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50 Avenue Tony Garnier, F-69007 Lyon, France

Abstract

In the Solvency II framework, insurance companies need to calculate the Best Estimate val-
uation of Liabilities (BEL) and the Market Value Margin (MVM) for non-hedgeable insurance-
technical risks. The Cost-of-Capital approach defines the MVM as the present value of the
current and future Solvency Capital Requirement (SCR) of the non-hedgeable risks to protect
against adverse developments in the run-off of the insurance liabilities. However the SCR at
time t itself depends on the increase in the MVM between t and t + 1. Hence there exists an
intricate circularity dependency between both quantities. In this paper we present exact and
accurate approximate analytic formulas for MVMs within a Bayesian log-normal chain ladder
framework.

1 Introduction

Solvency II is creating a new approach to regulate capital requirements by quantifying risks and
is giving incentives for companies to develop good risk management practices. It will be based
on economic principles for the measurement of assets and liabilities and capital requirements will
depend directly on this. In particular it introduces the market consistent economic (solvency)
balance sheet and two points in time are considered to calculate the Solvency II Capital Requirement
(SCR): the current balance sheet and the balance sheet at the end of the year. The main components
of this balance sheet are the Market Value of Assets (MVA) and the Fair Value of Liabilities (FVL)
consisting of the sum of two components: the Best Estimate valuation of Liabilities (BEL) and the
Market Value Margin (MVM).

The BEL is the present value of expected future cash flows using best estimate assumptions
with no explicit margins incorporated. However, for the non-hedgeable insurance risks, since there
exists the risk that actual experience will be more adverse than expected, there needs to be an
additional “risk margin” component added to the BEL, the MVM. It can be interpreted as the cost
of risk and uncertainty in the amount and timing of future payments needed to satisfy insurance
liabilities.

For several decades, actuaries have used a variety of technical methods to consider the risk
in the valuation of their insurance liabilities and risk margins have been implicitly or explicitly
embedded in the assumptions or in the methods. Approaches for determining risk margins have
been grouped into four families (see IAA position paper [9])
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• the quantile methods that use risk measures such as the Value-at-Risk (VaR), the Conditional
Tail Expectation (CTE) and the Tail Value-at-Risk (TVaR) and define the risk margin as the
difference of the risk measure of the discounted ultimate future payments and the BEL;

• the Cost-of-Capital (CoC) approach that defines the risk margin as the present value of the
current and future SCRs for the non-hedgeable risks to protect against adverse developments
in the run-off of the insurance liabilities;

• the discount related methods that define the risk margin as the difference of the discount
expected cash flows using the risk-free interest rate minus a selected risk adjustment and the
BEL (probability distortions to take into account risk aversion are alternatively used in [18]);

• the methods that use explicit assumptions: the risk margin results from selecting prudent
explicit parameters and simpler methodologies.

Over the recent years, the CoC approach has been preferred to estimate market-consistent risk
margins for insurance contracts. One of the reason is that CoC approach is commonly used as
a conceptual framework in both non-life and life insurance valuation applications. Solvency II
prescribes that the MVM is calculated using the following 3 steps:

1. determine the expected SCRs for non-hedgeable risks until the run-off of the portfolio (remind
that the SCR is defined as the amount of capital required to support the claims paid out and
the increase in the sum of the BEL and MVM following a one-in-200-year event over the next
year);

2. calculate the capital charge as the SCRs multiplied by the CoC charge and take the present
value of the product;

3. take the sum of the present values for all years until the run-off to arrive at the MVM.

As can be read in this approach, estimating the SCRs for each future year in a theoretically
correct way is far from straightforward because the SCRs appear to depend on the MVMs, and the
MVMs depend on the SCRs. Hence there exists an intricate circularity dependency between both
quantities. To mitigate the circularity issue, several simplifications have been suggested (from the
more complex to the simpler):

• exclude the risk margin in the FVL within the calculations for the SCRs (see e.g. the Swiss
Solvency Test);

• approximate the SCRs for the future years by using a ‘proportional proxy’: for example the
current SCR is calculated, but the future SCRs are approximated by multiplying the current
SCR by the ratio of the future BEL to the current BEL;

• approximate the current MVM by using a ‘duration approach’: the MVM is calculated as the
current SCR multiplied by a modified duration of the insurance liabilities (see e.g. [13]);

• approximate the current MVM by considering it as a percentage of the current BEL.

The problem of calculating the MVM in a theoretically correct way can only be solved by
starting at the final time period and working backwards recursively. The problem is in general
intractable without simplifications.
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In [7], Haslip considers the liabilities of a non-life insurance company and assumes that the
outstanding claims reserve at the end of each year is subject to uncertainty through a scaling factor
drawn from a log-normal distribution with mean 1 and several sets of coefficients of variation. He
makes some comparisons with proxies derived from the proportional method, the duration method
or by considering the MVM as a percentage of the current BEL. The results are: the duration
method understates the risk margin, the proportional method provides a reasonable approximation
but sensitive to the coefficients of variation of the log-normal distributions, the ‘percentage of BEL’
proxy is more conservative than the others.

In [1] and [4], Bonnard, Daya and Margetts alternately assume that the cumulative paid claims
(for all the accident years) at the end of each year are equal to the cumulative paid claims at the
beginning of the year multiplied by a scaling factor drawn from a log-normal distribution with
deterministic but path dependent mean and volatility. They find that the first approximation (i.e.
excluding the risk margin in the FVL within the calculations for the SCRs) gives higher results than
the exact solution. The second and the third approximations (proportional and duration proxies)
tend to underestimate the exact solution. The fourth approximation can be quite larger than the
analytical solutions specially for the first development years.

In [14], Salzmann and Wüthrich derive analytical formulas for the risk margin and compare
different proxies but under the assumption that the capital requirements are defined through the
standard error of the sum of the claims paid out and the increase in the BEL and the risk margin
instead of the 99.5th percentile of the change as needed for the Solvency II approach.

In this paper, we consider a Bayesian log-normal chain ladder model for a non-life insurance
company and extend the results of Bonnard, Daya and Margetts to the case (i) where recent
information is immediately absorbed by the Bayesian model, (ii) where the cumulative paid claims
of each accident year follow a multiplicative log-normal model and/or (iii) where the cash flows
and the SCRs are discounted within the calculation of the BEL and the MVM. We give an exact
analytical formula for the MVM of the liabilities of a specific accident year when reserves are not
discounted. We propose accurate approximated analytic formulas for the MVM of the liabilities
of all accident years (when reserves are discounted or not) by considering convex order techniques
and approximations as used in [5], [6], [15], [16].

The paper is organized as follows. In Section 2 we define the Bayesian log-normal chain ladder
model for claims reserving and calculate the BEL depending on whether or not the cash flows
are discounted. We then give general results concerning convex order approximations of sums of
log-normal random variables in Section 3. In Section 4 and 5 we provide respectively recursive
analytical formulas for the calculation of the MVM when cash flows are not discounted or when
they are subject to a constant discount rate. Finally, in Section 6 we provide a real data example
that is based on liability insurance data. The proofs are deferred to Section 7.

2 Bayesian log-normal chain ladder model

We consider the liabilities of a non-life insurance company. The random variables Ci,j > 0 denote
the cumulative payments of accident year i ∈ {1, . . . , I} after development year j ∈ {0, . . . , J},
meaning that the incremental claims, Xi,j = Ci,j − Ci,j−1 for j = 1, . . . , J , are paid in calendar
(accounting) year k = i + j. We assume that all claims are settled after development J and that
I ≥ J + 1. We define the individual claims factor Fi,j = Ci,j/Ci,j−1 for j = 1, . . . , J and let
ξi,j = log(Fi,j). The first payment Ci,0 is the initial value of the process (Ci,j)j=0,...,J and Fi,j are
the multiplicative changes.
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The time unit corresponds to years, the current year is I and we write

Tt = σ{Xi,j : i+ j ≤ t, i = 1, . . . , I, j = 0, . . . , J}

for t = I, . . . , I + J .

We consider a Bayesian log-normal chain ladder model to complete the run-off trapezoid. For
the claims reserving problem, Bayesian methods are now well investigated (see e.g. [17], [2]) and
they provide an interesting approach for a successive information update in each accounting year.
Log-normal chain ladder models have been introduced by Hertig [8] and their Bayesian versions
have been recently used by Merz and Wüthrich [12] to model paid-incurred chain claims. We
restrict ourselves to this model because it allows for explicit analytical formulas for the MVM of
the liabilities of a specific accident year when reserves are not discounted.

