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Abstract

In this paper, we propose a new method called coset partitioning to generate easily and

efficiently the best space-time trellis codes (STTCs), thereby reducing considerably the usual

important search time. This method, used in the case of 2n-PSK STTCs, is an extension

of the set partitioning proposed by Ungerboeck based on the coset and lattice Calderbank’s

approach. The main guideline of the coset partitioning is to divide the set of MIMO symbols

into cosets, not into simple sets as the set partitioning. The case of a large number of transmit

antennas is considered because the time to obtain the best STTCs with an exhaustive search is

very important when the number of transmit antennas increases. Using the coset partitioning,

new 4-PSK STTCs with 5 to 6 transmit antennas are generated. Simulation results show

that the new codes slightly outperform the best corresponding known codes. Thanks to the

effectiveness of the coset partitioning, for the first time, 4-PSK STTCs with 7 and 8 transmit

antennas and 8-PSK STTCs with 5 to 6 transmit antennas are obtained. Their performance

is also analyzed by simulation.
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1 Introduction

In [1], Tarokh et al. have introduced the concept of space-time trellis codes (STTCs) to take

benefit from the detrimental effect of multipath fading on wireless communications. In order to

improve the reliability and/or data rate of the wireless communications, STTCs take advantage of

both the spatial diversity provided by the multiple input and output (MIMO) antennas and the

coding gain provided by the trellis encoder. In [1], the rank and determinant criteria have been

proposed to analyzed the performance of STTCs in the case of slow Rayleigh fading channels.

In [2], Chen et al. have presented the trace criterion for slow and fast Rayleigh fading channels.

Based on the Euclidean distance, this criterion governs the performance of codes in the case of

a great product between the number of transmit and receive antennas. Thanks to these criteria,

after a systematic search, many codes have been proposed in [1, 2, 3, 4], but only for MIMO

systems with up to 4 transmit antennas. In [5, 6], Abdool-Rassool et al. have presented 4-PSK

STTCs with 5 and 6 transmit antennas obtained via a systematic search. The main problem of

these previous published code searches is the computational time, particularly when the number of

transmit antennas, the number of states and the modulation indices increase. For example, there

are several billions of 4 states 4-PSK STTCs with 4 transmit antennas which must be analyzed to

find the best STTCs.

In order to reduce drastically the search time, a new method called coset partitioning is pre-

sented to generate 2n-PSK STTCs with a large number of transmit antennas without the usual

time-consuming exhaustive/systematic search. In [7], the coset partitioning has been used to de-

sign optimal 2n-PSK STTCs, but only for a small number of transmit antennas. This method is

an extension for MIMO systems of the set partitioning proposed by Ungerboeck to design trellis

coded modulations (TCMs) [8, 9, 10], based on the lattice and coset Calderbank’s approach [11].

In the coset partitioning, the MIMO symbols are regrouped into cosets, not into simple sets, as

in the set partitioning. Thus, the number of codes generated by the coset partitioning is reduced

compared to the number of codes obtained with the set partitioning. Therefore, the time to find

optimal STTCs via the coset partitioning is considerably shortened, especially when the number
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of transmit antennas and/or the number of states increase.

The paper is organized as follows. Section II describes the representation of STTCs and the

existing design criteria. In section III, the new method is presented with several design examples.

Section IV gives new 4-PSK and 8-PSK STTCs with 5 to 8 and with 5 to 6 transmit antennas

respectively. In section V, the performance of these new codes is compared to that of the best

known codes.

2 System model and design criteria

2.1 Representation of a space-time trellis encoder

We consider a 2n-PSK space-time trellis encoder with nT transmit antennas and nR receive an-

tennas. For n = 2, the encoder is shown in Fig. 1.

The encoder is composed of one input block of n bits and ν memory blocks of n bits. A state

is defined by the binary values of the ν memory blocks. At each time t ∈ Z, all the bits of a block

are replaced by the n bits of the previous block. For each block i with 1 ≤ i ≤ ν + 1, the jth bit

with 1 ≤ j ≤ n is associated to nT coefficients gkj,i ∈ Z2n , 1 ≤ k ≤ nT . With these nT × n(ν + 1)

coefficients, a generator matrix GGG with nT lines and ν + 1 blocks [12] is obtained :

GGG = [G1
1 · · ·G

1
n| · · · |G

ν+1
1 · · ·Gν+1

n ] (1)

with Gi
j = [g1j,i · · · g

nT
j,i ]

T ∈ Z
nT
2n . The matrix [· · · ]T is the transpose of the matrix [· · · ].

