 Change “expected monetized costs” to “monetary costs”. The “expected” term is
clearly incorrect here.

--> Thank you. Manuscript was modified according to this recommendation.

• Page 10, lines 53-55. What does “analytical expression” mean here? Does it only mean the formula
given in eq(6) or does it mean a complete statistical characterization? In any case the authors have
left  out  the  key question  of  whether  the  two  inputs  are  dependent  or  independent?  If  they are
dependent then it is essential to give the actual joint probability distribution. This would be necessary
even if Monte Carlo simulation is used.

--> Thank you for this question. By  "analytical expression" we mean eq(6) + the knowledge of the pdf of
random variables U1,  U2,  and U3 + the knowledge of random field model of Z(x). Random vector  U and
random field  Z(x)  are supposed to be independent  throughout  the paper.  In  the revised manuscript  we
changed this sentence to:

"Here,  the expression of  mapping  ψ  and  the statistical  characterization  of  model  inputs  may be simple
enough that exact values of sensitivity indices could be derived"

• Page 10, line 60. Change “model complexity is high” to “model is very complex”

--> Thank you. Manuscript was modified according to this recommendation.

• Page 11. line 9. The authors should provide more information about how they used a “Monte Carlo
approach” and also the “sampling-based method”.  Lilburne and Tarantola (2009)  do not  use the
terminology “sampling-based method”, they do consider various “sampling designs”.

--> Thank you. We estimated sensitivity indices using the computational procedure described in section 3.2
of Lilburne and Tarantola (2009), with a quasi-random sampling design, and with the estimators given in
formulas (8), (9) (11)-(16). We changed the sentence in the revised manuscript:



"A usual alternative is to consider model M as a black box and estimate sensivity indices with Monte-Carlo
simulation. We chose to use the estimators and the computational procedure described by Lilburne and
Tarantola (2009, Sect. 3.2), based on a quasi-random sampling design, using N = 4096 model runs."

• Page 12, line 26 The expression apparently refers back to page 7 but “p(u)” is not identified either on
page 7 or on this page (nor on page 25). The integral should be ∫y f Y | Z (y |z) dy where f Y | Z (y |z)
= f Y , Z (y , z)/ f Z (z), i.e. the conditional density of Y given Z is the quotient of the joint density of Y,
Z and the marginal density of Z. To determine the joint  density of Z, Y one must know the joint
density of  U  and Z.  The authors  have not  given that  density nor  said anything  about  the  joint
distribution of U and Z. It is also possible to use a change of variables in the integral to write the
above integral in terms of the conditional density of U given Z. Perhaps the authors are assuming
(but without ever saying so) that U and Z are independent. In that case the joint density would be the
product and then the conditional density of U given Z would be the marginal density for U.

--> Thank you for this clarification. p(u) is supposed to denote the multivariate pdf of the random vector U, as
it was (not very clearly) said on page 7, line 12 in the initial manuscript. 
Random vector  U and random field  Z(x)  are supposed to be independent throughout the paper,  but we
unfortunately forgot  to make it  appear in the initial  manuscript.  We added the following sentence in the
revised manuscript (section 2.1):

"U and Z(x) are supposed to be independent."

Under this hypothesis, the conditional density of U given Z is the marginal density for U, i.e. the multivariate
pdf p(u). To make notations more explicit, we replaced the notation p(u) by fU(u) in the revised manuscript.
We also put the definition of fU(u) on p.12 in the revised manuscript:

"EZY(x) is the transform of the input SRF Z(x) via the function Ψ(z)= ∫ Ψ(u,z) fU(u) du [Eq. (2)] --- where fU(.)
is the multivariate pdf of random vector U."

• Page 13, line 32 Again the term “influence”, also the comparative word should be “lesser”, Also see
page 14, line 22., page 14, line 30, page 14, line 54. Also see the title of section 3.3, page 15 line 39

--> Thank you. Manuscript was modified according to this recommendation: we replaced the term "influence"
by more appropriate terms throughout the manuscript. We also replaced "lower" by "lesser".

• Page 13, line 35 Again “uncertainty” when the authors really mean variance of the output, also see
line 9 page 14., line 19 page 14

-->  Thank  you. Manuscript  was  modified  according  to  this  recommendation:  we  replaced  the  term
"uncertainty" by "variance" when it was more appropriate.

• Page 13, line 55 Change “drives” to “determines”

--> Thank you. Manuscript was modified according to this recommendation.

• Page 14, change “low” to “small”

--> Thank you. Manuscript was modified according to this recommendation.

• Page 14,  lines 49-54.  The real  reason that  EZ[Y(x]  can be represented as an infinite  series  of
Hermite polynomials is that EZ[Y(x] is square integrable with respect to the standard normal density
function. Note this is “mean-square convergence, not “point-wise”

--> Thank you for this clarification. This is the proof that we try to develop in more details in Appendix B. The
sentence page 14, lines 49-54 has been modified to make this reason clearer: 

"EZ[Y(x)]  is  then  square-integrable  with  respect  to  the  standard  normal  density  function.  It  can  be
decomposed into an Hermitian decomposition and its covariogram can  be written as: (...)"

