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Abstract This paper addresses the integration of XML tags into a term-weighting function

for focused XML Information Retrieval (IR). Our model allows us to consider a certain kind

of structural information: tags that represent a logical structure (e.g. title, section, paragraph,

etc.) as well as other tags (e.g. bold, italic, center, etc.). We take into account the influence

of a tag by estimating the probability for this tag to distinguish relevant terms from the

others. Then, these weights are integrated in a term-weighting function. Experiments on a

large collection from the INEX 2008 XML IR evaluation campaign showed improvements

on focused XML retrieval.

Keywords Probabilistic Information Retrieval model · Structured Information Retrieval ·

XML · Tags · Weighting scheme · BM25

1 Introduction

With the development of markup languages, most of the information available on the Inter-

net has become very structured. This has launched the development of focused information

retrieval (focused IR) which aims to provide fragments of documents rather than whole

documents as in classic information retrieval. The information specifically relevant to the

user’s needs is then identified directly within the documents. This is useful especially when

the documents are long or in the context of mobile computing (e.g. smartphones, tablets,

etc.). Depending on whether the list which is returned contains passages or XML elements,

we may then speak more specifically of either passage retrieval or XML retrieval (XML

IR) [26, 27]. The field of XML IR has been encouraged over the past few years through

the organization of workshops and competitions such as INEX [1, 3, 8, 19, 21, 46]. How-

ever, markup languages such as XML do not only allow a document to be broken up into

elements; they can also be used to annotate the text with tags so that the structure (logi-

cal, layout, formatting, links, etc.) may be described independently from the content itself.
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Hence, studies in XML IR have not only been concerned with the retrieval of more concise

units of information but also with the better exploitation of these tags in order to improve

the detection of relevant information.

For these purposes, two types of approach have been adopted. The first one, which is

user-oriented, is concerned with the development of interfaces for the visualization and nav-

igation within results and also query-languages such as W3QS [23], XIRQL [5], NEXI [44,

45], Bricks [51] or BusEngine-L [40] which take into account the structure. However, the

use of such query-languages remains limited, because few users are able to formulate their

needs with complex queries1. Most of the time, those queries are expressed with a few key-

words [17, 22, 31].

The second type of approach improves the classic models and suggests a scheme for

structural weighting [10, 25]. Indeed, as pointed out by Tamine-Lechani et al. or by Zhu et

al. the retrieval accuracy can be improved in taking into account the structure to represent

documents [41, 50]. Within such a weighting scheme, the weight assigned to a word is not

only based upon its frequency within the document and within the collection, but also upon

its position within the document. The tags are used to define these positions. Hence, the

ranking of a document depends not only upon the existence of a term within a document

but also upon the tags which mark the term. Different tags can be considered, including tags

related to formatting (e.g. bold, italic, center, etc.) and logical tags that define an internal

structure (e.g. title, section, paragraph, etc.).

In the XML document presented in figure 1, there are logical tags like article, p and

other tags like strong, emph3, collectionlink which might emphasize the important terms.

<?xml version=”1.0” encoding=”UTF-8”?>
<article>

<name id=”5432”>Economy of Cambodia</name>
<emph3>

<collectionlink href=”9223.xml”>Economy</collectionlink> - overview:

</emph3>
<p>

During <collectionlink href=”34658.xml”>1995</collectionlink>, the <strong>Cambodia

government</strong> implemented firm stabilization policies under difficult circumstances. Overall,

<strong>macroeconomic performance was good</strong>. Growth in 1995 was estimated at 7% be-

cause of improved agricultural production (<collectionlink href=”36979.xml”>rice</collectionlink>
in particular). Strong growth in <collectionlink href=”239038.xml”>construction</collectionlink>
and services continued. Inflation dropped from 26% in 1994 to only 6% in 1995. Imports increased as a

result of the availability of external financing. Exports also increased, due to an increase in log exports.

With regard to the budget, both the current and overall deficits were lower than originally targeted.

</p>
<p>

After four years of solid macroeconomic performance, Cambodia’s economy slowed dramati-

cally in <collectionlink xlink:href=”34601.xml”>1997</collectionlink>.

</p>
</article>

Fig. 1 Tags in XML article ”Economy of Cambodia” from Wikipedia

In this article, we consider the problem of extending the probabilistic model [29, 34] that

aims to estimate the relevance of a document for a given query through two probabilities:

the probability of finding relevant information and the probability of finding non-relevant

1 Example: ”I am looking for a paragraph about running, taken from an article about marathons containing

a photograph of a marathon runner.”
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information. The model is extended using all kind of XML tags. We suppose that both types

of tags may be used to emphasize words:

– A word is undoubtedly more important if it appears within certain sections of a docu-

ment (a title, a caption to a figure, a paragraph, etc.)

– In the same way, a word does not carry the same emphasis if it is marked by any kind of

tags, especially if it appears in a particular font (bold, italic, etc.).

Consequently, in the model which we propose, the document structure is integrated at

two levels. At the first level, the logical structure is used in order to determine the granularity

of the indexing, and thereby the granularity of the elements with which the system is likely

to provide to the user. Therefore, the relevance is not evaluated, as is usually the case, at the

document level, but rather at the level of the XML elements. Then at the second level, the

logical structure and other kinds of structures are integrated in the weighting scheme. During

the learning stage, a weight is given to each tag. This weight is based upon the probability

that this tag highlights either a relevant term or a non-relevant term. The underlying idea

is the same as in the probabilistic model [34] which estimates the probability that a term

appears in a relevant (or non-relevant) document, from a test collection where the relevance

of the documents is available. At the query stage, the probability that an element might be

relevant is estimated by combining the weight of the terms that it contains with the weight

of their tags.

The main contribution of this paper is the following:

– A theoretical framework which explicitly takes the logical tags and other tags as found

in XML documents into account, by removing the limitations on the number of tags

which are considered, unlike Robertson et al. [33].

– A learning stage to estimate of the weight of each tag which measures its capacity to

emphasize terms in relevant passages or in non relevant passages. As the weights may

have a negative impact, this stage may also be considered as a stage where the tags are

automatically selected.

– The extension of the BM25 weighting function [15, 16, 35] through the integration of

automatically learned tag weights.

– The retrieval of elements whose granularity is better adapted, especially useful for mo-

bile applications, unlike approaches which aim to improve the retrieval of whole docu-

ments.

– An evaluation of this model upon a wide collection of documents (the INEX2 collection)

This model will be described in the following section. The experiments are presented in

the section 3 and the results are reported in section 4 and in section 5. A state of the art is

given in section 6 before the conclusion.

2 A probabilistic model for the representation of structured documents

2.1 Notations

Let D be a set of structured documents. Each tag describing logical structure (article, sec-

tion, p, table, etc.) defines a logical element that corresponds to a part of a document. There-

fore, each logical element will be represented by a set of terms and will be indexed. These

elements will be returned by the system.

2 INitiative for Evaluation of XML Retrieval. See http://www.inex.otago.ac.nz
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On the other hand, some tags are not considered as logical tags, as for example the for-

matting tag <b>. This tag does not define an element to be indexed. However, it belongs to

the user to define the list of logical tags and the minimum elements size.

We note:

– E = {e1, ..., ej , ...el}, the set of the logical elements available in the collection;

– T = {t1, ..., ti, ...tn}, a term index built from E;

– B = {b1, ..., bk, ..., bm}, the set of tags.