At each time t, the encoder output yyyxt =
[

yt1y
t
2 · · · y

t
nT

]T
∈ Z

nT
2n is given by

yyyxt =GGGxxxt (2)

where xxxt = [xt
1 · · ·x

t
n · · ·x

t−ν
1 · · ·xt−ν

n ]T is the extended-state at time t of the L = n(ν + 1) length

shift register realized by the input block followed by the ν memory blocks.

Each encoder output ytk is mapped onto a 2n-PSK signal stk = exp(j π
2n−1 y

t
k). Each output signal

stk is sent to the kth transmit antenna. At each time t, the symbols transmitted simultaneously

over the fading MIMO channel are given by ssst =
[

st1s
t
2 · · · s

t
nT

]T
.
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An encoder can also be represented by a trellis, as shown in Fig. 2 for a 4 states 4-PSK STTC.

In the trellis, the states are described by the points and the transitions between the states by

the lines. Each transition corresponds to an extended-state. The vector yyyi ∈ Z
nT
4 represents the

MIMO symbol associated to an extended-state. The index i is computed as the decimal value of

this extended-state, with xt
1,1 the least significant bit. In this example, the trellis representation

corresponds to the generator matrix GGG = [y1y2|y4y8].

In the general case, for a 2n-PSK STTC, there are 2n transitions originating from a same state

or merging into a same state. The MIMO symbols belong to Z
nT
2n .

2.2 Design criteria

The main design criteria have been established in [1, 2] in order to decrease the bit and frame

error rates. In this paper, only the case of slow fading channels is considered, i.e. the channel

fading coefficients are constant for each frame of Lf symbols. Besides, we assume that a maximum

likelihood algorithm is used to estimate the transmitted symbols.

The main goal of this design is to reduce the pairwise error probability (PEP) which is the

probability that the decoder selects an erroneous frame. It is possible to represent a coded frame

of Lf MIMO symbols starting at t = 0 by a nT × Lf matrix SSS = [sss0sss1...sssLf−1], where ssst is the

tth MIMO symbol. An error occurs if the decoder decides that another frame EEE = [eee0eee1...eeeLf−1]

was transmitted. Let us define the nT × Lf difference matrix BBB = EEE −SSS:

BBB =

















e01 − s01 . . . e
Lf−1
1 − s

Lf−1
1

...
. . .

...

e0nT
− s0nT

. . . e
Lf−1
nT − s

Lf−1
nT

















(3)

The nT × nT product matrix AAA = BBBBBB∗ is introduced, where BBB∗ denotes the hermitian of BBB.

We define r = min(rank(AAA)), where AAA is computed for all pairs of different coded frames (EEE 6= SSS).

The design criteria depend on the value of the product rnR.

First case: rnR ≤ 3:

In this case, for a slow Rayleigh fading channel, two criteria have been proposed [1, 13] to reduce
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the PEP:

• AAA has to be a full rank matrix for any pair (EEE, SSS) with EEE 6= SSS.

• The coding gain is related to the inverse of η =
∑

d

N(d)d−nR , where N(d) is defined as the

average number of error events with determinant d = det(AAA). The best codes must have the

minimum value of η.

Second case: rnR > 3:

In [2], it is shown that for a large value of rnR, which corresponds to a large number of independent

SISO channels, the PEP is minimized if the sum of all the eigenvalues of the matrixAAA is maximized.

Since AAA is a square matrix, the sum of all the eigenvalues is equal to the trace of the matrix AAA:

tr(AAA) =

nT
∑

k=1

λk =

nT
∑

k=1





Lf−1
∑

t=0

∣

∣ekt − skt
∣

∣

2



 (4)

For each pair of codewords, tr(AAA) is computed. The minimization of the PEP amounts to

using a code which has the maximum value of the minimum trace computed for all different pairs

of coded frames (EEE,SSS). In [13], it is also stated that to minimize the frame error rate (FER), the

number of error events with minimum trace has to be minimized.

In this paper, we consider the case rnR > 3 which is encountered when the minimum rank of

AAA is greater than 1 and there are at least 2 receive antennas.