We assume that

• given Φ = (Φ0, . . . ,ΦJ−1) and σ = (σ0, . . . , σJ−1), the Xi,j are independent for different
accident years i, and for j = 0, . . . , J − 1, the ξi,j+1 are independent and satisfy ξi,j+1 ∼
N (Φj , σ

2
j );

• σ > 0 is deterministic and the Φj , for j = 0, . . . , J −1, are independent normally distributed,
Φj ∼ N (φj , s

2
j ), with prior parameters φj and s

2
j > 0;

• (C1,0, . . . , CI,0) and Φ are independent.

This model is close to the normal-normal Bayes chain ladder model and belongs to the expo-
nential dispersion family with associate conjugate priors (see e.g. [3]). It leads to exact formulas for
the calculation of the BEL but the Bayesian estimators do not coincide with the linear credibility
estimators.

At time t we have information Tt and we need to predict the liabilities that correspond to the
random variables Xi,j+1 for (i, j + 1) ∈ Dt where

Dt = {(i, j + 1) : i = t− J + 1, . . . , I, j = t− i, . . . , J − 1}

or equivalently to the random variables ξi,j+1 for (i, j+1) ∈ Dt. The following proposition gives the
update formulas for the parameters of the posterior distribution of Φ and derives the distributions
of the random variables ξi,j+1, (i, j + 1) ∈ Dt, given Tt.

Proposition 1 Given Tt, for j = 0, . . . , J−1, the Φj are independent normally distributed random
variables such that

Φj |Tt ∼ N (φ
(t)
j , (s

(t)
j )

2)

with posterior parameters

φ
(t)
j = (s

(t)
j )

2



φj
s2j
+
1

σ2j

(t−j−1)∧I∑

i=1

ξi,j+1



 , (s
(t)
j )

2 =

(
1

s2j
+
(t− j − 1) ∧ I

σ2j

)−1
.

Given Tt,
(
ξi,j+1

)
(i,j+1)∈Dt

is a multivariate normally distributed random vector with

E[ξi,j+1|Tt] = φ
(t)
j , (i, j + 1) ∈ Dt

Cov(ξi,j+1, ξk,l+1|Tt) = I{j=l}

(
(s
(t)
j )

2 + I{i=k}σ
2
j

)
, (i, j + 1)× (k, l + 1) ∈ D2t .
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In practice, we update at each time the posterior parameters according to the information
generated by the new observations. Let

α
(t+1)
j =

(s
(t+1)
j )2

σ2j
, β

(t+1)
j = 1− α

(t+1)
j =

(s
(t+1)
j )2

(s
(t)
j )

2
, γ

(t+q:t+l)
j =

t+l∏

i=t+q

β
(i)
j ,

with γ
(t+q:t+l)
j = 1 if q > l. The following proposition gives the recursive update formulas from

which we can deduce that, for j = 0, . . . , J − 1, (φ
(t)
j )t=I,...,I+j is a Tt-martingale.

Proposition 2 We have, for t− j ≤ I,

φ
(t+1)
j = β

(t+1)
j φ

(t)
j + α

(t+1)
j ξt−j,j+1 (2.1)

and, for l = 1, . . . , 1 + I + j − t,

φ
(t+l)
j = φ

(t)
j γ

(t+1:t+l)
j +

l∑

q=1

γ
(t+q+1:t+l)
j α

(t+q)
j ξt−j+q−1,j+1. (2.2)

It follows that (φ
(t)
j )t=I,...,I+j is a Tt-martingale, i.e. E[φ

(t+l)
j |Tt] = φ

(t)
j . Moreover

log

(
E[eφ

(t+l)
j |Tt]

)
= φ

(t)
j + 0.5((s

(t)
j )

2 + σ2j )
l∑

q=1

(γ
(t+q+1:t+l)
j α

(t+q)
j )2

+(s
(t)
j )

2
∑

1≤p<q≤l

γ
(t+p+1:t+l)
j γ

(t+q+1:t+l)
j α

(t+p)
j α

(t+q)
j .

Solvency II requires from non-life insurance companies a market-consistent valuation of their
insurance liabilities. This implies that the outstanding loss liability cash flows need to be discounted
with time values and should be determined given the latest information available. In old accounting
tradition, insurance companies have estimated nominal (i.e. not discounted) claims reserves for their
outstanding loss liabilities because undiscounting includes in fact a certain risk margin (depending
on the level of the discount rate).

We define the undiscounted reserve at time t for accident year i = t− J + 1, . . . , I by

Ri,t =
J∑

j=t−i+1

Xi,j = Ci,J − Ci,t−i,

and the discounted reserve by

R
(d)
i,t =

J∑

j=t−i+1

Xi,j
(1 + r)j−t+i

=

J∑

j=t−i+1

Ci,j − Ci,j−1
(1 + r)j−t+i

.

We restrict ourselves to a constant discount rate case for the sake of avoiding unnecessary compli-
cations but the case of a family of forward rates could also have been considered.

Let

M
(t)
l:m =

m∑

j=l

φ
(t)
j and S

(t)
l:m =

m∑

j=l

(
(s
(t)
j )

2 + σ2j

)

with the convention that M
(t)
l:m = 0 and S

(t)
l:m = 0 if l > m. The Best-Estimate outstanding loss

Liabilities (BEL) are given in the following proposition.
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Proposition 3 For i = t− J + 1, . . . , I,

BELi,t = E[Ri,t|Tt] = Ci,t−i
(
eM

(t)
t−i:J−1+0.5S

(t)
t−i:J−1 − 1

)

BEL
(d)
i,t = E[R

(d)
i,t |Tt] = Ci,t−i




J−1∑

j=t−i

1

(1 + r)j−t+i+1

(
eM

(t)
t−i:j+0.5S

(t)
t−i:j − eM

(t)
t−i:j−1+0.5S

(t)
t−i:j−1

)

 .

The undiscounted one year loss deterioration describes the deterioration of the expected reserves
over the next year. It is defined at time t for accident year i = t− J + 1, . . . , I by

L
(1)
i,t = Xi,t+1−i +BELi,t+1 −BELi,t = E[Ci,J |Tt+1]− E[Ci,J |Tt].

The discounted one year loss deterioration is defined by

L
(1,d)
i,t =

Xi,t+1−i
1 + r

+
1

1 + r
BEL

(d)
i,t+1 −BEL

(d)
i,t .

The one year deteriorations are centered, i.e. E[L
(1)
i,t |Tt] = 0 and E[L

(1,d)
i,t |Tt] = 0. Note that the

undiscounted claims development results (CRD) introduced by [11] are just the opposite of the
undiscounted one year deteriorations.

3 Approximation for quantiles of sums of log-normal random vari-

ables

Many problems in finance, insurance and engineering involve the evaluation of the distribution
function of a random variable S of the form

S =

n∑

i=1

δie
Zi

where the δi are non-negative real numbers and (Z1, . . . , Zn) is a multivariate normal distributed
random vector. In this paper we are mainly interested in the quantiles of S. Because it is impossible
to obtain analytical expressions for the distribution function, Kaas, Dhaene and Goovaerts [10]
propose to approximate S by

Sl = E[S|Λ]

for an appropriate choice of the conditioning Λ. The multi-dimensionality of the problem, caused
by (Z1, Z2, . . . , Zn), is then transformed to a single dimension leading to the comonotonicity of the
vector (E[eZ1 |Λ], . . . ,E[eZn |Λ]). From Jensen’s inequality one can prove that Sl is smaller in convex
order than S. In literature a convex upper bound for S has also been proposed (see e.g. [5] and
[6]).

To get accurate approximations, Λ should be chosen such that it is close to S. Consider the
conditioning random variable Λ as the linear combination of Z1, Z2, . . . , Zn determined by

Λ =

n∑

i=1

γiZi.

Then Sl can be written

Sl =
n∑

i=1

δie
E[Zi]+0.5(1−r

2
i )σ

2
Zi
+riσZi (Λ−E[Λ])/σΛ
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where σ2Zi and σ
2
Λ are respectively the variances of Zi and Λ, and

ri = ri(γ1, . . . , γn) =
cov(Zi,Λ)

σZiσΛ
. (3.3)

Note that the expected values of the random variables S and Sl are equal and that, in case all
ri ≥ 0,

q99.5%

(
Sl
)
=

n∑

i=1

δie
E[Zi]+0.5(1−r

2
i )σ

2
Zi
+riσZiϕ

where ϕ is the VaR at the 99.5% level of the standard Gaussian distribution.