– Bl ⊂ B, the set of logical tags;

– Bl, the set of all the other tags.

In the following sections, the representation of an element ej is noted xj when only the

terms are considered, and mj when both terms and tags are taken into account. The term

based score and the tag based score are respectively detailed in the next sections.

2.2 Example

The following example presents three documents d0, d1 and d2. Considering a query q, we

suppose that the seven underlined terms are relevant:

d0

<article>

<p> t1t2t3 </p>

<section>

<p> t1t4 </p>

<p> t2t5 </p>

</section>

</article>

d1

<article>

<section>

<p> t1t4 </p>

<p> t2t5 </p>

</section>

<p> t2t1 </p>

</article>

d2

<article>

<section>

<p><b> t5 </b></p>

<p> t3t4 </p>

<p> t3t5 </p>

</section>

</article>

We assume that in this example the set of logical tags Bl = {article, section, p}. The

document d2 is thus indexed by five elements, as presented in figure 2: an article (tag

<article>), a section (tag <section>) and three paragraphs (tag <p>). This example shows

that the content of elements included in larger ones are indexed several times, e.g. each para-

graph is indexed itself as <p> element, and its content is also included in the index of both

elements <article> and <section>.

2.3 Term based relevance score for an XML element

The relevance of an element for a given query Q depends upon the weights of the matching

terms (i.e. terms of the query contained in the element). The weight of the term ti in the

element xj is noted wji.

Formally, we define Xj a vector of random variables and xj = (xj1, ..., xji, ..., xjn) a

realization of the vector Xj , with xji = 1 (resp. 0) if terms ti appears (resp. does not appear)

in element ej .

Given these notations, the term based relevance fterm of xj is given by the score:

fterm(xj) =
∑

ti∈T∩Q

xji × wji (1)
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T = {t1 , t2 , t3 , t4 , t5 }
E = {d0/article[1], d0/article[1]/p[1], d0/article[1]/section[1],

d0/article[1]/section[1]/p[1], d0/article[1]/section[1]/p[2],
d1/article[1], d1/article[1]/section[1], d1/article[1]/section[1]/p[1],
d1/article[1]/section[1]/p[2], d1/article[1]/p[1],
d2/article[1], d2/article[1]/section[1], d2/article[1]/section[1]/p[1],
d2/article[1]/section[1]/p[1]/b[1], d1/article[1]/section[1]/p[2],
d2/article[1]/section[1]/p[3]}

B = {article, section, p, b}
Bl = {article, section, p}

Bl = {b}
|d0| = 7; |d1| = 6; |d2| = 5;
. . .
|d2/article[1]| = 5
|d2/article[1]/section[1]− = 5
|d2/article[1]/section[1]/p[1]| = 1
|d2/article[1]/section[1]/p[2]| = 2
|d2/article[1]/section[1]/p[3]| = 2

Fig. 2 Modelling documents d0, d1 and d2

As mentioned by Robertson et al. [33], this general dot-product form covers different

ranking functions, for example the functions ltn and ltc implemented by SMART system

[36], or the well known BM25 function [15, 16, 35].

Preliminary experiments using ltn and ltc have led to weak results [11], thus we will

henceforth only consider BM25 [15, 16, 35]:

wji =
tfji × (k1 + 1)

k1 × ((1 − b) + (b ∗ ndl)) + tfji
× log

N − dfi + 0.5

dfi + 0.5
(2)

with:

– tfji: the frequency of ti in element ej .

– N : the number of elements in the collection.

– dfi: the number of elements containing the term ti.

– ndl: the ratio between the length of element ej and the average element length (i.e. its

number of terms occurrences).

– k1 and b: the classical BM25 parameters.

Parameter k1 allows setting the frequency saturation. Parameter b allows setting the

importance of ndl, i.e. the importance of length normalization.

We can note that parameters k1 and b allow modifying the bend of the curve and in

some way the non linearity of the function. As an example, when k1 is set to 1.1, a term fre-

quency of 10 will lead to almost the same value in the tf component of the BM25 weighting

function, than a term frequency of 25.

This non linearity property of weighting functions is very important for our purpose.

Indeed, impact of tag weight on wji is very different than on the tfji. Like Robertson et

al. [33], we think that the impact on the term weighting function should not break the non

linearity property, and thus we have compared the pre-impact of tag weights (i.e. impact

on tfji in the TTF strategy) as well as the post-impact (i.e. impact on wji in the CLAW

strategy). These different strategies are detailed in following sections.
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2.4 Tag based relevance score for an XML element

Similarly to the previous section, we define Mj as a vector of random variables3 Tik in

{0, 1}:

Mj = (T10, ..., T1k, ..., T1m, ..., Tn0, ..., Tnk, .., Tnm)

with
Tik = 1 if term ti appears in this element marked by bk

Tik = 0 if term ti does not appear marked by bk

Ti0 = 1 if term ti appears without being marked by a tag in B

Ti0 = 0 if term ti does not appear without being marked

We note mj = (t10, ..., t1k, ..., t1m, ..., tn0, ..., tnk, .., tnm) a realization of the random

variable Mj .

In the running example given above, we have b1 = article, b2 = section, b3 = p, b4 = b

and T = {t1,..,t5}. The element: ej =<p> t1 t2 t3 </p> of d0 can be represented by the

vector:

m1 = {t10, t11, t12, t13, t14, t20, t21, ..., t53, t54}

= {0, 1, 0, 1, 0, 0, 1, ..., 0, 0}

as the term t1 is marked by article (t11 = 1), and p (t13 = 1) but neither by section

(t12 = 0) nor by b (t14 = 0). We have t10 = 0 as the term does not appear without tag.

In this section, we adapt the model introduced by Robertson et al. [34] in order to take

into account the documents structure described previously (cf. section 2.1). To do so, we not

only use terms weights wji, but also tag weights.

In an information retrieval context, we wish to estimate the relevance of an XML element

ej (modelled by the vector mj) for a given query. We thus want to estimate:

P (R|mj): the probability of finding relevant information (R) given an element

mj and a query.

P (NR|mj): the probability of finding non relevant information (NR) given an

element mj and a query.

Let f1(mj) be a document-ranking function:

f1(mj) =
P (R|mj)

P (NR|mj)

The higher f1(mj), the more relevant the information represented by mj . Using Bayes

formula, we get:

f1(mj) =
P (mj |R) × P (R)

P (mj |NR) × P (NR)

The term
P (R)

P (NR)
being constant throughout the collection for a given query, it will not

change the ranking of the documents. We therefore define f2 (which is proportional to f1)

as:

3 M for Mark up. Random variables Mj and its realizations mj represent structured elements.



7

f2(mj) =
P (mj |R)

P (mj |NR)

Using the Binary Independence Model assumption, we have:

P (Mj = mj |R) =
∏

tik∈mj

P (Tik = tik|R) (3)

=
∏

tik∈mj

P (Tik = 1|R)tikP (Tik = 0|R)1−tik

In the same way, we get:

P (Mj = mj |NR) =
∏

tik∈mj

P (Tik = 1|NR)tikP (Tik = 0|NR)1−tik (4)

For sake of notation simplification, we note, for a given XML element:

pi0 = P (Ti0 = 0|R): the probability that ti does not appear without being marked, given a

relevant element.

pik = P (Tik = 1|R): the probability that ti appears marked by the tag k, given a relevant

element.

qi0 = P (Ti0 = 0|NR): the probability that ti does not appear without being marked, given

a non relevant element.

qik = P (Tik = 1|NR): the probability that ti appears marked by the tag k, given a non

relevant element.