3 Coset partitioning

3.1 Preliminary

Each MIMO symbol belongs to the additive group Z
nT
2n . The set

C0 = 2n−1
Z
nT
2 (5)
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is a normal subgroup of ZnT
2n such as v = −v, ∀v ∈ C0. It is possible to partition the group Z

nT
2n

into 2nT (n−1) cosets as:

Z
nT
2n =

⋃

p∈Z
nT
2n−1

(p+ C0) =
⋃

p∈Z
nT
2n−1

Cp (6)

where Cp = p+ C0, ∀p ∈ Z
nT

2n−1 .

Using the cosets Cp, it is possible to make a new partition of ZnT
2n :

Z
nT
2n =

n−1
⋃

k=0

Ek (7)

where E0 = C0. For 1 ≤ k ≤ n− 1, the other sets Ek are defined by :

Ek =
⋃

pk

(pk + C0) (8)

where pk ∈ 2n−k−1
Z
nT

2k
\2n−k

Z
nT

2k−1 . The set Z
nT
1 contains only the nul element of Z

nT
2n . For

1 ≤ k ≤ n − 1, each coset pk + C0 ⊂ Ek is called ’relative to’ qk = 2pk ∈ Ek−1. For example,

Table 1 shows the partition of the group Z
4
2.

3.2 Presentation of the coset partitioning

In [8, 9, 10], Ungerboeck has proposed the set partitioning to design the TCMs in the case of single

input and single output (SISO) systems. The set partitioning can be stated by the following rules:

Rule 1 Each point of the constellation has the same number of occurrences.

Rule 2 In the trellis, transitions originating from a same state or merging into a same state

should be assigned subsets which contain signal points separated by the largest Euclidean distances.

Rule 3 Parallel paths should be assigned signal points separated by the largest Euclidean distances.

Since the trellis of STTCs has no parallel paths, this rule is not relevant for STTCs design.

Calderbank et al. give an alternative to set partitioning [11]: the constellation must be a

subgroup of an abelian group. The subgroup is divided into cosets. At each time t, the encoder

selects one coset, then one element of this coset.

The proposed method called coset partitioning can be stated by the following properties.
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Property 1 The used MIMO symbols are equally probable.

Property 2 The MIMO symbols originating from or merging to a same state belong to the same

coset.

Property 3 The elements of each coset must be separated by the largest Euclidean distances.

For a 2nν states 2n-PSK STTC, the generator matrix has ν+1 blocks of n columns of nT lines.

A characteristic of the STTCs designed with the coset partitioning is that the n columns of each

block [Gi
1 · · ·G

i
n] of GGG, with 1 ≤ i ≤ ν + 1 generate a subgroup Λi of Z

nT
2n :

Λi =







n
∑

j=1

xjG
i
j mod 2n/xj ∈ {0, 1}







(9)

with card(Λi) = 2n.

In order to obtain a subgroup, the n columns must be selected as follows. The first column

Gi
1 must belong to C∗

0 . If j − 1 first columns have been previous selected and create a subgroup

Λi,j−1, the columns Gi
j with 2 ≤ j ≤ n and 1 ≤ i ≤ ν + 1 must belong to C∗

0 or to the cosets

relative to an element of Λi,j−1 and must not belong to Λi,j−1.

Thus, the n columns of each block generate a subgroup. For each subgroup, it is possible to

compute the minimal Euclidean distance between its elements. The sets of n columns generating

the subgroups with the largest value of the minimal Euclidean distance are used to design the

generator matrixGGG. After these choices, it is possible to permute the columns and the lines within

each block in order to obtain other codes which fulfill the properties of the coset partitioning.

Further on, the codes with the best trace are searched.

Rule 1 of set partitioning is fulfilled by the STTCs designed via the coset partitioning because

these STTCs are balanced codes [14, 15]. A STTC is balanced if and only if the generated MIMO

symbols yyy have the same number of occurrences n(yyy) = n0 ≥ 1 when the input data are sent by a

binary memoryless source with equally probable symbols. If the columns of the generator matrix

GGG generate a subgroup of ZnT
2n , then the corresponding STTC is balanced [15].

For a STTC designed with coset partitioning, the set
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Λ =
ν+1
∑

i=1

Λi (10)

of generated MIMO symbols is a subgroup of ZnT
2n , where Λi is the subgroup generated by the n

columns of the block i of GGG. Thus, for these codes, rule 1 of set partitioning is respected.

If the code is designing with the coset partitioning, rule 2 of the set partitioning is also followed.

In fact, in the case of set partitioning, the symbols originating from or merging to a same state

belong to a subset which contains symbols separated by the largest Euclidean distances. In the

case of coset partitioning, the MIMO symbols originating from or merging to a same state belong

to a coset which contains MIMO symbols separated by the largest Euclidean distances.