In [15],Vanduffel, Hoedemakers and Dhaene propose to choose Λ such that a first-order approx-
imation of the variance of Sl is as large as possible and therefore the closest to the variance of S.
The choices of the parameters γi are then given by

γi = δie
E[Zi]+0.5σ

2
Zi . (3.4)

In [16], Vanduffel, Chen, Dhaene, Goovaerts, Henrard Kaas alternately propose to choose Λ such
that a first-order approximation of the p-level Conditional Tail Expectation of Sl is as large as
possible and therefore the closest to the p-level Conditional Tail Expectation of S. The choices of
the parameters γi are then given by

γi = δie
E[Zi]+0.5σ

2
ZiΦ′

(
ri(δ1e

E[Z1]+0.5σ2Z1 , . . . , δne
E[Zn]+0.5σ2Zn )σZi − Φ

−1(p)
)

where Φ is the probability distribution function of a standard Gaussian random variable. As one can
see, the parameters only differ up to proportional coefficients from the parameters that maximize
the first-order approximation of the variance of Sl.

Since Monte-carlo simulations in [15] show that the approach by Vanduffel, Hoedemakers and
Dhaene gives very accurate approximations for the 0.995-quantile of S, we keep their choice for the
parameters γi in the remainder of the paper.

4 MVM for no discounted cash-flows

We first consider the simple case where the cash flows are not discounted, although it is not coherent
with the Solvency II framework. The case of discounted cash flows is provided in the next section.

The Fair-Value of Liabilities for accident year i at time t is defined as the sum of the Best
Estimate valuation of Liabilities (BEL) and the Market Value Margin (MVM) of this accident year

FV Li,t = BELi,t +MVMi,t.

Let us remind that the Solvency Capital Requirement (SCR) is defined as the amount of capital
required to support the claims paid out and the increase in the FVL following a one-in-200-year
event over the next year, and that the Market Value Margin is defined as the sum of the current
and future SCRs. For accident year i at time t, the SCR and the MVM are then given by the two
simultaneous equations

SCRi,t = q99.5% (FV Li,t+1 − FV Li,t +Xi,t+1−i|Tt) (4.5)

= q99.5%

(
MVMi,t+1 −MVMi,t + L

(1)
i,t |Tt

)
(4.6)

MVMi,t = c
i+J−1∑

j=t

E [SCRi,j |Tt] (4.7)
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where c is the cost of capital rate (taken as a fixed 6%). Note that SCRi,t and MVMi,t are Tt-
measurable random variables and that SCRi,i+J = 0 since all liabilities are completely extinct for
this accident year after the accounting year i+ J : Ci,J = Ci,J+1 = Ci,J+2 = . . ..

The Fair-Value of Liabilities for all accident years with outstanding liabilities is given by

FV Lt =

I∑

i=t−J+1

BELi,t +MVMt.

The SCRt and the MVMt are then given by the two simultaneous equations

SCRt = q99.5%

(

FV Lt+1 − FV Lt +
I∑

i=t−J+1

Xi,t+1−i

∣∣∣∣∣
Tt

)

(4.8)

= q99.5%

(
MVMt+1 −MVMt + L

(1)
t |Tt

)
(4.9)

MVMt = c
I+J−1∑

j=t

E [SCRj |Tt] (4.10)

where

L
(1)
t = E

[
I∑

i=1

Ci,J

∣∣∣∣∣
Tt+1

]

− E

[
I∑

i=1

Ci,J

∣∣∣∣∣
Tt

]

.

Note that there is no reason MVMt and SCRt are respectively equal to
∑I
i=t−J+1MVMi,t and∑I

i=t−J+1 SCRi,t because the quantile function is nonlinear. Moreover SCRI+J = 0.

Throughout this section, we will use the following notation: for I ≤ t < l ≤ i+ J ,

log(Σi,l,t) =
1

2

l−i−1∑

j=t−i

(
(s
(t)
j )

2 + σ2j

)
+
1

2

J−1∑

j=l−i

(
(s
(t)
j )

2 + σ2j

) l−t∑

q=1

(
γ
(t+q+1:l)
j α

(t+q)
j

)2

+
J−1∑

j=l−i

(s
(t)
j )

2
∑

1≤p<q≤l−t

γ
(t+p+1:l)
j γ

(t+q+1:l)
j α

(t+p)
j α

(t+q)
j

and 0 otherwise.

4.1 MVM for one accident year

By using (4.6) and (4.7), the SCR expression for accident year i can be developed as follows

SCRi,t = q99.5%



c
i+J−1∑

j=t+1

E [SCRi,j |Tt+1]− c
i+J−1∑

j=t

E [SCRi,j |Tt] + E[Ci,J |Tt+1]− E[Ci,J |Tt]

∣∣∣∣∣∣
Tt





= q99.5%



c
i+J−1∑

j=t+1

E [SCRi,j |Tt+1] + E[Ci,J |Tt+1]

∣∣∣∣∣∣
Tt



− c
i+J−1∑

j=t

E [SCRi,j |Tt]− E[Ci,J |Tt].

Since E [SCRi,t|Tt] = SCRi,t, we derive the recursive equations for the SCRs:

SCRi,t =
1

1 + c



q99.5%



c
i+J−1∑

j=t+1

E [SCRi,j |Tt+1] + E[Ci,J |Tt+1]

∣∣∣∣∣∣
Tt



− c
i+J−1∑

j=t+1

E [SCRi,j |Tt]− E[Ci,J |Tt]



 .

(4.11)
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These equations have to be solved by starting at the final time period (i + J − 1) and working
backward recursively. The following proposition gives the analytical recursive formulas for the
SCR. The MVM is then deduced by using (4.7).

Proposition 4 For t = I, . . . , I + J and i = t− J + 1, . . . , I,

SCRi,t = Ci,t−ie
M

(t)
t−i:J−1ai,t

where, for t ≥ i+ J , ai,t = 0 and, for t < i+ J ,

ai,t =
1

1 + c

[

c
i+J−1∑

l=t+1

ai,l (Σi,l,t+1Ξi,t − Σi,l,t) + e
0.5S

(t+1)
t+1−i:J−1Ξi,t − e

0.5S
(t)
t−i:J−1

]

with

log(Ξi,t) = ϕ

√√√√((s(t)t−i)2 + σ
2
t−i) +

J−1∑

j=t+1−i

(α
(t+1)
j )2((s

(t)
j )

2 + σ2j ).

Moreover, at the current date t = I, we have

MVMi,I = cCi,I−ie
M

(I)
I−i:J−1

[
i+J−1∑

l=I

ai,lΣi,l,I

]

.

It is worth noting that, given Ci,t−i and M
(t)
t−i:J−1 =

∑J−1
j=t−i φ

(t)
j , the sum of the posterior

expected values of the random variables Φj given Tt, the expressions for SCRi,t and MVMi,t are
obtained by only calculating recursively the constants ai,l and Σi,l,t for l = t, . . . , i + J − 1. In
contrast to Bonnard, Daya and Margetts’ results, the parameters of the log-normal distributions
have to be updated given the latest information available.

4.2 MVM for aggregated accident years

In the previous subsection we have studied the MVM for one single accident year i. But in practice
we want to calculate the MVM for all insurance liabilities, i.e. over all accident years. By using
the same arguments as previously, we derive the recursive equations for the SCRs for all accident
years: for t = I, . . . , I + J − 1,

SCRt =
1

1 + c
q99.5%



c
n−1∑

j=t+1

E[SCRj |Tt+1] + E

[
I∑

i=1

Ci,J

∣∣∣∣∣
Tt+1

]∣∣∣∣∣∣
Tt





−
1

1 + c



c
n−1∑

j=t+1

E[SCRj |Tt] + E

[
I∑

i=1

Ci,J

∣∣∣∣∣
Tt

]

 . (4.12)

The MVM is then given by

MVMt = c

I+J−1∑

j=t

E [SCRj |Tt] .

Contrary to the previous case, there is no exact analytical recursive formula for the SCR because
the SCRs are quantiles of sums of log-normal random variables over the different accident years.
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We need to approximate these quantiles such that they are equal to the sum of quantiles of some
log-normal random variables but we have to choose these random variables in such a way that we
are able to construct analytical recursive formulas for the SCRs.

