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Abstract—In this paper, we propose, for the first time, QPSK
super-orthogonal space-time trellis codes (SO-STTCs) with 3 and
4 transmit antennas and with more than 4 states. In order to
decrease drastically the search time of the best SO-STTCs with
3 and 4 transmit antennas, a matrix representation of codes and
an adaptation of the coset partitioning are proposed. Thus, we
obtain good SO-STTCs with more than 2 transmit antennas. We
demonstrate by simulations that the new proposed SO-STTCs
outperform the best corresponding STTCs.

I. INTRODUCTION

Tarokh et al. introduced in [1] the concept of space-time

trellis codes (STTCs) to improve the error performance or the

date rate for wireless communication systems with multiple

transmit and receive antennas. The first design criteria called

rank and determinant criteria presented in [1] aim to obtain

STTCs achieving full diversity and some coding gain. Chen

et al. proposed in [2] the trace criterion to improve the coding

gain of STTCs. Based on these criteria, a method called coset

partitioning has been proposed in [3] to obtain efficiently the

best STTCs.

In [4], Alamouti proposed a simple code achieving full

diversity and full rate for two transmit antennas. The ge-

neralization of this code leads to a new type of codes [5] called

orthogonal space-time block codes (O-STBCs). The main

advantages of these codes are to employ a simple decoding

scheme and to achieve a full diversity. Nevertheless, O-STBCs

do not provide a coding gain. Besides, in the case of complex

constellations, there are no O-STBCs with more than two

transmit antennas which achieve full diversity and full rate.

Jafarkhani et al. introduced in [6] a new class of codes called

super-orthogonal space-time trellis codes (SO-STTCs) for two

and four transmit antennas combining O-STBCs and STTCs.

In the same time, Ionescu et al. in [7] and Siwamogsatham

et al. in [8] proposed similar coding systems to improve the

performance of wireless communications. The benefits of SO-

STTCs are to provide full diversity compared to STTCs and to

improve coding gain compared to O-STBCs. In [9], a simple

representation of SO-STTCs with only two transmit antennas

based on generator matrices is given to allow a systematic

search of all possible codes. For 4 transmit antennas, super-

quasi-orthogonal space-time trellis codes (SQO-STTCs) have

been proposed in [10]. A simplification and a generalization

for 2m transmit antennas with m ∈ N
∗ of SQO-STTCs are

given in [11]. These codes achieve full diversity and full

rate. However, SQO-STTCs have the higher coding/decoding

complexity compared to SO-STTCs and are proposed for a

small number of states.

In this paper, we propose to extend the matrix represen-

tation of SO-STTCs [9] for 3 and 4 transmit antennas. This

representation allows to design efficiently SO-STTCs, thanks

to the coset partitioning [3]. Thus, new SO-STTCs with 3 and

4 transmit antennas are proposed.

The paper is organized as follows. Section II describes the

representations of SO-STTCs and the existing design criteria.

In section III, the new method is presented. Section IV gives

new QPSK SO-STTCs with 3 and 4 transmit antennas. Their

performance is compared to that of the best known STTCs.

II. SYSTEM MODEL

A. QPSK SO-STTCs

We consider a QPSK 2νBS -state SO-STTC with 2BP

parallel branches and nT transmit antennas, where

ν,BS , BP , nT ∈ N
∗ and BI = BS + BP is an even

number.

The shift register of the encoder is constituted by one input

block of BI bits followed by ν memory blocks of BS bits.

Every T symbol-times, BI bits
[
xt
1 · · ·x

t
BI

]
are fed into the

encoder. The goal of the encoder is to generate nS = BI

2

signals every T symbol-times. We define a generator matrix

G =
[
G1

1 · · ·G
1
BI

|G2
1 · · ·G

2
BS

| · · · |Gν+1
1 · · ·Gν+1

BS

]
(3)

where Gl
i =

[
gl1,i · · · g

l
nS ,i

]T
∈ Z

nS

4 , where i = 1, 2, · · · , BI

if l = 1 and i = 1, 2, · · · , BS if l = 2, · · · , ν+1. In this paper,

[·]T is the transpose of the matrix [·]. Besides, we consider the

extended state

Xt = [xt
1 · · ·x

t
BI

|xt−1
1 · · ·xt−1

BS
|xt−ν

1 · · ·xt−ν
BS

]T (4)

which is a column vector containing the binary values of the

shift register.