However, in the case of coset partitioning, the selection of ’optimal’ cosets is more restrictive

than the selection of ’optimal’ subsets used by set partitioning. Therefore, the number of STTCs

obtained via the coset partitioning is significantly reduced to the best ones.

3.3 Design examples for 4-PSK 4 states STTCs with nT transmit an-

tennas

The MIMO symbols belong to Z
nT
4 . This group can be divided into 2 subsets: E0 = C0 and

E1 =
⋃

(g + C0), with g ∈ Z
nT
2 \[0 · · · 0]T . The generator matrix GGG has 2 blocks of 2 columns:

Bi = [Gi
1, G

i
2], where Gi

j ∈ Z
nT
4 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2.

To design optimal STTCs, the columns of each block must generate a subgroup of Z
nT
2n .

The subgroup Λ1 =

{

2
∑

j=1

xjG
1
j mod 4/xj ∈ {0, 1}

}

generated by the first block is also denoted

ΛF
1 because it is used to generate the MIMO symbols originating From a same state, as will

be shown later. The subgroup Λ2 =

{

2
∑

j=1

xjG
2
j mod 4/xj ∈ {0, 1}

}

generated by the second

block is also denoted ΛM
1 because it is used to generate the MIMO symbols Merging to a

same state, as will be shown later. The set of generated MIMO symbols is given by Λ =
{

2
∑

i=1

2
∑

j=1

xi
jG

i
j mod 4/xi

j ∈ {0, 1}

}

. Thus, each coset of Λ/ΛF
1 =

{

g + ΛF
1 /g ∈ ΛM

1

}

contains

the MIMO symbols originating from a same state. In the same way, each coset of Λ/ΛM
1 =

{

g + ΛM
1 /g ∈ ΛF

1

}

contains the MIMO symbols merging to a same state. The trellis is shown in
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Fig. 3.

To respect the coset partitioning, the Euclidean distances between the different elements of

each coset of Λ/ΛF
1 and Λ/ΛM

1 must have the largest values. To obtain these optimal cosets,

it is sufficient to design the optimal subgroups. In fact, the distance spectrum of each coset of

Λ/ΛF
1 and Λ/ΛM

1 , i.e. the repartition of Euclidean distances between the elements of each coset

of Λ/ΛF
1 and Λ/ΛM

1 , is identical to the distance spectrum of ΛF
1 and ΛM

1 respectively. Besides,

for a 2n-PSK modulation, d2E(0, v) = d2E(0,−v) where d2E(0, v) is the squared Euclidean distance

between the MIMO signals corresponding to the MIMO symbols 0 and v. As the opposite of each

MIMO symbol of one block is generated, the number of constraints used to find the optimal block

is reduced compared to the set partitioning.

A exhaustive search has been performed to find the best 4-PSK blocks for 5 to 8 transmit

antennas whose columns generate a subgroup of Z
nT
2n . The optimal blocks are based on the

permutation of the lines and/or the columns of the blocks presented in Table 2. In this table, the

notation ”1/3” must be read ”1 or 3”.

Let us consider the distance spectrum of one block of GGG. The distance spectra generated by

the proposed blocks are optimal and given in Fig. 4. The best codes are constituted by 2 optimal

blocks.

3.4 Design example for 16 states 4-PSK STTCs with nT transmit an-

tennas

The MIMO symbols belong to Z
nT
4 . This group can be divided into 2 sets of cosets: E0 = C0 and

E1 =
⋃

(g + C0) with g ∈ Z
nT
2 \[0...0]T . The matrix GGG has 3 blocks of 2 columns: B1 = [G1

1, G
1
2],

B2 = [G2
1, G

2
2] and B3 = [G3

1, G
3
2], where Gi

j ∈ Z
nT
4 for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2. Hence, the

generator matrix is GGG = [G1
1G

1
2|G

2
1G

2
2|G

3
1G

3
2].

In the case of a 16 states 4-PSK STTC designed via the coset partitioning, the trellis can be

represented as shown by Fig. 5. On the left side of the trellis, there are the MIMO symbols yyyi,

with 0 ≤ i ≤ 63, originating from a same state. On the right side of the trellis, there are the
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MIMO symbols merging into a same state.