Using these notations in equations 3 and 4, we get:

P (mj |R) =
∏

tik∈mj

(pik)tik × (1 − pik)1−tik ,

P (mj |NR) =
∏

tik∈mj

(qik)tik × (1 − qik)1−tik .

The ranking function f2(mj) can then be re-written:

f2(mj) =

∏

tik∈mj
(pik)tik × (1 − pik)1−tik

∏

tik∈mj
(qik)tik × (1 − qik)1−tik

The log function being monotone increasing, taking the logarithm of the ranking func-

tion will not change the ranking. This leads to the function f3:

f3(mj) = log(f2(mj))

=
∑

tik∈mj

(tik log(pik) + (1 − tik) log(1 − pik)

−tik log(qik) − (1 − tik) log(1 − qik)

=
∑

tik∈mj

tik ×

(

log

(

pik

1 − pik

)

− log(
qik

1 − qik
)

)

+
∑

tik∈mj

log(
1 − pik

1 − qik
)



8

As before, the term
∑

tik∈mj
log( 1−pik

1−qik
) is constant in respect to the collection (inde-

pendently from tik). Not considering it, will lead to the ranking function f3(mj):

ftag(mj) =
∑

tik∈mj/ti∈Q

tik ∗ log

(

pik(1 − qik)

qik(1 − pik)

)

(5)

Thus, in this ranking function, we obtain a weight for each term ti and each tag bk. The

weight of a term ti marked by bk will be written w′

ik:

w′

ik = log(
pik(1 − qik)

qik(1 − pik)
) (6)

Finally, in our probabilistic model which takes the document structure into account, the

relevance of an XML element mj , relative to tags, is defined through ftag(mj):

ftag(mj) =
∑

tik∈mj/ti∈Q

tik × w′

ik (7)

This formula is similar to the classical termweighting function seen in equation 1, except

that tag weights are considered instead of term weights.

In practice, we have to estimate the probabilities pik and qik, i ∈ {1, .., n}, k ∈ {0, .., m}

in order to evaluate the element relevance. For this purpose, we propose to use a learning

set LS in which element relevance for a given query is known. Given the set R (respectively

NR) that contains the relevant elements (respectively non-relevant ones) a contingency table

can be built for each term ti marked by bk:

Table 1 Contingency table for the term ti and for the tag bk

R NR LS = R ∪ NR

tik ∈ mj rik nrik = nik − rik nik

tik /∈ mj R − rik N − nik − R + rik N − nik

Total R |NR| = N − R N

with:

– rik: the number of times term ti marked by bk is relevant in LS;

–
∑

i rik: the number of relevant terms marked by bk in LS.

– nik: the number of times term ti is marked by bk in LS;

– nrik = nik − rik: the number of times term ti marked by bk is not relevant in LS;

– R =
∑

ik rik: the number of relevant terms in LS;

– |NR| = N − R: the number of non-relevant terms in LS.

We can now estimate

{

pik = P (tik = 1|R) = rik

R
qik = P (tik = 1|NR) = nik−rik

N−R

And w′

ik follows:

w′

ik = log

rik

R (1 − nik−rik

N−R )
nik−rik

N−R (1 − rik

R )
(8)
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= log
rik × (N − nik − R + rik)

(nik − rik) ∗ (R − rik)

= log
rik × (|NR| − nrik)

nrik × (R − rik)

This weighting function evaluates, for a given tag, the probability of being able to dis-

tinguish between relevant and non-relevant terms: it increases according to the tag ability to

distinguish a relevant term. In practice, the learning set contains a set of queries and conse-

quently the tag weights are evaluated with an aggregation of the contingency table over all

the queries.

Considering the tag b2 = section in our example, we obtain the following contingency

table for the query q and the term t1:

Table 2 Example: contingency table for the term t1 and for the tag b2 = section

R NR LS = R ∪ NR

t1,2 ∈ mj r1,2 = 1 nr1,2 = 1 n1,2 = 2
t1,2 /∈ mj R − r1,2 = 6 N − n1,2 − R + r1,2 = 10 N − n1,2 = 16

Total R = 7 |NR| = 11 N = 18

Then, we can calculate the weight w′

1,2 of p related to the term t1 as follows:

w′

1,2 = log
1 × (11 − 1)

1 × (7 − 1)
= log

5

3
(9)

Our model needs a learning set, as the probabilistic model needs. Obviously, such a

learning set is not always available, and it can be challenging to build. In the INEX campaign

for instance, the participants use an interface to highlight the relevant passages in function

of their query. In this way, a training set of queries is composed and another set of queries

is proposed as a test set. Its robustness has to be studied when the documents collection

changes. However, when such a learning set exists, the probabilistic model can be used, and

it has shown its effectiveness.

It should be noted however, that the estimation of probabilities may comprises some

smoothing when the learning set is limited in size. This has not been useful for our exper-

iments, thanks to the estimation of one weight for each tag instead of one weight for each

pair (tag, term) (as explained in the next section).

2.5 Estimation of tag weights

From a theoretical point of view, we may estimate a weight for each pair (term, tag) (cf.

equation 8), in other words the capacity of a tag to reinforce a relevant term (or on the

contrary, to mitigate a non-relevant term). However, we aim to create a model for tag-impact,

not in relation to a particular term, but generally. Indeed, we believe that the capacity of a

tag to highlight relevant terms (or on the contrary, to reduce their visibility) is intrinsic to

the tag itself and is therefore not dependent on the terms. The objective then is, for instance,

to evaluate whether or not a word featuring in a title is more important than a word taken
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from a section/paragraph, regardless of the word itself. We are therefore not interested in the

weight of each pair (term-tag) but instead, in the tag-weight, regardless of the terms which

it labels. Thus, we estimate a weight w′

k for each tag bk instead of a weight for each couple

(term ti, tag bk):

w′

k =

∑

ti∈T w′

ik

|T |
(10)

2.6 Estimation of the global XML element score

Having term and tag weights, a global score can be computed for ranking the elements. We

propose two strategies to integrate the tag-weights into the BM25 weighting scheme:

– CLAW4 is an a posteriori impact-strategy in the results of BM25.

– TTF5 is an early impact-strategy, integrating tag-weights into the BM25 function.

In the CLAW strategy, in order to take into account all the tags that mark one given

term, we propose to combine linearly the average of their weights with the weight of the

term itself. This combining function, noted fclaw, is defined by:

fclaw(mj) =
∑

tik∈mj/ti∈Q

wji ×

∑

k/tik=1 w′

k

|{k/tik = 1}|
(11)

where wji is the ti term’s weight in document mj computed by the BM25 function (see

eq.2).