Let us first introduce some notation. Let, for i = t− J + 1, . . . , I,

r
(t)
i =

1

ς
(t)
i ς

(t)
S

(
i−1∑

l=t−J+1

η
(t)
l (ς

(t)
l )

2 + (ς
(t)
i )

2
I∑

l=i

η
(t)
l

)

where

(ς
(t)
i )

2 = ((s
(t)
t−i)

2 + σ2t−i) +
J−1∑

j=t+1−i

(α
(t+1)
j )2((s

(t)
j )

2 + σ2j )

(ς
(t)
S )

2 =

I∑

i=t−J+1

(
η
(t)
i

)2
(ς
(t)
i )

2 + 2
∑

t−J+1≤i<l≤I

η
(t)
i η

(t)
l (ς

(t)
i )

2

and

log(η
(t)
i ) = log(B

(2)
i,t ) + log(Ci,I−i) +M

(I)
I−i:t−i−1 + 0.5S

(I)
I−i:t−i−1

+

J−1∑

j=t+1−i

β
(t+1)
j



φ(I)j + 0.5β
(t+1)
j ((s

(I)
j )

2 + σ2j )

t−I∑

q=1

(γ
(I+q+1:t)
j α

(I+q)
j )2





+
J−1∑

j=t+1−i

(β
(t+1)
j )2(s

(I)
j )

2
∑

1≤p<q≤t−I

γ
(I+q+1:t)
j α

(I+q)
j γ

(I+p+1:t)
j α

(I+p)
j

+



φ(I)t−i +
J−1∑

j=t+1−i

α
(t+1)
j φ

(I)
j



+ 0.5



((s(I)t−i)
2 + σ2t−i) +

J−1∑

j=t+1−i

(α
(t+1)
j )2((s

(I)
j )

2 + σ2j )





with

B
(2)
i,t =

i+J−1∑

l=t+1

cbi,lΣi,l,t+1 + e
0.5S

(t+1)
t+1−i:J−1

and bi,l defined in (4.13). The parameters r
(t)
i , η

(t)
i , (ς

(t)
i )

2 and (ς
(t)
S )

2 are respectively the equivalents
of the correlation coefficients ri in (3.3), the constants γi in (3.4), the variances σ

2
Zi
and σ2Λ of Zi

and Λ in Section 3.

The following proposition gives the recursive approximated formulas and derive the approxi-
mated expression for the MVM.

Proposition 5 For t = I, . . . , I + J ,

SCRt '
I∑

i=t−J+1

Ci,t−ie
M

(t)
t−i:J−1bi,t

where bi,t is defined recursively by

- for t ≥ i+ J , bi,t = 0,

- for t < i+ J

bi,t =
1

1 + c

[

c

i+J−1∑

l=t+1

bi,l
(
Σi,l,t+1Ξ

S
i,t − Σi,l,t

)
+ e0.5S

(t+1)
t+1−i:J−1ΞSi,t − e

0.5S
(t)
t−i:J−1

]

(4.13)
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with

log(ΞSi,t) = 0.5(1− (r
(t)
i )

2)(ς
(t)
i )

2 + r
(t)
i ς

(t)
i ϕ.

Moreover, at the current date t = I, we have

MVMI ' c
I+J−1∑

l=I

I∑

i=l−J+1

Ci,I−ibi,lΣi,l,Ie
M

(I)
I−i:J−1 .

It can be seen that ΞSi,t 6= Ξi,t even if the losses of the accident years are independent. It follows

that bi,t 6= ai,t and that MVMI 6=
∑I
i=I−J+1MVMi,I .

5 MVM for discounted cash-flows

We now consider the case where the cash flows are discounted for the calculations of the reserves,
the SCRs and the MVM, following the Solvency II framework.

The Fair-Value of Liabilities for accident year i at time t is still defined as the sum of the

Best Estimate valuation of Liabilities (BEL
(d)
i,t ) and the Market Value Margin (MVM

(d)
i,t ) of this

accident year, but the SCR
(d)
i,t and the MVM

(d)
i,t are now given by the two simultaneous equations

SCR
(d)
i,t = q99.5%

(
1

1 + r
MVM

(d)
i,t+1 −MVM

(d)
i,t + L

(1,d)
i,t

∣∣∣∣ Tt
)

(5.14)

MVMi,t = c
i+J−1∑

j=t

E

[
SCR

(d)
i,j

(1 + r)j−t

∣∣∣∣∣
Tt

]

. (5.15)

Note that SCR
(d)
i,i+J is still null.

The SCR
(d)
t and the MVM

(d)
t for all accident years are defined by the two simultaneous equa-

tions

SCR
(d)
t = q99.5%

(
1

1 + r
MVM

(d)
t+1 −MVM

(d)
t + L

(1,d)
t

∣∣∣∣ Tt
)

(5.16)

MVMt = c
I+J−1∑

j=t

E

[
SCR

(d)
j

(1 + r)j−t

∣∣∣∣∣
Tt

]

(5.17)

where

L
(1,d)
t =

I∑

i=t−J+1

L
(1,d)
i,t =

I∑

i=t−J+1

(
Xi,t+1−i
1 + r

+
1

1 + r
BEL

(d)
i,t+1 −BEL

(d)
i,t

)

=

I∑

i=t−J+1



Xi,t+1−i
1 + r

+
1

1 + r
E




i+J∑

j=t+2

Xi,j−i
(1 + r)j−t−1

∣∣∣∣∣∣
Tt+1



− E




i+J∑

j=t+1

Xi,j−i
(1 + r)j−t

∣∣∣∣∣∣
Tt







 .

Note that SCR
(d)
I+J = 0.

Throughout this section, we will use the following notation: for I ≤ t < l ≤ i+ j,

log(Σi,j,l,t) =
1

2

l−i−1∑

k=t−i

(
(s
(t)
k )

2 + σ2k

)
+
1

2

j∑

k=l−i

(
(s
(t)
k )

2 + σ2k

) l−t∑

q=1

(
γ
(t+q+1:l)
k α

(t+q)
k

)2

+

j∑

k=l−i

(s
(t)
k )

2
∑

1≤p<q≤l−t

γ
(t+p+1:l)
k γ

(t+q+1:l)
k α

(t+p)
k α

(t+q)
k

11



and 0 otherwise.

5.1 MVM for one accident year

By using (5.14) and (5.15), and since

L
(1,d)
i,t =

Xi,t+1−i
1 + r

+
1

1 + r
E




i+J∑

j=t+2

Xi,j−i
(1 + r)j−t−1

∣∣∣∣∣∣
Tt+1



− E




i+J∑

j=t+1

Xi,j−i
(1 + r)j−t

∣∣∣∣∣∣
Tt





the SCR expression for accident year i can be developed as follows

SCR
(d)
i,t = q99.5%



c
i+J−1∑

j=t+1

E

[
SCR

(d)
i,j

(1 + r)j−t

∣∣∣∣∣
Tt+1

]

+
Xi,t+1−i
1 + r

+
1

1 + r
E




i+J∑

j=t+2

Xi,j−i
(1 + r)j−t−1

∣∣∣∣∣∣
Tt+1





∣∣∣∣∣∣
Tt





−c
i+J−1∑

j=t

E

[
SCR

(d)
i,j

(1 + r)j−t

∣∣∣∣∣
Tt

]

− E




i+J∑

j=t+1

Xi,j−i
(1 + r)j−t

∣∣∣∣∣∣
Tt



 .

Since E
[
SCR

(d)
i,t |Tt

]
= SCR

(d)
i,t , we derive the recursive equations for the SCRs: for t ≤ i+ J − 1

SCR
(d)
i,t =

1

1 + c



q99.5%



c
i+J−1∑

j=t+1

E

[
SCR

(d)
i,j

(1 + r)j−t

∣∣∣∣∣
Tt+1

]

+
Xi,t+1−i
1 + r

+ E




i+J∑

j=t+2

Xi,j−i
(1 + r)j−t

∣∣∣∣∣∣
Tt+1





∣∣∣∣∣∣
Tt







(5.18)

−
1

1 + c



c
i+J−1∑

j=t+1

E

[
SCR

(d)
i,j

(1 + r)j−t

∣∣∣∣∣
Tt

]

+ E




i+J∑

j=t+1

Xi,j−i
(1 + r)j−t

∣∣∣∣∣∣
Tt









These equations have to be solved by starting at the final time period (i + J − 1) and working
backwards recursively. But it is necessary to approximate the quantiles of the sum of the SCRs and
the current an future discounted cash flows in such a way that we are able to construct analytical
recursive formulas for the SCRs.