In this case, the generator matrix is GGG = [yyy1yyy2|yyy4yyy8|yyy16yyy32]. To design GGG, there are two steps

The first step is to select the columns of the B1 and B3. The first block and the last block of

the generator matrix generate respectively the subgroups ΛF
1 = {yyy0, yyy1, yyy2, yyy3 = yyy1 + yyy2 mod 4}

and ΛM
1 = {yyy0, yyy16, yyy32, yyy48 = yyy16 + yyy32 mod 4}. Each coset of Λ/ΛF

1 and of Λ/ΛM
1 corresponds

to the transitions originating from a same state and the transitions merging into a same state

respectively. The selection of B1 and B3 is identical to the previous section. Thus, B1 and B3

correspond to one of the blocks proposed in the previous section after an eventual permutation of

lines and/or columns.

The second step is the selection of the columns G2
1 and G2

2 of the second block. These columns

must be selected via the previous stated properties to obtain a subgroup.

Finally, the columns of each block are permuted to obtain the codes with the best trace.

3.5 Design examples for 8-PSK 4 states STTCs with nT transmit an-

tennas

In this case, the MIMO symbols belong to Z
nT
8 = E0 ∪ E1 ∪ E2,where E0 = C0 = 4ZnT

2 , E1 =

⋃

(g1 +C0) with g1 ∈ 2ZnT
2 \[0 · · · 0]T and E2 =

⋃

(g2 +C0) with g2 ∈ Z
nT
4 \2ZnT

2 . The generator

matrix GGG is constituted by 2 blocks of 3 columns B1 = [G1
1G

1
2G

1
3] and B2 = [G2

1G
2
2G

2
3], where

Gi
j ∈ Z

nT
8 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3.

Each block must generate a subgroup of ZnT
8 with 8 elements. In this case, the subgroup of

MIMO symbols generated by the encoder is Λ =

{

2
∑

i=1

3
∑

j=1

xi
jG

i
j mod 8/xi

j ∈ {0, 1}

}

. Besides, the

subgroups Λ1 = ΛF
1 =

{

3
∑

j=1

xjG
1
j mod 8/xj ∈ {0, 1}

}

and Λ2 = ΛM
1 =

{

3
∑

j=1

xjG
2
j mod 8/xj ∈ {0, 1}

}

are generated by B1 and B2 respectively. The 8 MIMO sym-

bols originating from a same state or merging into a same state are the elements of one of the 8

cosets of Λ/ΛF
1 and Λ/ΛM

1 respectively.

For 8-PSK STTCs, the optimal blocks are formed by one column of E0, one column of E1 and
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one column of E2 i.e. Gi
1 ∈ C0, G

i
2 ∈ (p+ C0), with 2p = Gi

1 and Gi
3 ∈ (q + C0), with 2q = Gi

2.

Remark : Some codes may have the first j columns of the (ν + 1)th block with 1 ≤ j ≤ n− 1,

equal to the null vector. In this case, the number of states is 2nν−j . The columns which generate

the subgroup ΛM
1 of the MIMO symbols which merge into a same state, are the first j columns of

νth block and the last (n− j) columns of the (ν + 1)th block.

3.6 Example of search time reduction

To show the usefulness of the coset partitioning, the case of 4 states 4-PSK STTCs with 3 transmit

antennas is considered. To find the best codes, the minimum trace of codes must be computed.

With an exhaustive search, the number of generator matrices is egal to 412 = 16 777 216.

Chen et al. have proposed a suboptimal method in [3]. Using this method, 65 792 generator

matrices are designed. This number corresponds to 0.39% of the possible generator matrices.

Rassool et al. have proposed in [6] a method which ensures to obtain the optimal STTCs. The

number of generator matrices is 1 398 101, i.e. 8.33% of the possible generator matrices.

With the proposed method, each block must generate a subgroup. There are 2×7×(7+8) = 210

possibilities to select 2 no null columns (including the permutations between the columns). As

there are two blocks, the number of generator matrices is 2102 = 44 100. These matrices are

generated in just one second with a simple computing program. So, it is sufficient to search the

best codes among these 0.26% of the possible codes. The proposed method reduces the search

time and leads to better STTCs than the corresponding Chen’s codes.