Géry et al. showed that the use of the tag weights raises the recall, although the improve-

ment is not significant [11]. On the other hand, the BM25 is non linear, the non linearity being

controlled by the term frequency saturation parameter k1 (cf. section 2.3). For this reason

the integration of tag weights at a global level (i.e. on the wji weight) is very different than

their integration into the term frequency (i.e. on tfji). Like Robertson et al. [33], we adopt

an early strategy which consist in integrate the tag-weights directly into tfji. In this way,

we take advantage of the non-linearity of the BM25 function. The new term weight (tfji

multiplied by the average of the weights of the tags that mark the term ti), noted ttf , will

replace the regular tf in the BM25 function defined in equation 2.

ttfji = tfji ×

∑

k/tik=1 w′

k

|{k/tik = 1}|
(12)

3 Experiments

The framework for our experiments is INEX6, the international XML IR competition which

is presented in the next section. The results obtained by our model at INEX 2008 showed

the advantage of taking tags into account. These results will be presented briefly in sec-

tion 4. We then conducted some more in-depth experiments to study the impact of various

4 fclaw: Combining Linearly Average tag-Weights.
5 TTF: Tagged Term Frequency.
6 INEX: Initiative for the Evaluation of XML Retrieval



11

parameters on the behaviour of our model, for classical IR which aims to provide full arti-

cles (granularity: full articles) as well as for Focused IR which returns element (granularity:

XML elements). The results of these experiments are presented in section 5.

3.1 INEX collection

For our experiments, we used the INEX Ad-Hoc 2008 collection, extracted from the English

Wikipedia XML corpus [4]. This collection contains a significant amount of structured XML

data. It also contains relevance assessments, allowing us to evaluate the quality of Focused

XML IR systems.

The corpus includes 659,388 articles from the Wikipedia encyclopaedia. The original

Wiki syntax was converted into XML, using both general tags for the logical structure (e.g.

article, section, paragraph, title, list, item, etc.), formatting tags (e.g. bold, italic, small,

etc.) and link tags (e.g. collection-link, etc.). The documents are strongly structured as they

are composed of 52 million XML elements. There is no DTD fixing the available tags.

Consequently, there exist 1,244 different tags in the collection, although most of them appear

in very few articles. Each XML article can be viewed as a tree containing on average 79

elements and having, on average, a depth of 6.72. Moreover, whole articles (textual content

+ XML structure) represent 4.5 Gb of the data whereas the textual content represents only

1.6 Gb. Thus, the structural information is twice as large as the textual information.

3.2 INEX evaluation measures

The evaluation measures are based on the precision and recall, defined by Swets [39]. iP [x]

is the precision value at recall x. The average interpolated precision (AiP) combines preci-

sion and recall, calculating the average of iP [x] on 101 recall points (x = 0.00; 0.01; 0.02;

... 0.99; 1.00). This measure provides an evaluation of the system’s quality for each query.

By averaging the AiP values over the set of queries, an overall measure of performance is

defined [20]. This average is called mean average interpolated precision (MAiP ).

Given that every experiment is submitted to INEX in the form of a ranked list of a

maximum of 1,500 XML elements for each query, these measures, in terms of recall, are in

favour of the experiments for which whole articles are retrieved (thereby providing a greater

quantity of information for 1,500 documents). This is problematic in the case of Focused IR

because focused answers may be penalized even though the very purpose of Focused IR is

to be able to retrieve short answers (in the form of relevant elements, reduced relatively to

the whole article). Taking this into account, we also calculated R[1500], the recall rate for

1,500 documents, and S[1500], the size (in MB) of the 1,500 documents which were found.

It should be noted that the main ranking of the INEX competition is based on iP [0.01]

instead of the overall MAiP measure, in order to take into account the importance of pre-

cision at low recall levels. Thus, Focused IR is evaluated according to precision rather than

recall.

All the results presented here, including those of INEX systems, were computed using

the INEX 2008 evaluation programs: inex eval, version 1.0.
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3.3 Experimental protocol

All the experiments have been carried out, based on the BM25 model [15, 16] which has

been applied either in a classical way (i.e. indexing at the article level) or in a focused way

(i.e. indexing at the element level). It would be interesting to evaluate our model against

some other models that consider tags, as for example BM25F or BM25E, but implement-

ing these models is very difficult upon documents collections that use hundreds of tags, as

pointed out their authors (cf. section 6). We investigate the impact of tags on both levels:

article and element.

3.3.1 INEX 2008 runs

In the learning stage, the 2006 INEX collection, composed of 659,388 articles, 114 queries

and associated relevance judgements, was firstly used as a learning set in order to estimate

tag-weights w′

k.

Following this, our indexing and querying experiments were carried out on the same

659,388 articles but using the 70 new queries from the 2008 edition of the INEX Ad-Hoc.

Thus, the set of queries from INEX 2006 is used as a training set to learn the tag weights

while the new set of queries from INEX 2008 is used as a testing set. Therefore, even if

the same collection of documents is used in both stages: when estimating tag-weights (i.e.

the learning stage), and during IR experiments (i.e. testing stage), they represent in fact two

distinct collections from a IR point of view, thanks to the two different sets of queries. The

problem of overfitting is thus avoided.

Only the key-words in each query were used (title field for INEX queries). We did not

use the fields description, narrative or castitle (structured part of the query).

We experimented our model (CLAW and TTF) on a classical IR task, where the gran-

ularity for the answers is the whole article, as well as on a Focused IR task, where the

granularity of the answers is the XML element. These experiments, presented in section 4

enabled us to demonstrate the advantage of taking tags into account for Focused IR within

the context of our participation in INEX 2008 [12].

3.4 Parameter settings

Depending on the model used, different parameters need to be set. Some of them were

chosen and fixed during the experiments, and other, more important ones, were studied more

exhaustively:

– Fixed parameters: weighting function (BM25 [15, 16]), minimum length of returned

elements, minimum length of terms, maximum depth of returned elements, stop words,

andish mode, mandatory or banned query terms (+/- operators), set of weighted tags.

– Granularity-based parameters, which are fixed on one hand for classical IR (articles),

and on the other hand for focused IR (elements): a set of logical tags (i.e. the kind of

element the system is able to return7), calculation of df .

– Studied parameters: tag impact (no tags, CLAW or TTF), BM25 b and k1.

It should be noted that a study [42] on the evaluation of parameters suggests that a

training corpus composed of 100 queries and their assessments is enough to estimate the 9

parameters of the BM25F model that was successfully used in the TREC competition [49].

7 The set of logical tags is reduced to only one tag, i.e. article, in the case of classical IR.
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As previously mentioned, all the experiments were carried out with the same stop word

dictionary8, and with the same processing of the queries (e.g. considering query operators +

(mandatory terms) and - (banned terms)).

We launched some preliminary experiments in order to estimate some important pa-

rameters. Concerning the elements, the first question we face is to define the length of the

smallest element the system will be able to return. As the process of conversion from the

Wikipedia to INEX corpus was automatic, some very small elements are not interesting,

as they cannot contain enough information. This is the case, for example, with the XML

languagelink elements. Moreover, some analyses on the 2006 and 2007 assessments (not

presented here) showed that it is not necessary to consider elements smaller than 10 terms,

because these small elements are either non-relevant or their father is 100% relevant (and in

this case it is better to return the father, which is bigger and thus easier to index). We can

note that Kamps et al. showed that the optimal value for this parameter is around 40 [18].

Another parameter which needs to be considered, as discussed by Mass et al. [30], is the

computation of the df : should we compute the df at an element level or should we compute

an overall df (e.g. at article level) without regard to the element length? Computing df at

the element level will introduce a great variance in the df , and each term may be considered

several times (i.e. each time it appears in an element from the same article). On the other

hand, computing the df at the document level does not allow to distinguish some elements

considering also the terms distribution inside articles.

We chose to calculate the df values at article level as well as at element level, i.e. the df

is different for elements and for articles. Note that Taylor et al. compute an overall df [42],

and Mass et al. compute a df at six different levels [30].