Let us introduce some notation:

r
(t)
i,j =

1

ς
(t)
i,j ς

(t)
S,i




j−1∑

l=t−i

η
(t)
i,l (ς

(t)
i,l )

2 + (ς
(t)
i,j )

2
J−1∑

l=j

η
(t)
i,l





where

(ς
(t)
i,j )

2 = ((s
(t)
t−i)

2 + σ2t−i) +

j∑

l=t+1−i

(α
(t+1)
l )2((s

(t)
l )

2 + σ2l )

(ς
(t)
S,i)

2 =

J−1∑

j=t−i

(
η
(t)
i,j

)2
(ς
(t)
i,j )

2 + 2
∑

t−i≤j<l≤J−1

η
(t)
i,jη

(t)
i,l (ς

(t)
i,j )

2
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and

log(η
(t)
i,j ) = log(A

(2),d
i,j,t ) + log(Ci,I−i) +M

(I)
I−i:t−i−1 + 0.5S

(I)
I−i:t−i−1

+

j∑

l=t+1−i

β
(t+1)
l



φ(I)l + 0.5β
(t+1)
l ((s

(I)
l )

2 + σ2l )

t−I∑

q=1

(γ
(I+q+1:t)
l α

(I+q)
l )2





+

j∑

l=t+1−i

(β
(t+1)
l )2(s

(I)
l )

2
∑

1≤p<q≤t−I

γ
(I+q+1:t)
l α

(I+q)
l γ

(I+p+1:t)
l α

(I+p)
l

+

(

φ
(I)
t−i +

j∑

l=t+1−i

α
(t+1)
j φ

(I)
l

)

+ 0.5

(

((s
(I)
t−i)

2 + σ2t−i) +

j∑

l=t+1−i

(α
(t+1)
l )2((s

(I)
l )

2 + σ2l )

)

with A
(2),d
i,j,t defined in the following proposition.

Proposition 6 For i = t− J + 1, . . . , I

SCR
(d)
i,t ' Ci,t−i

J−1∑

j=t−i

eM
(t)
t−i:jai,j,t

where ai,j,t is defined recursively by

- for j = I − i, . . . , J − 1 and t ≥ i+ j + 1, ai,j,t = 0

- for j = t− i, . . . , J − 1, we have

ai,j,t =
1

1 + c

(
A
(2),d
i,j,t Ξ

(d)
i,j,t −A

(1),d
i,j,t

)

where

A
(1),d
i,t−i,t =

r

(1 + r)2
e0.5S

(t)
t−i:t−i

A
(1),d
i,j,t =

i+j∑

l=t+1

c

(1 + r)l−t
ai,j,lΣi,j,l,t +

r

(1 + r)j−t+i+2
e0.5S

(t)
t−i:j , j = t+ 1− i, . . . , J − 2

A
(1),d
i,J−1,t =

i+J−1∑

l=t+1

c

(1 + r)l−t
ai,J−1,lΣi,j,l,t +

1

(1 + r)J−t+1+i
e0.5S

(t)
t−i:J−1

and

A
(2),d
i,t−i,t =

r

(1 + r)2

A
(2),d
i,j,t =

(
i+j∑

l=t+1

c

(1 + r)l−t
ai,j,lΣi,j,l,t+1 +

r

(1 + r)j−t+i+2
e0.5S

(t+1)
t+1−i:j

)

, j = t+ 1− i, . . . , J − 2

A
(2),d
i,J−1,t =

([
i+J−1∑

l=t+1

c

(1 + r)l−t
ai,J−1,lΣi,J−1,l,t+1

]

+
1

(1 + r)J−t+1+i
e0.5S

(t+1)
t+1−i:J−1

)

.

and

Ξ
(d)
i,j,t = e

0.5(1−(r
(t)
i,j )

2)(ς
(t)
i,j )

2+r
(t)
i,j ς

(t)
i,jϕ.

Moreover, at the current date t = I, we have

MVM
(d)
i,I ' cCi,I−i

J−1∑

j=I−i

eM
(I)
I−i:j

[
i+j−1∑

l=I

ai,j,lΣi,j,l,I

]

.
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5.2 MVM for aggregated accident years

For completeness sake, we give the MVM for all accident years. By using the same arguments as
previously, we derive the recursive equations for the SCRs for all accident years: for t = I, . . . , I +
J − 1

SCR
(d)
t (5.19)

=
1

1 + c



q99.5%



c
I+J−1∑

j=t+1

E

[
SCR

(d)
j

(1 + r)j−t

∣∣∣∣∣
Tt+1

]

+
I∑

i=t−J+1



Xi,t+1−i
1 + r

+ E




i+J∑

j=t+2

Xi,j−i
(1 + r)j−t

∣∣∣∣∣∣
Tt+1









∣∣∣∣∣∣
Tt









−
1

1 + c



c
I+J−1∑

j=t+1

E

[
SCR

(d)
j

(1 + r)j−t

∣∣∣∣∣
Tt

]

+

I∑

i=t−J+1

E




i+J∑

j=t+1

Xi,j−i
(1 + r)j−t

∣∣∣∣∣∣
Tt







 .

Let

r̄
(t)
i,j =

1

ς
(t)
i,j ς

(t)

S̄

I∑

k=t−J+1

J−1∑

l=t−k

η̄
(t)
k,l(ς

(t)
i∧k,j∧l)

2

where

(ς
(t)
i,j )

2 = ((s
(t)
t−i)

2 + σ2t−i) +

j∑

l=t+1−i

(α
(t+1)
l )2((s

(t)
l )

2 + σ2l )

(ς
(t)

S̄
)2 =

∑

t−J+1≤i,k≤I

J−1∑

j=t−i

J−1∑

l=t−k

η̄
(t)
i,j η̄

(t)
k,l(ς

(t)
i∧k,j∧l)

2

and

log(η̄
(t)
i,j ) = log(B

(2),d
i,j,t ) + log(Ci,I−i) +M

(I)
I−i:t−i−1 + 0.5S

(I)
I−i:t−i−1

+

j∑

l=t+1−i

β
(t+1)
l



φ(I)l + 0.5β
(t+1)
l ((s

(I)
l )

2 + σ2l )
t−I∑

q=1

(γ
(I+q+1:t)
l α

(I+q)
l )2





+

j∑

l=t+1−i

(β
(t+1)
l )2(s

(I)
l )

2
∑

1≤p<q≤t−I

γ
(I+q+1:t)
l α

(I+q)
l γ

(I+p+1:t)
l α

(I+p)
l

+

(

φ
(I)
t−i +

j∑

l=t+1−i

α
(t+1)
j φ

(I)
l

)

+ 0.5

(

((s
(I)
t−i)

2 + σ2t−i) +

j∑

l=t+1−i

(α
(t+1)
l )2((s

(I)
l )

2 + σ2l )

)

with B
(2),d
i,j,t defined in the following proposition.

Proposition 7 For i = t− J + 1, . . . , I

SCR
(d)
i,t '

I∑

i=t−J+1

Ci,t−i

J−1∑

j=t−i

eM
(t)
t−i:jbi,j,t

where bi,j,t is defined recursively by

- for j = I − i, . . . , J − 1 and t ≥ i+ j + 1, bi,j,t = 0
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- for j = t− i, . . . , J − 1, we have

bi,j,t =
1

1 + c

(
B
(2),d
i,j,t Ξ

S,(d)
i,j,t −B

(1),d
i,j,t

)

where

B
(1),d
i,t−i,t =

r

(1 + r)2
e0.5S

(t)
t−i:t−i

B
(1),d
i,j,t =

i+j∑

l=t+1

c

(1 + r)l−t
bi,j,lΣi,j,l,t +

r

(1 + r)j−t+i+2
e0.5S

(t)
t−i:j , j = t+ 1− i, . . . , J − 2

B
(1),d
i,J−1,t =

i+J−1∑

l=t+1

c

(1 + r)l−t
bi,j,lΣi,j,l,t +

1

(1 + r)J−t+i
e0.5S

(t)
t−i:J−1

and

B
(2),d
i,t−i,t =

r

(1 + r)2

B
(2),d
i,j,t =

(
i+j∑

l=t+1

c

(1 + r)l−t
bi,j,lΣi,j,l,t+1 +

r

(1 + r)j−t+i+2
e0.5S

(t+1)
t+1−i:j

)

, j = t+ 1− i, . . . , J − 2

B
(2),d
i,J−1,t =

([
i+J−1∑

l=t+1

c

(1 + r)l−t
bi,j,lΣi,j,l,t+1

]

+
1

(1 + r)J−t+1+i
e0.5S

(t+1)
l+1−i:J−1

)

and

Ξ
S,(d)
i,j,t = e

0.5(1−(r̄
(t)
i,j )

2)(ς
(t)
i,j )

2+r̄
(t)
i,j ς

(t)
i,jϕ.