Every T symbol-times, the encoder computes

Y = GXt = [y1 · · · ynS
]
T
∈ Z

nS

4 mod 4. (5)

Each encoder output ym with m = 1 · · ·nS is mapped onto

a QPSK signal given by

sm = ej
π
2
ym . (6)



C3(s1, s2, s3, θ1, θ2, θ3) =

[
s1 ejθ1 s∗

2
ejθ2 s∗

3
ejθ3 0

−s2 ejθ1 s∗
1

ejθ2 0 s∗
3

−s3 ejθ1 0 s∗
1

ejθ3 s∗
2

]

(1)

C4(s1, s2, s3, θ1, θ2, θ3) =






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s3√
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2√
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1√
2
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1
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2√
2







(2)

During T symbol-times, a codeword of T MIMO symbols is

sent over the propagation channel. We consider the codewords

given by the expressions (1) proposed in [12] and (2) proposed

in [5] in the case of nT = 3 and nT = 4 transmit antennas,

respectively. For these codes, nS = 3 and T = 4.

The goal of multiple rotation angles θ1, θ2 and θ3 is to

increase the number of possible orthogonal codewords. In

order to not expand the QPSK constellation, θτ must belong

to
{
0, π

2
, π, 3π

2

}
with τ ∈ {1, 2, 3}. The kth line of the

expressions (1) and (2) with k ∈ {1, 2, · · · , nT } corresponds

to the signals sent by the kth transmit antenna. The tth column

of the codewords (1) and (2) with t ∈ {1, 2, 3, 4} corresponds

to the MIMO signal transmitted at time t by the nT transmit

antennas.

The two codewords of expressions (1) and (2) achieve full

rank, but the rates are limited to 3/4. In fact, there are no

O-STBCs with full rank and full rate with more than 2 transmit

antennas [5]. The rotation angles θ1, θ2 and θ3 depend on

the current state during the transmission of the codeword. For

example, the trellis of Fig. 1 describes a QPSK 8-state SO-

STTC with 8 parallel paths and 3 transmit antennas. The lines

between the points are the transitions between the different

states. For each transition, 8 possible codewords can be sent

over the propagation channel. The signals s1, s2 and s3 depend

on the inputs bits, the current state and the generator matrix

with 3 lines and 9 columns.

STATES: [xt−1
1 xt−1

2 xt−1
3 ] [xt

1x
t
2x

t
3]

time t time t+ 1

C3(s1, s2, s3, 0, 0, 0)

C3(s1, s2, s3, 0, 0, 1)

C3(s1, s2, s3, 0, 1, 0)

C3(s1, s2, s3, 0, 1, 1)

C3(s1, s2, s3, 1, 1, 1)

C3(s1, s2, s3, 1, 1, 0)

C3(s1, s2, s3, 1, 0, 0)

C3(s1, s2, s3, 1, 0, 1)

Fig. 1. Trellis representation of QPSK 8-state SO-STTCs with 8 parallel
paths and 3 transmit antennas

B. Design criteria

The main design criteria have been established in [1], [2]

in order to decrease the bit and frame error rate. In this paper,

only the case of slow Rayleigh fading channels is considered,

i.e. the fading coefficients within each frame are constant.

Let us consider a frame of L MIMO signals starting at

t = 0 by a nT × L matrix S = [s0s1...sL−1] where s
q is

the qth MIMO signal. An error occurs if the decoder decides

that another frame E = [e0e1...eL−1] is transmitted. The

main goal of the code design is to reduce the pairwise error

probability (PEP) which is the probability that the decoder

selects erroneously the frame E as transmitted frame while

the frame S is actually transmitted. Let define the nT × L

difference matrix B = E− S

B =






e01 − s01 . . . eL−1
1 − sL−1

1

...
. . .