3.5 Tag Selection

Another important parameter is the list of logical tags, i.e. the XML elements which will

be considered by the system either at indexing time or during the query step. The system

will therefore not be able to return an element that does not belong to this list. Some simple

statistics about the 70 tags appearing in the relevant passages in INEX 2007 assessments

helped us to select the set of 16 logical tags (Bl, cf. table 3). We first removed all tags

occurrences when their father is more than 80% relevant. Then, to be selected, a logical tag

should fulfill the following thresholds in the relevant passages:

– Number of occurrences ≥ 5.

– Average length ≥ 25 characters.

– Average relevance ≥ 10%.

– Total relevance length ≥ 5,000 characters.

Table 3 Set of logical tags Bl

Bl = {article, cadre, indentation1, item, li, normallist, numberlist,
p, row, section, table, td, template, title, th, tr}

This set of tags is more or less the same for each INEX participant.

The 59 tags used in the weighting function are those whose occurrences exceed 300,

chosen amongst 1,244 different tags appearing in the 659,388 documents (cf. table 4). This is

8 Stop words list: 319 words from Glasgow Information Retrieval Group, cf.

http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words
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a compromise between considering a lot of tags, which is heavy to process, and the coverage

of the documents collection by these tags. Indeed, this set of tags includes all the important

tags appearing in the training collection, as presented in the figure 3 showing that the tags

frequencie decreases dramatically. Our set of 59 tags represents 99.99% of the 51,042,202

tags occurrencies in the collection. Only 110 tags appear more than 10 times.

Table 4 Tags frequencies (20 most frequent tags and the 7 less frequent from our set of 59 tags)

Tag #occurrences Logical Used for

tag weighting

collectionlink 17,018,017 - X

item 5,684,158 X X

unknownlink 3,946,351 - X

cell 3,770,465 - X

p 2,752,835 X X

emph2 2,722,784 - X

template 2,427,454 X X

section 1,610,183 X X

title 1,592,672 X X

emph3 1,481,088 - X

normallist 1,110,280 X X

row 939,665 X X

outsidelink 858,944 - X

languagelink 739,391 - X

name 659,406 - X

body 659,394 - X

article 659,388 X X

br 383,706 - X

td 370,975 X X

caption 350,858 - X

... ... ... ...

gallery 2,527 - X

cite 2,153 - X

indentation3 1,993 - X

emph4 940 - X

em 608 - X

strong 351 - X

h4 307 - X

Afterwards, we manually removed 5 tags out of the 59: article and body because they

mark the whole articles, br, s and value because they are without content. Then, the logical

tags are firstly used during the indexing step to define the elements which may be returned

by the system. They are secondly considered during the query step as weighting tags which

impact the weight of terms. For this reason, they are marked in the third and in the fourth

column in table 4, while the other tags are considered only as weighting tags and are only

marked in the fourth column.

3.6 Tag Weighting

The weights of the 54 remaining tags, including 14 on 16 logical tags (as said before, article

and body where removed), were computed according to equation 10. Table 5 presents the
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Fig. 3 Tags frequencies (top 100)

top 10 tags and their weights, together with the 10 weakest ones and their weights. Their

frequencies in the whole collection are also given.

Table 5 Weight w′

k
of the 10 strongest and 10 weakest tags

Weight w′

k
of the 6 strongest Weight w′

k
of the 6 weakest tags

# Tag Weight #occs # Tag Weight #occs

1 h4 12.32 307 45 u 0.24 3,527

2 ul 2.70 3,050 46 i 0.23 17,935

3 sub 2.38 54,922 47 code 0.15 5,955

4 indentation1 2.04 135,420 48 span 0.15 2,592

5 section 2.01 1,610,183 49 tt 0.14 6,841

6 blockquote 1.98 4,830 50 b 0.13 11,297

7 strong 1.97 351 51 em 0.11 608

8 small 1.97 61,132 52 big 0.08 3,213

9 cadre 1.91 149,002 63 font 0.07 27,117

10 indentation2 1.82 14,065 54 emph4 0.06 940

Although tags h4 and strong have a high score, their impact will be very low because

these tags appear only around 300 times in the corpus. A formatting tag that might have a

significant impact is the tag small which appears 61,132 times. We can nevertheless notice

the presence of ul, section and cadre in the top 10 tags. The tag section appears more than

one million times in the corpus. Its impact will thus be very important. Actually, the logical

tags have more impact on the term weights than the formatting tags.
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4 INEX results

We will now present the results obtained by our model during the 2008 INEX competition.

We submitted three experiments (Foc-1, Foc-2, Foc-3) at the ”Focused” Ad-hoc task. In this

task, a set of 1,500 non-overlapping XML elements had to be returned. Our first objective

was to obtain an efficient baseline, then to evaluate our model for classical IR and Focused IR

to study the impact of having taken tag-weights into account in the BM25 function [15, 16].

Table 6 presents the mean of the evaluation mesures on the set of queries for these three

experiments. Our runs were compared to FOERStep (Waterloo University, [14]) which was

the winner of the Focused task. Structure is not taken into account either in Foc-1, where

whole articles were returned (granularity: articles), or in Foc-2, where it is the elements

which were returned (granularity: elements). However, in Foc-3, the tag-weights are inte-

grated into BM25 for Focused IR (granularity: elements, TTF). Only 3 runs per task can

be submitted to INEX. That is the reason why it was not possible to present a run Foc-4,

integrating tag-weights into BM25 (granularity: articles, TTF). Nevertheless, this method

was experimented later (cf. section 5). In order to take into account the non-overlapping

constraint of the ”Focused” task, the list of elements returned by our system were filtered by

removing all the elements that overlap with another element which is better ranked. The best

results (winner’s iP[0.01], our best iP[0.01], MAiP, R[1500] and S[1500]) are emphasized

with a bold font.

Table 6 Evaluation of 61 ”Focused” task experiments

Run Granularity Tags iP [0.01] Rang MAiP Rang R[1500] S[1500]

FOERStep Element - 0.6897 1 0.2071 27 0.4494 1.11

Foc-1 Article - 0.6412 13 0.2791 6 0.7897 5.57

Foc-2 Element - 0.5688 37 0.1206 45 0.2775 0.73

Foc-3 Element TTF 0.6640 7 0.2342 19 0.6110 3.34

The first experiment, Foc-1, in classical IR, ranked 13th out of 61. The second experi-

ment Foc-2, in Focused IR, did not do as well: 37th out of 61. The early integration of the

Foc-3 tag-weights (TTF strategy), in Focused IR, gave very good results and ranked 7th out

of 61, which is better than for classical IR (Foc-1) and improves the Focused IR whose recall

rates were weak (from 0.5688 to 0.6640 according to the iP [0.01] criterion).

This result tends to confirm the advantage of Focused IR (Foc-3) when compared to clas-

sical IR (Foc-1). This also show the advantage of taking structural information into account

(Foc-2 vs. Foc-3). Furthermore, FOERStep produces better results with low recall rates (i.e.

0.01). However, the Foc-1 experiment gives better results with recall rates at 0.05, and Foc-1

and Foc-3 give very good results in terms of recall: MAiP at 0.2791 (resp. 0.2342) and

R[1500] at 0.7897 (resp. 0.6110).