Moreover, at the current date t = I, we have

MVM
(d)
i,I ' c

I∑

i=t−J+1

Ci,I−i

J−1∑

j=I−i

eM
(t)
I−i:j

[
i+j−1∑

l=I

bi,j,lΣi,j,l,I

]

.

6 Case study

We now present a case study. The data set is the 17 × 17 private liability insurance cash-flow
triangle considered in [18]. In this paper, Wuthrich, Embrechts and Tsanakas use probability
distortion methods to calculate risk margins. In Table 3 we provide the cumulative payments
Ci,j =

∑j
l=0Xi,l of accident years i = 1, . . . , 17. We consider the run-off situation at time I and

assume that all claims are settled after development year J = 16.

j 0 1 2 3 4 5 6 7

φj 7.90e-02 5.62e-02 4.00e-02 2.85e-02 2.02e-02 1.44e-02 1.02e-02 7.29e-03

σ2j 6.80e-04 4.52e-04 3.01e-04 2.00e-04 1.33e-04 8.85e-05 5.89e-05 3.92e-05

s2j 1.00e-02 7.36e-03 5.41e-03 3.98e-03 2.93e-03 2.15e-03 1.58e-03 1.17e-03

j 8 9 10 11 12 13 14 15

φj 5.18e-03 3.69e-03 2.62e-03 1.87e-03 1.33e-03 9.45e-04 6.72e-04 4.78e-04

σ2j 2.61e-05 1.73e-05 1.15e-05 7.67e-06 5.10e-06 3.39e-06 2.26e-06 1.50e-06

s2j 8.58e-04 6.31e-04 4.64e-04 3.41e-04 2.51e-04 1.85e-04 1.36e-04 1.00e-04

Table 1: Prior parameters (φj , s
2
j ) and standard deviation parameters σ

2
j of the Bayesian

log-normal chain ladder model
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The parameters of the Bayesian log-normal chain ladder model are provided in Table 1. Note
that they differ from those given in [18] because the assumptions of the models are not the same.
Wuthrich, Embrechts and Tsanakas consider a Bayesian chain ladder model where log(Fi,j − 1) is
normally distributed, assuming that the cash-flows of the triangle are necessarily positive.

Using these parameter choices and the liability insurance cash-flow triangle, we are able to
evaluate the posterior parameters and then to calculate the BEL and the MVM for the run-off
portfolio. The cost-of-capital rate is chosen to be c = 6%. According to the previous sections,
we compute these quantities when cash flows are not discounted or when they are subject to a
constant discount rate r. Moreover to measure the diversification effect between accident years,

we compare the sum
∑I
i=t−J+1MVMi,I to MVMI and the sum

∑I
i=t−J+1MVM

(d)
i,I to MVM

(d)
I .

Table 2 presents an overview of the numerical results.

No discounted cash flows Discounted cash flows

BEL MVM BEL/MVM r BEL MVM BEL/MVM

23921 1800 7.52% 0 23921 1800 7.52%

Without 0.01 23198 1745 7.52%

diversification 0.02 22518 1696 7.52%

0.04 21278 1604 7.53%

23921 1398 5,84% 0 23921 1398 5,84%

With 0.01 23198 1344 5,79%

diversification 0.02 22518 1294 5,74%

0.04 21278 1201 5,64%

Table 2: BEL and MVM for the data set given in Table 3 when cash-flows are discounted or not.

We first observe that our BEL is 3% less than the best-estimate reserves given in [18]. Of course
this value heavily depends on the choices of the model and of the parameters.

Let us begin with the case where cash flows are not discounted. We obtain a MVM of 1800
(which is 7.52% in terms of the BEL) when we sum the individual MVMs over all the accident
years and 1398 (which is 5.84% in terms of the BEL) when we compute the MVM for aggregated
accident years. As expected, we find the first approach is more conservative than the second
approach. Diversification effects between accident years account for substantial releases of over
24%.

Let us now consider the case where cash flows are discounted. When r = 0, we obtain the same
values as in the previous case (which is logical). When r increases, the BEL and the MVM decrease
but approximately in the same way since the ratios BEL/MVM remain constant when r is not too
large. This can also be observed in [18].

Finally we see that our MVMs are larger than those found in [18] (approximately 20% more
when the risk aversion parameters are chosen by Wuthrich, Embrechts and Tsanakas such that the
value of the risk margins are of the same order as those found with the approach from Salzmann-
Wuthrich [14]). However, note that the question of the choice of the risk aversion parameters
does not need to be raised in our case since we follow the MVM methodology as prescribed in the
Solvency II framework.
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7 Proofs

7.1 Proof of Proposition 1

First note that we have

Tt = σ{Ci,j : i+ j ≤ t, i = 1, . . . , I, j = 0, . . . , J}

= σ{ξi,j , Ci,0 : i+ j ≤ t, i = 1, . . . , I, j = 1, . . . , J}.

The conditional distribution of Φ satisfies the following proportionality properties

π (Φ|Tt) ∝ π (Φ)π
((
ξi,l, Ci,0

)
i+l≤t,i=1,...,I,l=1,...,J

|Φ
)

∝
J−1∏

j=1

π (Φj)π
((
ξi,j+1, Ci,0

)
i+j+1≤t,i=1,...,I

|Φj
)

∝
J−1∏

j=1

exp

(

−
1

2

(
Φj − φj

)2

s2j

)
(t−j−1)∧I∏

i=1

exp

(

−
1

2

(
ξi,j+1 − Φj

)2

σ2j

)

∝
J−1∏

j=1

exp



−
1

2



Φ
2
j − 2φjΦj

s2j
+

(t−j−1)∧I∑

i=1

Φ2j − 2Φjξi,j+1
σ2j









∝
J−1∏

j=1

exp



−
1

2



Φ2j

(
1

s2j
+
(t− j − 1) ∧ I

σ2j

)

− 2Φj



φj
s2j
+
1

σ2j

(t−j−1)∧I∑

i=1

ξi,j+1













and this proves the first claim of the proposition.

For νi,j ∈ R with i = t− J + 1, . . . , I, and j = t− i, . . . , J − 1, we have

E

[
e
∑I
i=t−J+1

∑J−1
j=t−i νi,jξi,j+1

∣∣∣ Tt
]

= E

[
e
∑J−1
j=t−I

∑I
i=t−j νi,jξi,j+1

∣∣∣ Tt
]

= E

[
E

[
e
∑J−1
j=t−I

∑I
i=t−j νi,jξi,j+1

∣∣∣Φ, Tt
]∣∣∣ Tt

]

= E

[
E

[
e
∑J−1
j=t−I

∑I
i=t−j νi,jξi,j+1

∣∣∣Φ
]∣∣∣ Tt

]

= E

[
e
∑J−1
j=t−I((

∑I
i=t−j νi,j)Φj+0.5

∑I
i=t−j(νi,j)

2σ2j)
∣∣∣ Tt
]

and hence

logE
[
e
∑I
i=t−J+1

∑J−1
j=t−i νi,jξi,j+1

∣∣∣ Tt
]

=
J−1∑

j=t−I

I∑

i=t−j

νi,jφ
(t)
j + 0.5

J−1∑

j=t−I




I∑

i=t−j

(νi,j)
2((s

(t)
j )

2 + σ2j )) + 2
∑

t−j≤i<k≤I

νi,jνk,j(s
(t)
j )

2





which proves the second claim of the proposition.

7.2 Proof of Proposition 2

The proof goes by iteration. Since, for t− j ≤ I,

(s
(t+1)
j )2

(s
(t)
j )

2
+
(s
(t+1)
j )2

σ2j
= 1,

17



we have

φ
(t+1)
j = (s

(t+1)
j )2

[
φj
s2j
+
1

σ2j

t−j−1∑

i=1

ξi,j+1 +
1

σ2j
ξt−j,j+1

]

=
(s
(t+1)
j )2

(s
(t)
j )

2
φ
(t)
j +

(s
(t+1)
j )2

σ2j
ξt−j,j+1 = β

(t+1)
j φ

(t)
j + α

(t+1)
j ξt−j,j+1

and (2.1) holds. By iterating for l = 2, we obtain

φ
(t+2)
j = β

(t+2)
j β

(t+1)
j φ

(t)
j + β

(t+2)
j α

(t+1)
j ξt−j,j+1 + α

(t+2)
j ξt+1−j,j+1

and then

φ
(t+l)
j = φ

(t)
j γ

(t+1:t+l)
j +

l∑

q=1

γ
(t+q+1:t+l)
j α

(t+q)
j ξt−j+q−1,j+1.