...

e0nT
− s0nT

. . . eL−1
nT

− sL−1
nT




 . (7)

The nT × nT product matrix A = BB
∗ is introduced,

where B
∗ denotes the hermitian of B. We define r =

min(rank(A)), where A is computed for all pairs of frames

(E,S) with E 6= S. The design criteria depend on the value of

the product rnR, where nR is the number of receive antennas.

If rnR ≤ 3, for a slow Rayleigh fading channel, the rank

and determinant criteria have been proposed [1], [13] to reduce

the PEP:

• A has to be a full rank matrix for any pair (E, S).
• The coding gain is related to the inverse of η =
∑

d

N(d)d−nR , where N(d) is defined as the average

number of error events with determinant d = det(A).
The best codes must have the minimum value of η.

If rnR ≥ 4, it is shown in [2] that for a large value of

rnR which corresponds to a large number of independent

SISO channels, the PEP is minimized if the sum of all the

eigenvalues of the matrix A is maximized. Since A is a square

matrix, the sum of all the eigenvalues is equal to the trace of

the matrix A

tr(A) =

nT∑

k=1

λk =

nT∑

k=1

(
L−1∑

q=0

∣
∣ekt+q − skt+q

∣
∣
2

)

. (8)

For each pair of codewords, tr(A) is computed. The minimum

trace is the minimum of all these values tr(A). The mini-

mization of the PEP amounts to using a code which has the

maximum value of the minimum trace. In [13], it is also stated

that to minimize the frame error rate (FER), the number of

error events with minimum trace has to be minimized. This

criterion is called the trace (or Euclidean distance) criterion.



TABLE I
QPSK SO-STTCS WITH 3 AND 4 TRANSMIT ANTENNAS

nT 2
νBS

Number of par-
allel branches

G d
2

E

min

3
8 8





2 1 0 0 2 1 0 0 2

2 1 2 1 0 2 2 2 1

0 2 0 2 2 1 0 2 3



 24

16 4





2 3 0 2 2 1 2 3 0 2

2 1 2 3 0 2 2 3 2 3

0 2 0 2 2 3 2 1 2 3



 24

4 16 4





2 1 0 2 2 3 2 1 0 2

0 2 0 2 2 1 2 3 2 1

2 1 2 3 0 2 2 3 2 3



 24

III. CODE SEARCH

In the previous publications, in order to maximize the

coding gain, the generator matrix was designed via the set

partitioning [14] used with the determinant criterion rather

than the Euclidean distance criterion. It has been shown in [2]

that the Euclidean distance governs the performance of space-

time codes when the number of independent sub-channels is

great i.e. rnR ≥ 4. Thus, we propose to design new SO-

STTCs based on the Euclidean distance criterion, rather than

the determinant criterion.

As shown for SO-STTCs with 2 transmit antennas in [15]

and for STTCs in [3], the generator matrix can be divided into

blocks of columns. For example, let us consider the QPSK

8-state SO-STTCs with 8 parallel branches and 3 transmit

antennas where BP = 3 and BS = 3. The generator matrix

can be represented as

G =
[

N
ex

t sta
te

︷ ︸︸ ︷

G1G2G3 |

Par
al

le
l bra

nch
es

︷ ︸︸ ︷

G4G5G6
︸ ︷︷ ︸

Input bits

|

Curre
nt sta

te

︷ ︸︸ ︷

G7G8G9

]
(9)

where Gl ∈ Z
3
4 for l = 1, 2, · · · , 9. The first block is used

to compute the codewords originating from a same state.

The second block is employed to compute the codewords of

parallel branches of the trellis. Finally, the third block is used

to obtain the codewords merging to a same state.

Based on this observation, we adapt the coset partitioning

method to design the best SO-STTCs. Thus, the designed

codes must fulfill the following rules :

• the used codewords are equally probable.

• the codewords of parallel transitions must be separated

by the largest Euclidean distances.