When the number of transmit antennas and/or the number of states increase, the percentage

of codes generated by the coset partitioning decreases. For example, we consider a 4 states 4-PSK

STTC with 5 transmit antennas. The number of generator matrices is 45×4 = 420 and the number

of possibilities to select 2 no null columns to generate a subgroup is 2 × 31 × (31 + 32) = 3 906

(including the permutation between the columns). The generator matrices contain 2 blocks. Thus,

the number of codes generated by the coset partitioning is 3 9062, corresponding to 0.0014% of

all the possible 4 states 4-PSK STTCs with 5 transmit antennas.
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4 New codes

New codes have been generated via the coset partitioning. Tables 3 and 4 show new 4/16/32 states

4-PSK STTCs for 5 transmit antennas and 6 transmit antennas respectively and the corresponding

Rassool’s STTCs [5, 6].

The trace of the proposed codes is equal to the trace of the corresponding Rassool’s codes.

However, for the new codes, the Euclidean distances between the MIMO symbols originating from

or merging to a same state are greater than the corresponding Euclidean distances of the Rassool’s

codes.

Table 5 shows the best 4 states 4-PSK STTCs with 7 and 8 transmit antennas. In the previous

publications, no STTC has been proposed with more than 6 transmit antennas. Table 6 shows

the best 8 states 8-PSK STTCs with 5 and 6 transmit antennas. In the previous publications, no

8-PSK STTC has been proposed with more than 4 transmit antennas.

5 Code Performance

The performance of each code is evaluated by simulation over slow Rayleigh fading channels.

The channel fading coefficients are independent samples of a complex Gaussian process with zero

mean and variance 0.5 per dimension. These channel coefficients are assumed to be known by the

decoder. Each frame consists of 130 4-PSK or 8-PSK MIMO symbols. For the simulation, there

are 2 receive antennas. The decoding is performed by the Viterbi’s algorithm.

Figs. 6 and 7 show the performance of the STTCs for 5 and 6 transmit antennas presented in

Tables 3 and 4. Each new code outperforms slighty the best corresponding Rassool’s code. The

performance of the codes with 7 and 8 transmit antennas is presented in Fig. 8. The performance

of the new 8-PSK codes proposed in Table 6 is shown in Fig. 9.
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6 Conclusion

In order to decrease significantly the time to search the best STTCs, a new and simple method

called coset partitioning has been presented in this paper. This method is based on a coset

approach of the set partitioning used for MIMO systems. The general rule of this new method

is to regroup the MIMO symbols originating from or merging to the same state into cosets, not

into simple sets as the set partitioning. These cosets are obtained via a division of the generator

matrix into blocks. The columns of each block must generate a subgroup of ZnT
2n and the MIMO

symbols generated by the first block and those generated by the last block must be separated by

the largest Euclidean distance respectively. Thus, the number of codes which must be analyzed is

considerably reduced. For example, it is sufficient to analyze 0.0014% of all the possible 4 states

4-PSK STTCs with 5 transmit antennas to find the optimal codes. To emphasize the important

search time reduction, the case of STTCs with a great number of transmit antennas has been

considered. New 4-PSK codes with 5 to 8 transmit antennas and new 8-PSK codes with 5 to 6

transmit antennas, obtained with the coset partitioning, have been proposed. When similar codes

are available, simulation results show that the new codes slightly outperform the best previous

published codes.
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Table captions:

Table 1: Partition of the group Z
2
4

Table 2: Optimal 4-PSK blocks

Table 3: 4-PSK STTCs based on the Euclidean distance criterion with 5 transmit antennas

Table 4: 4-PSK STTCs based on the Euclidean distance criterion with 6 transmit antennas

Table 5: New 4-PSK STTCs based on the Euclidean distance criterion with 7 and 8 transmit

antennas

Table 6: New 8-PSK STTCs based on the Euclidean distance criterion with 5 and 6 transmit

antennas

Figure captions:

Figure 1: Space-time trellis encoder for 4-PSK and nT transmit antennas

Figure 2: Example of a trellis obtained for a 4 states 4-PSK STTC

Figure 3: Example of a coset representation for a 4 states 4-PSK STTC

Figure 4: Distance spectra of the optimal blocks of 2 columns in the case of 4-PSK modulation

Figure 5: Example of a coset representation for a 16 states 4-PSK STTC

Figure 6: Performance of 4/16/32 states 4-PSK STTCs with 5 transmit antennas and 2 receive

antennas

Figure 7: Performance of 4/16/32 states 4-PSK STTCs with 6 transmit antennas and 2 receive

antennas

Figure 8: Performance of 16 states 4-PSK STTCs with 7 & 8 transmit antennas and 2 receive

antennas

Figure 9: Performance of 8 states 8-PSK STTCs with 5 & 6 transmit antennas and 2 receive

antennas
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States Code GGG Trace
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Figure 8:
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