We tested whether there is a significant difference between Foc-1 and Foc-3 using a

paired t-test (one tailed) at 95 %. The performance (measured by MAiP) of Foc-1 is sig-

nificantly better than Foc-3 but the size of the documents returned in Foc-3 is significantly

lower. Indeed, at 1,500 documents, the recall decreases to 16% between Foc-1 and Foc-3

whilst the size in MB of these documents decreases by 40%. This shows that the Focused

IR eliminates a greater number of non-relevant elements. In other respects, the difference

(measured by iP[0.01]) is not significant. As the size of the documents returned in Focused
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IR (Foc-3) is lower, these experiments confirm the interest of our model in the context of

mobile applications.

We also tested whether there is a significant difference between Foc-2 and Foc-3 and

concluded that the performance (measured by MAiP and iP[0.01]) of Foc-3 is better than

Foc-2. Consequently, we arrived, with a different collection, at the same conclusion as

Robertson et al. [33]: taking tags into account in the BM25 weighting scheme is interesting

if this is done early (TTF strategy, Foc-3 run), thereby maintaining the BM25’s non-linearity,

rather than taking the tags into account later, directly on the final term-weights [11]. This

point was confirmed by other experiments in which the pre-impact strategy (TTF) and the

post-impact strategy (CLAW) are compared. These experiments are presented in the next

section.

5 Posterior analysis

The performances of the weighting function BM25 depend a lot on the tuning of its parame-

ters, especially those related to the documents length normalization and to the tf saturation

(b and k1). Subsequently, we conducted in-depth experiments to study the impact of certain

parameters on the model as exhaustively as possible and to analyse its behaviour when the

parameters are finely tuned. We therefore carried out several experiments using six models:

articles, articles + CLAW, articles + TTF, elements, elements + CLAW, elements + TTF.

Some parameters were setted after a few initial experiments (cf. section 3.4), and two

important parameters were studied more thoroughly so that we might understand their influ-

ence on focused IR and to study the stability of our model. We have used a 2D grid for the

parameters b (varying from 0 to 1, with 0.1 steps) and k1 (varying from 0.2 to 3.8 with 0.2

graduations), thus a total of 6 ∗ 11 ∗ 19 = 1, 254 experiments.

For these posterior analyses, a different queries set was used during the learning stage

(INEX 2006) than during the IR stage (INEX 2008). There is a risk of over-fitting in these

”Posterior analysis” experiments, due to the tuning of the parameters using the 2008 INEX

collection, which we also used to evaluate our model. This is a well-known problem in

the context of IR competitions (TREC, INEX, etc.) [33, 42]. We believe however, just as

Robertson et al. [33], that it is relevant to proceed like this. Indeed we aim to determine

the potential of our model by seeking the best b and k1 parameters, bearing in mind that,

in real-life conditions, we will need to discover the values for b and k1 using a learning

collection.

5.1 Summary of the results

In table 7, the results obtained with the optimal parameter configuration according to the

iP [0.01] criterion are presented, while they are presented according to the MAiP criterion

in table 8. Tables 7 and 8 present the mean of the evaluation measures on the set of queries.

In order to situate the quality of the runs which were studied, we must add that the R7

run would have been ranked 4th in the 2008 INEX in terms of MAiP (the winner having

achieved 0.3065) while the R6 run would have been ranked 4th in terms of iP [0.01] (the

winner having achieved 0.6897).

Figure 4 presents the recall / precision curves of the 4 experiments with the best re-

sults according to the iP [0.01] criterion (R1, R3, R4, R6 runs), excluding the CLAW runs

(R2, R5) which are outperformed by TTF (R3, R6). This figure shows that the elements runs
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Table 7 Evaluation of 1,254 runs with the iP [0.01] criterion

Run Granularity Tags b k1 iP [0.01] #doc #art R[1500] S[1500]

R1 Articles - 0.4 1.6 0.6587 1,457 1,457 0.8422 8.22 MB

R2 Articles CLAW 1.0 3.8 0.6278 1,457 1,457 0.7424 4.26 MB

R3 Articles TTF 0.6 1.6 0.6654 1,457 1,457 0.8214 7.69 MB

R4 Elements - 0.5 0.8 0.6738 1,463 1,257 0.4134 1.65 MB

R5 Elements CLAW 0.2 3 0.6061 1,461 1,280 0.5730 2.83 MB

R6 Elements TTF 0.3 0.8 0.6837 1,461 1,294 0.5180 2.98 MB

Table 8 Evaluation of 1,254 runs with the MAiP criterion

Run Granularity Tags b k1 MAiP #doc #art R[1500] S[1500]

R7 Articles - 0.6 2.2 0.2910 1,457 1,457 0.8216 6.15 MB

R8 Articles CLAW 0.8 2.4 0.2522 1,457 1,457 0.8004 6.24 MB

R9 Articles TTF 0.6 2.6 0.2860 1,457 1,457 0.8299 7.09 MB

R10 Elements - 0.1 2.2 0.2664 1,459 1,408 0.7476 5.24 MB

R11 Elements CLAW 0.1 3.8 0.2137 1,459 1,356 0.6985 5.00 MB

R12 Elements TTF 0.1 2.8 0.2576 1,459 1,389 0.7285 5.37 MB

(R4 and R6) seem to be outperformed by the article runs (R1 and R3). However, this is not

true at low recall rates (recall <= 0.05). This is very interesting, as these precision-oriented

rates are the most important in focused IR9.

Fig. 4 Recall / Precision of the runs with the best results.

9 The the main INEX 2008 measure is iP [0.01]
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5.2 On the impact of b and k1 parameters

Let us now study the influence of b and k1 parameters on the results:

The b parameter: The role of b is to control the document length normalization (cf. equa-

tion 2). This is particularly important in focused IR as the length variation for elements

is greater than that of articles, as each article is fragmented into elements 10.

The k1 parameter: The role of k1 is to control the term frequency saturation rate, which is

very important for TTF strategy, as TTF modifies directly the tf .

The CLAW strategy does not perform well (either in the competition framework or

in posterior analysis). This is due to the later integration of the tags weights. Indeed, as

explained previously, in the CLAW strategy the tags are introduced directly in the final

term-weights, while they are introduced early in the weighting scheme in the TTF strategy.

The pre-impact (TTF-strategy) permits to maintain the non-linearity of the BM25 function

and thus to provide better results.

5.2.1 Classical IR

Figure 5 presents the values of MAiP and iP [0.01] according to b on the left (resp. k1, on

the right) in the context of classical IR. The iP [0.01] and MAiP measures presented for b

(resp. k1) are the ones obtained using the optimal value for k1 (resp. b).

Fig. 5 Classical IR according to b and k1

The best (b, k1) values are slightly higher for MAiP ((b, k1) = (0.6, 2.2)) than for

iP[0.01] ((b, k1) = (0.4, 1.6)). These values are not far from the classical values proposed in

the literature (e.g. (0.7, 1.2): for such values, the system performs an iP [0.01] of 0.6352).

5.2.2 Focused IR

Figure 6 presents the behaviour of the BM25 model in focused IR.

The best (b, k1) values are quite different for MAiP ((b, k1) = (0.1, 2.2)) than for

iP[0.01] ((b, k1) = (0.5, 0.8)). The best MAiP is reached with the minimum value b = 0.1.

The length normalization of BM25 seems to be counterproductive for optimizing recall in

10 In our experiments, we set the minimum element length at 10 words and the largest article contains

35,000 words
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Fig. 6 Focused IR according to b and k1

focused IR. On the other hand, it seems useful to optimize precision (best value: b = 0.5).

The k1 (tf saturation) seems to be less important for focused IR: iP[0.01] and MAiP fluctu-

ates slightly with k1.