Moreover, by using Proposition 1, a straightforward calculation gives E[φ
(t+l)
j |Tt] = φ

(t)
j and

E[eφ
(t+l)
j |Tt]

= eφ
(t)
j +0.5((s

(t)
j )2+σ2j )

∑l
q=1(γ

(t+q+1:t+l)
j α

(t+q)
j )2+(s

(t)
j )2

∑
1≤p<q≤l γ

(t+p+1:t+l)
j γ

(t+q+1:t+l)
j α

(t+p)
j α

(t+q)
j .

This completes the proof.

7.3 Proof of Proposition 3

For i = t− J + 1, . . . , I, we have

Ri,t = Ci,t−i

(
e
∑J−1
j=t−i ξi,j+1 − 1

)

and

R
(d)
i,t =

J−1∑

j=t−i

Ci,j
eξi,j+1 − 1

(1 + r)j−t+i+1
= Ci,t−i

J−1∑

j=t−i

e
∑j−1
l=t−i ξi,l+1

eξi,j+1 − 1

(1 + r)j−t+i+1
.

By using Proposition 1, we obtain

E[Ri,t|Tt] = Ci,t−i




J−1∏

j=t−i

eφ
(t)
j +0.5((s

(t)
j )2+σ2j ) − 1





and

E[R
(d)
i,t |Tt] = Ci,t−i




J−1∑

j=t−i

1

(1 + r)j−t+i+1

(
eM

(t)
t−i:j+0.5S

(t)
t−i:j − eM

(t)
t−i:j−1+0.5S

(t)
t−i:j−1

)

 .
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7.4 Proof of Proposition 4

The proof goes by backward induction. Let assume that, for t = I, . . . , i+ J ,

SCRi,t = Ci,t−ie
M

(t)
t−i:J−1ai,t

where ai,t is a constant and ai,i+J = 0.

In view of (4.11), for t = i+ J − 1, the following equation holds

SCRi,i+J−1 =
1

1 + c
(q99.5%(Ci,J |Ti+J−1)− E[Ci,J |Ti+J−1])

=
1

1 + c

(
Ci,J−1e

φ
(t+J−1)
J−1 +ϕ

√
((s

(i+J−1)
J−1 )2+σ2

J−1) − Ci,J−1e
φ
(t+J−1)
J−1 +0.5((s

(i+J−1)
J−1 )2+σ2

J−1)

)

=
Ci,J−1e

φ
(t+J−1)
J−1

1 + c

(
eϕ
√
((s

(i+J−1)
J−1 )2+σ2

J−1) − e0.5((s
(i+J−1)
J−1 )2+σ2

J−1)

)

and hence

ai,i+J−1 =
1

1 + c

(
eϕ
√
((s

(i+J−1)
J−1 )2+σ2

J−1) − e0.5((s
(i+J−1)
J−1 )2+σ2

J−1)

)
.

For t < i + J − 1, we need for the calculation of SCRi,t to use the induction assumption. Let
us evaluate successively each part of (4.11).

a) First we consider the conditional expected values of the ultimate claim Ci,J . From Proposition
1, we easily obtain

E[Ci,J |Tt] = Ci,t−ie
M

(t)
t−i:J−1e0.5S

(t)
t−i:J−1

and

E[Ci,J |Tt+1] = Ci,t+1−ie
M

(t+1)
t+1−i:J−1e0.5S

(t+1)
t+1−i:J−1

= Ci,t−ie
ξi,t−i+1+

∑J−1
j=t+1−i

(
β
(t+1)
j φ

(t)
j +α

(t+1)
j ξt−j,j+1

)

e0.5S
(t+1)
t+1−i:J−1

= Ci,t−ie
∑J−1
j=t+1−i β

(t+1)
j φ

(t)
j eξi,t−i+1+

∑J−1
j=t+1−i α

(t+1)
j ξt−j,j+1e0.5S

(t+1)
t+1−i:J−1 .

b) Second we consider the conditional expected values of the future SCRs. Using the induction
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assumption, we have, for l ≥ t+ 1,

E[SCRi,l|Tt]

= ai,lE[Ci,l−i

J−1∏

j=l−i

eφ
(l)
j |Tt]

= ai,lCi,t−iE




l−i−1∏

j=t−i

eξi,j+1
J−1∏

j=l−i

eφ
(t)
j γ

(t+1:l)
j +

∑l−t
q=1 γ

(t+q+1:l)
j α

(t+q)
j ξt−j+q−1,j+1

∣∣∣∣∣∣
Tt





= ai,lCi,t−i

J−1∏

j=l−i

eφ
(t)
j γ

(t+1:l)
j E




l−i−1∏

j=t−i

eξi,j+1
J−1∏

j=l−i

e
∑l−t
q=1 γ

(t+q+1:l)
j α

(t+q)
j ξt−j+q−1,j+1

∣∣∣∣∣∣
Tt





= ai,lCi,t−i

J−1∏

j=t−i

eφ
(t)
j

l−i−1∏

j=t−i

e
0.5
(
(s
(t)
j )2+σ2j

)

×
J−1∏

j=l−i

e
0.5
(
(s
(t)
j )2+σ2j

)∑l−t
q=1

(
γ
(t+q+1:l)
j α

(t+q)
j

)2
+(s

(t)
j )2

∑
1≤p<q≤l−t γ

(t+p+1:l)
j γ

(t+q+1:l)
j α

(t+p)
j α

(t+q)
j

= Ci,t−i

J−1∏

j=t−i

eφ
(t)
j [ai,lΣi,l,t] .

Hence

c
i+J−1∑

l=t+1

E[SCRi,l|Tt] = Ci,t−i

J−1∏

j=t−i

eφ
(t)
j

[
i+J−1∑

l=t+1

cXi,lΣi,l,t

]

and

c
i+J−1∑

l=t+1

E[SCRi,l|Tt+1] = Ci,t+1−i

J−1∏

j=t+1−i

eφ
(t+1)
j

[
i+J−1∑

l=t+1

cai,lΣi,l,t+1

]

= Ci,t−ie
∑J−1
j=t+1−i β

(t+1)
j φ

(t)
j eξi,t−i+1+

∑J−1
j=t+1−i α

(t+1)
j ξt−j,j+1

[
i+J−1∑

l=t+1

cai,lΣi,l,t+1

]

.

c) Third we aggregate the conditional expected values measurable with respect to Tt

c

i+J−1∑

l=t+1

E[SCRi,l|Tt] + E[Ci,J |Tt] = Ci,t−ie
∑J−1
j=t−i φ

(t)
j A

(1)
i,t

with

A
(1)
i,t =

i+J−1∑

l=t+1

cai,lΣi,l,t + e
0.5

∑J−1
j=t−i((s

(t)
j )2+σ2j ) =

i+J−1∑

l=t+1

cai,lΣi,l,t + e
0.5S

(t)
t−i:J−1 .

d) Fourth we aggregate the conditional expected values measurable with respect to Tt+1 and
derive the quantile of the sum given Tt. Let

c
i+J−1∑

l=t+1

E[SCRi,l|Tt+1] + E[Ci,J |Tt+1] = Ci,t−ie
∑J−1
j=t+1−i β

(t+1)
j φ

(t)
j eξi,t−i+1+

∑J−1
j=t+1−i α

(t+1)
j ξt−j,j+1A

(2)
i,t
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with

A
(2)
i,t =

i+J−1∑

l=t+1

cai,lΣi,l,t+1 + e
0.5

∑J−1
j=t+1−i((s

(t+1)
j )2+σ2j ) =

i+J−1∑

l=t+1

cai,lΣi,l,t+1 + e
0.5S

(t+1)
t+1−i:J−1 .