• the MIMO symbols originating from or merging to a

same state generate all the possible codewords.

At first, the block which separates the codewords of parallel

branches separated by the largest Euclidean distances must be

found. The second step is the search of the blocks generating

the codewords originating from and merging into the same

states as a function of the previous selected block. As does the

coset partitioning, the symbols Y originating from the same

state must form the group Z
nS

4 . This additive group is the set

of all the possible symbols Y given by the expression (5). In

fact, since the rotation angles θi are fixed for a given state, the

number of codewords originating from the same state is equal

to 4nS . Thus, in order to separate by a non-null distance the

codewords originating from the same state, the first two blocks

must generate all possible codewords. Similarly, the number of

codewords merging to the same state is equal to 4nS . Thus, the

last block and the block relative to the parallel branches must

generate the group Z
nS

4 . The method to select the columns of

generator matrix to obtain a subgroup is presented in [3]. The

best codes are combinations of the created blocks.

IV. NEW CODES AND SIMULATION

Table I presents new QPSK 8-state and 16-state SO-STTCs

with 3 and 4 transmit antennas. The number of parallel

branches and the minimal Euclidean distance between two

codewords (notified d2E
min

) are given in Table I. Remark : No-

exhaustive search has been performed to design the SO-STTCs

proposed in Table I.

The performance of each new code is evaluated by simula-

tion in a slow Rayleigh fading channel and compared to the

performance of the corresponding STTC in Table II proposed

in [3]. For the simulation, the channel fading coefficients are

independent samples of a complex Gaussian process with

zero mean and variance 0.5 per dimension. These channel

coefficients are assumed to be known by the decoder. Each

frame consists of 264 bits. For the simulations, we consider 1

and 2 receive antennas. The decoding has two steps. For each

transition between two states, the decoder picks the parallel

branch with the smallest Euclidean distance. The resulting

trellis has only one branch per transition. Then, the Viterbi

decoder is applied to find the sent binary data.

TABLE II
STTCS WITH 3 AND 4 TRANSMIT ANTENNAS

nT 2
2ν G d

2

E

min

3
8





0 2 2 3 0 0

2 3 2 3 0 2

2 3 2 1 0 2



 20

16





0 2 1 2 2 0

2 1 2 0 3 2

2 1 3 2 1 2



 24

4 16









1 2 2 0 3 2

3 2 3 2 1 2

2 0 3 2 1 2

1 2 2 0 2 0









32

Figs. 2 and 3 present the performance of SO-STTCs and

STTCs with 3 transmit antennas presented in Tables I and II

with 8 states and 16 states, respectively. Fig. 4 shows the per-

formance of SO-STTCs and STTCs with 4 transmit antennas

presented in Tables I and II. In the case of one receive antenna



and for FER=10−1, according to the simulation results, we

can notice that the new proposed SO-STTCs offer a gain of

at least 2 dB over the corresponding best STTCs. In the case

of 2 receive antennas and for FER=10−1, the SO-STTCs have

more than 0.25 dB of gain compared to the corresponding best

STTCs. For 4 transmit antennas, no SQO-STTC with 8 states

or more has been proposed in [10], [11].
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Fig. 2. Performance of the QPSK 8-state STTCs of table II and the QPSK
8-state SO-STTC with 3 transmit antennas
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Fig. 3. Performance of the QPSK 16-state STTCs of table II and the QPSK
16-state SO-STTC with 3 transmit antennas

V. CONCLUSION

In the paper, the matrix representation of SO-STTCs is

extended to the SO-STTCs with 3 and 4 transmit antennas

and with more than 4 states. Via this representation and an

adaptation of the coset partitioning, good SO-STTCs with 3

and 4 transmit antennas are designed efficiently. Due to the

number of transmit antennas and the complex constellation,

the new proposed codes do not achieve a full rate. However,

they outperform significantly the corresponding STTCs.
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Fig. 4. Performance of the QPSK 16-state STTCs of table II and the SO-
STTC with 4 transmit antennas
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