5.2.3 Focused IR and BM25t (TTF strategy)

Figure 7 presents the behaviour of the BM25t model (TTF strategy) in focused IR.

Fig. 7 Focused IR + TTF according to b and k1

Again, the best (b, k1) values are different for MAiP ((b, k1) = (0.1, 2.8)) than for

iP[0.01] ((b, k1) = (0.3, 0.8)). As in the case of focused IR without TTF strategy, the best

MAiP is reached with the minimum value of b = 0.1. The behaviour of focused IR is similar

with and without TTF strategy.

6 Related works

The relevance of a document for a given query depends generally on the weight of the words

in the query. This weight itself depends upon its frequency within the document and within

the collection. When compared to this model, a weighting scheme permits the structure be

taking into account in assigning a weight to the tags relative to their importance. This weight

is then combined with those of the terms in order to determine the relevance of a document.
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Thus, the relevance of a document does not only depend upon the frequency with which the

terms in the query occur in the document, but it also depends upon their position within that

document and these positions are defined by the tags with which they have been marked.

This principle has already been widely studied in the context of classic IR [25]. The

tags which are considered such as their weights, may be chosen empirically. For example

in [32], the tag title has a weight of 2 and the tag abstract is set to 1.5. One obvious limit to

this approach lies in the difficulty in chosing the values for the weights.

For this reason, another way consists in learning automatically the weights assigned to

the tags by using for instance genetic algorithms [38, 43] or by optimizing techniques based

upon simulated annealing [2]. However, if the weights are not fixed by the user, again the set

of tags is chosen empirically. Moreover, in these previous works, due to the computational

cost, the number of tags used is very limited. In our model, the tags as well as the weights

are determined automatically.

Once the weights of the tags have been determined, they should be combined with those

of the words.

When logical tags are used their weight may be integrated ad hoc. In this case, the docu-

ment may be divided into as many elements as it has parts (heading, abstract, main text, etc.)

defined by these tags, and each part may be processed independently. Then, a linear com-

bination of the scores obtained for each part can be computed. However, in the case of the

BM25 model [15, 16], Robertson et al. demonstrated the advantages of duplicating the parts

as many times as suggested by the weights [33]. For instance, a structured document with

a title-weight equal to two becomes an unstructured document with the content of the title

repeated twice. The unstructured document obtained is then processed in the usual way. The

experimental evaluation carried out by Robertson et al. confirms that this approach (named

BM25F weighting scheme) provides better results than a linear combination of scores com-

puted for each part [33], the advantage being that it retains the non-linearity of the BM25

weighting scheme. However, in the studies mentioned previously, the system returns com-

plete documents and its ability to extract parts of a document has not been evaluated. This

is the aim of our work. Indeed, in this article, we propose a framework for focused XML

retrieval, which becomes very important with the development of mobile applications and

access.

In the context of focused IR, the weighting schemes have also been studied. Once the

tag-weights have been fixed, a simple strategy that can be used in order to integrate them

is based on a scalar product: the tag-weights are used as multiplying factors for the term

weights within their scope. This approach was used to improve the probabilistic model [28,

48] as well as the vector space model [47]. However, in these works the tag-weights were

arbitrarily chosen.

Other studies aim to exploit the XML tree-representation of documents [24, 37, 43].

Each XML element, corresponding to a tree-node, is characterized by a path leading from

the tree-root to this node. The structure is taken into account at the term-level by considering

the path of the element it contains. With this representation, Schlieder et al. introduced an ex-

tended vector model [37]. They computed the inverse document frequency for a term of each

type of logical document found within the collection. Their system however, requires the

user to give a structured query; which is not always possible. Kotsakis associates a weight di-

rectly with each path [24]. For example, a term located on the path journal/issue/article/title

has a larger weight than a term on the path journal/ issue/article/abstract. The final weight

of a term is made up of two components. The first one is computed with the classical tf.idf

formula, while the second one is the weight associated with the position of the word in the

tree (i.e. to the path of this node). The question of how these structural weights are computed
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is not discussed in [24], whereas Trotman suggests estimating the weight of each XML node

using a genetic algorithm [43]. This weight is then combined with the tf in various weighting

schemes. These experiments showed some improvements when using vector space model or

probability model, but no significant improvement was observed upon the results provided

by BM25.

On the other hand, BM25E, which was introduced by Lu et al. gave promising experi-

mental results within a focused IR framework [28]. It is probably the model closest to the

one which we are proposing in that it assigns a score to an element by affecting an early

combination of the weights given to the terms in the query and those of their tags. However,

in BM25E, the tag-weights are determined empirically. Furthermore, as with the majority

of approaches previously cited, very few tags are taken into consideration (generally less

than 5) and their choice often requires manual handling. Also, as the authors of this model

pointed out ”the creation of a practical algorithm to generate values for tuning parameters

at the element level is a challenging task”. This article tries to provide parts of an answer

to this question. Unfortunately, it was not possible to compare our model, which can handle

several hundred tags, against BM25E, which is ”challenging” to implement in such case as

mentioned by its authors [28].

7 Conclusion and perspectives

In this article, we have presented a new approach for taking into account the XML structure

for focused IR. This approach is inspired by probabilistic models of IR. For this purpose we

propose to look at both the logical structure and all the other structures. Logical structure

is used during the indexing stage in order to define the type of elements which are indexed

and potentially returned by the system. The logical structure and the other structures are

then integrated into the document model. During the learning stage, a weight is calculated

for each tag, based upon the probability that the tags will be able to distinguish between

relevant and non-relevant terms. During the query stage, calculating the relevance of an

XML element for a query combines the textual content (terms) with the structure (tags which

label terms).

The main contribution of this paper is a modelling of the tags ability to highlight terms

according to the principles of the probabilistic IR model. Thus, the tag weights are automat-

ically adjusted. Because the late integration of tag weights into the term weighting function

only showed a slight improvement in the results (CLAW strategy), we proposed an early

integration (TTF strategy) which presents the advantage to maintain the non-linearity of the

BM25 function and produces much better results.

The second contribution of this work is an extensive experimentation of the BM25model

[15, 16] in the context of XML retrieval. We evaluated our model through participation

in the INEX competition. Our first experiment in classical IR (Foc-1 corresponding to a

granularity of articles) came 13th out of 61. Our second experiment (Foc-2 corresponding

to a granularity of XML elements) achieved a lower ranking: 37th out of 61. The early

integration of tags in the model for focused IR (Foc-3) achieved very good results, very

close to those of the best INEX systems, thereby demonstrating the advantages of focused

IR (Foc-3) when compared with classical IR (Foc-1), or with structural information retrieval

(Foc-2). We think that it could be possible to improve Foc-3 results in order to reach those

of the best INEX systems, for example by using some query processing heuristics as some

of INEX systems do.
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Even if the collections which were used are very different, we have reached the same

conclusions as Robertson et al. [33]: it is worthwhile taking the tags in the BM25 weighting

function [15, 16] into account, if this is done early on. But, in the context of XML retrieval,

the number of tags is very large. So it is not possible to optimize dedicated parameters b and

k1 for each tag, as is done by BM25f [33] for each field. Nevertheless, we hypothesize that

the tag weights used by TTF strategy can also somehow replace this fine-tuning: indeed, tag

weights have an influence on the tfji just like the k1 parameter.