• Page 15, line 22 Change “verifies” to “satisfies”, also see page 16, line 9

--> Thank you. Manuscript was modified according to this recommendation.



• Page 15, line 50 Change “lower” to “smaller”

--> Thank you. Manuscript was modified according to this recommendation.

• Page 16, line 40. See comment with respect to page 29 concerning the confidence intervals

--> Thank you.  Confidence intervals were computed using bootstraping, with n=100 replicas. A clarification
was added on this point in the revised manuscript: "Mean values with a 95% confidence interval were then
computed for each estimate using bootstrapping (100 replicas)."

• Page 17, line 12 “uncertainty” again

-->  Thank  you.  Manuscript  was  modified  according  to  this  recommendation:  we  replaced  the  term
"uncertainty" by "variance".

• Page 17, line 14 Change “illustrates” to “shows”

--> Thank you. Manuscript was modified according to this recommendation.

• Page 17, line 25. The R software system incorporates a great many “packages”, some are part of
the standard download but others are not. The authors should be more explicit about how they used
R, i.e., which “packages” and which functions within those packages..

-->  Thank  you  for  this  question.  We used  the  GaussRF() function  from the  RandomFields package  to
generate realizations of random field Z(x). We also modified the function sobol() from package sensitivity and
the S3 method "tell"  for  objects  of  class  "sobol",  to  estimate variance-based sensitivity  indices with the
estimators given by Lilburne and Tarantola (2009, section 3.2, eq. (8), (9), (11)-(16)). To be more explicit, we
added a sentence in the revised manuscript:

"All  calculations  and  figures  were  realized  in  R:  random  realizations  of  Z(x)  were  generated  with  the
'GaussRF()' function from the 'RandomFields'  package (Schlather 2001),  while computation of sensitivity
indices was based on a modified version of  the 'sobol()' function from the 'sensitivity' package."

We also added a reference on the RandomFields package (Schlather 2001) in the list of references.

• Page 17, line 42 Change “previous related works” to “various prior publications”
--> Thank you. Manuscript was modified according to this recommendation.

• Page 18, line 14 “influence”, also line 45

--> Thank you. Manuscript was modified according to this recommendation: we replaced the term "influence"
by more appropriate terms throughout the manuscript. 

• Page 18, lines 53 & 58 How is “accuracy” quantified? In what sense is accuracy “appropriate”or not
appropriate?

--> Thank you for these questions. By "accuracy", we mean a measure of how much the input maps (e.g. a
digital elevation model, a landuse map) that are used by the computer code under study, differ from the "real"
spatially  distributed  physical  variable  they  represent.  Measuring  this  "accuracy"  is  part  of  the  quality
assessment of the input map. It could be measured for example from an extra set of validation field points,
by computing the root mean square error between the value of the physical variable at validation field points
and the value of the variable taken from the input map at the same locations.

The precise meaning of the term "appropriate" depends on the goal of the modeller. In a given context, the
modeller will usually fix a limit on the variance of the output of his computer code: under this threshold, he
will  consider that the model  output is  "precise enough" for  what it  will  be used for  (decision making for
example). To reach such a variance, the modeller may have to improve his knowledge on the 'real' value of
some the model inputs. In that case, he'd better start working on the model inputs with the largest sensitivity
indices, because reducing the variance of these inputs will likely reduce the variance of the output by a large
fraction.

We rephrased this sentence in the revised manuscript:



"Our contribution also promotes an increased awareness of the issue of sharing out efficiently, among the
various inputs used by a complex computer code, the cost of collecting field data. At some point of the model
building process, the modeller will usually aim at reducing the variance of the output below a given threshold,
that will depend on the model use. To do so, the modeller may have to improve his knowledge on the real
value of some of the model inputs, usually by collecting extra data. In this case, gathering extra field data on
inputs maps that have small sensitivity indices (SZ(v) < 0.1) would be unefficient, as it would be costly but
could not reduce the variance of the model output by a large fraction."

• Page 24, lines 31 & 34 Delete the “:x’ ε  D”,  that is  logically incorrect. The block average is not
conditioned on the random field but rather on a random variable, i.e. Z at a particular location. Also
see eqs 4 & 5 on page 9

--> Thank you, the manuscript was modified according to this recommendation. 

• Page 29 In the captions for Figures 3a, 4a it refers to “Yv” but on the figures themselves the titles
seem to use a different identification

--> Both Figures 3a and 4a show the total  variance of   Yv on the y-axis.  The label  on the figures was
"Variance of Yv”, while the two captions said "total variance of Yv”. To make things clearer, we changed the
labels of the y-axis on the figures to "Var[Yv]".

• Page 29 In the captions for Figures 2,3,4 the authors claim that the error bars show 95% confidence
intervals. How are the confidence intervals computed, did the authors use “bootstrapping” or did they
assume a normal distribution to do so but with no justification. In any case they should provide
clarification.

--> Confidence intervals were computed using bootstrapping, with n=100 replicas. A clarification was added
on this point in the captions for  Figures 2,3,4:  "Error bars show 95 % confidence interval computed by
bootstrapping (100 replicas)"