Moreover

q99.5%

(
eξi,t−i+1+

∑J−1
j=t+1−i α

(t+1)
j ξt−j,j+1

∣∣∣∣ Tt
)

= eφ
(t)
t−i+

∑J−1
j=t+1−i α

(t+1)
j φ

(t)
j e

ϕ
√
((s

(t)
t−i)

2+σ2t−i)+
∑J−1
j=t+1−i(α

(t+1)
j )2((s

(t)
j )2+σ2j )

and hence

q99.5%

(

c
i+J−1∑

l=t+1

E[SCRi,l|Tt+1] + E[Ci,J |Tt+1]

∣∣∣∣∣
Tt

)

= Ci,t−ie
∑J−1
j=t−i φ

(t)
j A

(2)
i,t e

ϕ
√
(((s

(t)
t−i)

2+σ2t−i)+
∑J−1
j=t+1−i(α

(t+1)
j )2((s

(t)
j )2+σ2j ))

= Ci,t−ie
∑J−1
j=t−i φ

(t)
j A

(2)
i,t Ξi,t.

e) Fifth we gather the previous results and deduce that

SCRi,t = Ci,t−i

J−1∏

j=t−i

eφ
(t)
j

[
1

1 + c

(
A
(2)
i,t Ξi,t −A

(1)
i,t

)]
.

Therefore the constants ai,t satisfy the following recursive formulas

ai,t =
1

1 + c

[

c
i+J−1∑

l=t+1

ai,l (Σi,l,t+1Ξi,t − Σi,l,t) + e
0.5S

(t+1)
t+1−i:J−1Ξi,t − e

0.5S
(t)
t−i:J−1

]

.

Finally

MVMi,t = c
i+J−1∑

l=t

E [SCRi,l|Tt] = c

[
i+J−1∑

l=t

ai,lΣi,l,t

]

Ci,t−i
J−1∏

j=t−i

eφ
(t)
j



 .

This completes the proof.

7.5 Proof of Proposition 5

Let n = I + J and, for t = I, . . . , n,

St =
I∑

i=1

Ci,(t−i)∧J =
t−J∑

i=1

Ci,J +
I∑

i=t−J+1

Ci,t−i.

As for Proposition 4, the proof goes by backward induction. Let assume that, for t = I, . . . , I+J ,

SCRt '
I∑

i=t−J+1

Ci,t−ie
M

(t)
t−i:J−1bi,t (7.20)

where bi,t are constants which satisfy, for j ≥ i+ J , bi,j = 0.
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In view of (4.12), for t = n− 1 = I + J − 1, the following equation holds

SCRn−1 =
1

1 + c
(q99.5%(Sn|Tn−1)− E[Sn|Tn−1])

=
1

1 + c
(q99.5%(CI,J |Tn−1)− E[CI,J |Tn−1])

=
1

1 + c

(
CI,J−1e

φ
(n−1)
J−1 +φ

√
((s

(n−1)
J−1 )2+σ2

J−1) − CI,J−1e
φ
(n−1)
J−1 +0.5((s

(n−1)
J−1 )2+σ2

J−1)

)

=
CI,J−1e

φ
(n−1)
J−1

1 + c

(
eϕ
√
((s

(n−1)
J−1 )2+σ2

J−1) − e0.5((s
(n−1)
J−1 )2+σ2

J−1)

)

and

bI,I+J−1 =
1

1 + c

(
eϕ
√
((s

(n−1)
J−1 )2+σ2

J−1) − e0.5((s
(n−1)
J−1 )2+σ2

J−1)

)
.

For t < n − 1, we need for the calculation of SCRt to use the induction assumption. Let us
evaluate successively each part of (4.12).

a) First we consider the conditional expected values of the ultimate claims
∑I
i=1Ci,J . From

Proposition 1, we easily obtain

E

[
I∑

i=1

Ci,J

∣∣∣∣∣
Tt

]

= E[Sn|Tt] =
t−J∑

i=1

Ci,J +
I∑

i=t−J+1

E [Ci,J | Tt]

=
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I∑
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M

(t)
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(t)
t−i:J−1

and
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t+1−J∑

i=1

Ci,J +
I∑
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=
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I∑
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Ci,t+1−ie
M

(t+1)
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=
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ξt+1−J,J

+
I∑
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Ci,t−ie
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j=t+1−i β

(t+1)
j φ

(t)
j eξi,t−i+1+
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j=t+1−i α

(t+1)
j ξt−j,j+1

[
e0.5S

(t+1)
t+1−i:J−1

]
.

b) Second we consider the conditional expected values of the future SCRs. Using the induction
assumption, we have, for l ≥ t+ 1,

E[SCRl|Tt] =
I∑

i=l−J+1

bi,lE
[
Ci,l−ie

M
(l)
l−i:J−1

∣∣∣ Tt
]
=

I∑
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Ci,t−ie
M

(t)
t−i:J−1 [bi,lΣi,l,t] .

Hence

c
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and

c
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I∑
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]

c) Third we aggregate the conditional expected values measurable with respect to Tt

c

I+J−1∑

l=t+1

E[SCRl|Tt] + E[Sn|Tt]

= c
I∑
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with for i = t− J + 1, . . . , I

B
(1)
i,t =

i+J−1∑

l=t+1

cbi,lΣi,l,t + e
0.5S

(t)
t−i:J−1 .

d) Fourth we aggregate the conditional expected values measurable with respect to Tt+1 and
construct an approximation of the quantile of the sum given Tt by using the methodology presented
in Section 3. We have

c
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and, for i = t− J + 1,

B
(2)
t−J+1,t = 1.

We want to evaluate the quantiles of the following sum of log-normal random variables

S(t) =

I∑

i=t−J+1

δ
(t)
i e

Z
(t)
i =

I∑
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α
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Straightforward calculations give
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(t)
i |Tt] = φ

(t)
t−i +

J−1∑

j=t+1−i

α
(t+1)
j φ

(t)
j

Var(Z
(t)
i |Tt) = σ2

Z
(t)
i

= ((s
(t)
t−i)

2 + σ2t−i) +

J−1∑

j=t+1−i

(α
(t+1)
j )2((s

(t)
j )

2 + σ2j )

cov(Z
(t)
i , Z

(t)
l |Tt) = Var(Z

(t)
i |Tt) for i ≤ l.
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Λ(t) =
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)

Note that η
(t)
i is determined by using conditional expectations and conditional variance with respect

to TI and not Tt because this would have introduced additional terms linked to the φ
(t)
t−i and would

have distorted the recursive form (7.20). From Proposition 1, we easily obtain
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and therefore
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Then we derive
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.

The approximation Sl,(t) of S(t) can be written
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where U is uniform distributed random variable and the approximation of the quantile is then given
by

q99.5%

(
Sl,(t)|Tt

)
=

I∑

i=t−J+1

δ
(t)
i e

E[Z
(t)
i |Tt]+0.5(1−(r

(t)
i )2)σ2

Z
(t)
i

+r
(t)
i σ

Z
(t)
i

ϕ

=

I∑

i=t−J+1

Ci,t−ie
M

(t)
t−i:J−1B

(2)
i,t Ξ

S
i,t

where

ΞSi,t = e
0.5(1−(r

(t)
i )2)σ2

Z
(t)
i

+r
(t)
i σ

Z
(t)
i

ϕ

.

e) Fifth we gather the previous results and deduce that
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Finally we obtain

MVMt = c
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(t)
j



 .

This completes the proof.

7.6 Proofs of Proposition 6 and 7

The proofs go by backward induction and follow the same lines as that given in the previous proof.
In order to shorten the paper, the proofs are not given here but they are, however, available upon
request.
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a.y. development year j
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 13109 20355 21337 22043 22401 22658 22997 23158 23492 23664 23699 23904 23960 23992 23994 24001 24002

2 14457 22038 22627 23114 23238 23312 23440 23490 23964 23976 24048 24111 24252 24538 24540 24550

3 16075 22672 23753 24052 24206 24757 24786 24807 24823 24888 24986 25401 25681 25705 25732

4 15682 23464 24465 25052 25529 25708 25752 25770 25835 26075 26082 26146 26150 26167

5 16551 23706 24627 25573 26046 26115 26283 26481 26701 26718 26724 26728 26735

6 15439 23796 24866 25317 26139 26154 26175 26205 26764 26818 26836 26959

7 14629 21645 22826 23599 24992 25434 25476 25549 25604 25709 25723

8 17585 26288 27623 27939 28335 28638 28715 28759 29525 30302

9 17419 25941 27066 27761 28043 28477 28721 28878 28948

10 16665 25370 26909 27611 27729 27861 29830 29844

11 15471 23745 25117 26378 26971 27396 27480

12 15103 23393 26809 27691 28061 29183

13 14540 22642 23571 24127 24210

14 14590 22336 23440 24029

15 13967 21515 22603

16 12930 20111

17 12539

Table 3: Cumulative payments Ci,j =
∑j
l=0Xi,l, i+ j ≤ 17
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