The last contribution of this article is a quite exhaustive study of the influence of the

BM25’s parameters b and k1 on the iP [0.01] measure and on the MAiP . The first result

provided by this study is the smooth variation of the model quality with respect to parame-

ter changes. This is important as it shows that few experiments are useful to set up the model

parameters correctly. Moreover, we can expect good behaviour in generalization. This ex-

plains the good results obtained by the system during the INEX competition. The tuning of

the system done on a collection leads to good parameters to analyse a new set of queries.

With the MAiP as the evaluation measure, the best model is the classical BM25 model.

This can probably be explained by the fact that the measures based on recall favour systems

which return large elements (granularity article). Finally, the best performances observed at

low recall points, are achieved by the tag-enriched model BM25t which returns elements.

Several perspectives remain open.

First of all, the TTF strategy implements a simple average of the tag-weights. Previous

experiments, which are not reported in this article, showed that this method achieves bet-

ter results than other functions (multiplication of weights, taking only the closest tag into

account, etc.). This point should be analyzed theoretically. The average used in these ex-

periments places all of the tags attached to a given term on the same level. A non-uniform

weighting of tag-weights, for instance, according to the distance between the term and the

tag, may prove more efficient.

From the experimental point of view, we focused our attention on parameters b and k1

of the BM25 model. Other parameters also need to be studied. In particular, the way the df

is computed may have great importance. Further, work is still needed in order to properly

take into account the great variation of documents length in the context of focused IR. This

can be done either by considering some normalization procedures as done in [18], or by a

better computation of the parameter df .

Our model has been evaluated using the INEX 2008 collection (cf. section 4), and a

posterior analysis is presented but with an overfitting risk. Our model should be evaluated

on other collections. The INEX collection, composed by Wikipedia XML documents, is

strongly structured. We hope that our model could perform well on any collection of struc-

tured documents, as for example the INEX 2010 collection, using the INEX 2009 set of

queries as a training collection. This collection is also strongly structured, even more than

the INEX 2008 collection, indeed a new kind of structure is introduced by the use of se-

mantic tags. We also hope that our model could perform well on any Web collection, as for

example the TREC Web collection, composed by HTML documents.
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7. Fuhr N, Lalmas M, Malik S, Szlávik Z (eds) (2005) Advances in XML Information

Retrieval, Third International Workshop of the Initiative for the Evaluation of XML

Retrieval, INEX 2004, Dagstuhl Castle, Germany, December 6-8, 2004, Lecture Notes

in Computer Science, vol 3493, Springer

8. Fuhr N, Kamps J, Lalmas M, Malik S, Trotman A (2008) Overview of the INEX 2007

Ad Hoc Track. In: [9], pp 1–23

9. Fuhr N, Kamps J, Lalmas M, Trotman A (eds) (2008) Focused Access to XML Docu-

ments, 6th International Workshop of the Initiative for the Evaluation of XML Retrieval,

INEX 2007, Dagstuhl Castle, Germany, December 17-19, 2007, Lecture Notes in Com-

puter Science, vol 4862, Springer

10. Fuller M, Mackie E, Sacks-Davis R, Wilkinson R (1993) Coherent answers for a large

structured document collection. In: Proceedings of the 16th Annual International ACM-

SIGIR Conference on Research and Development in Information Retrieval, Pittsburgh,

PA, USA, pp 204–213
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of Database Systems, Springer US, pp 3616–3621

28. Lu W, Robertson SE, MacFarlane A (2006) Field-Weighted XML Retrieval Based on

BM25. In: Fuhr N, Lalmas M, Malik S, Kazai G (eds) Advances in XML Information

Retrieval and Evaluation, 4th International Workshop of the Initiative for the Evaluation

of XML Retrieval, Springer, Dagstuhl Castle, Germany, Lecture Notes in Computer

Science, vol 3977, pp 161–171

29. Maron ME, Kuhns JL (1960) On relevance, probabilistic indexing and information re-

trieval. Journal of the ACM 7:216–244

30. Mass Y, Mandelbrod M (2004) Retrieving the most relevant XML components. In: [6],

pp 53–58

31. O’Keefe RA, Trotman A (2004) The simplest query language that could possibly work.

In: [6], pp 167–174

32. Rapela J (2001) Automatically combining ranking heuristics for HTML documents. In:

Proceedings of the 3rd international workshop on Web information and data manage-

ment, ACM, New York, NY, USA, WIDM’01, pp 61–67

33. Robertson S, Zaragoza H, Taylor M (2004) Simple BM25 extension to multiple

weighted fields. In: Proceedings of the 13th ACM international conference on Infor-

mation and knowledge management, ACM, New York, NY, USA, CIKM’04, pp 42–49

34. Robertson SE, Jones KS (1976) Relevance weighting of search terms. Journal of the

American Society for Information Science 27(3):129–146

35. Robertson SE, Walker S, Jones S, Hancock-Beaulieu M, Gatford M (1995) Okapi at

TREC-3. In: Harman DK (ed) Proceedings of the third Text REtrieval Conference

(TREC-3), pp 109–126



26

36. Salton G, McGill MJ (1986) Introduction to modern Information Retrieval. McGraw-

Hill, New York, NY, USA

37. Schlieder T, Meuss H (2002) Querying and ranking XML documents. Journal of the

American Society for Information Science and Technology 53:489–503

38. Sun YHK, Kim S, hong Eom J, tak Zhang B (2000) SCAI experiments on TREC-9. In:

Proceedings of the 9th Text REtrieval Conference (TREC-9), pp 392–399

39. Swets JA (1963) Information retrieval systems. Science 141:245–250

40. Taha K, Elmasri R (2010) BusSEngine: a business search engine. Knowledge and In-

formation Systems 23(2):153–197

41. Tamine-Lechani L, Boughanem M, Daoud M (2010) Evaluation of contextual informa-

tion retrieval effectiveness: overview of issues and research. Knowledge and Informa-

tion Systems 24(1):1–34

42. Taylor M, Zaragoza H, Craswell N, Robertson S, Burges C (2006) Optimisation meth-

ods for ranking functions with multiple parameters. In: Proceedings of the 15th ACM

international conference on Information and knowledge management, ACM, New York,

NY, USA, pp 585–593

43. Trotman A (2005) Choosing document structure weights. Information Processing and

Management 41(2):243–264

44. Trotman A, Sigurbjörnsson B (2005) Narrowed Extended XPath I (NEXI). In: [7], pp

16–40

45. Trotman A, Sigurbjörnsson B (2005) NEXI, now and next. In: [7], pp 41–53

46. Trotman A, Geva S, Kamps J (2007) Report on the SIGIR 2007 workshop on focused

retrieval. SIGIR Forum 41(2):97–103

47. Wilkinson R (1994) Effective retrieval of structured documents. In: Proceedings of the

17th annual international ACM SIGIR conference on Research and development in in-

formation retrieval, Springer-Verlag, New York, NY, USA, SIGIR’94, pp 311–317

48. Wolff JE, Flörke H, Cremers AB (2000) Searching and browsing collections of struc-

tural information. In: Proceedings of the IEEE Advances in Digital Libraries 2000,

IEEE Computer Society, Washington, DC, USA, pp 141–150

49. Zaragoza H, Craswell N, Taylor M, Saria S, Robertson S (2004) Microsoft cambridge

at TREC 13: Web and hard track. In: Voorhees EM, Buckland LP (eds) Proceedings of

the 13th Text REtrieval Conference (TREC 2004)
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