
HAL Id: hal-00617935
https://hal.science/hal-00617935

Submitted on 31 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New parallel support vector regression for predicting
building energy consumption

H. X. Zhao, F. Magoules

To cite this version:
H. X. Zhao, F. Magoules. New parallel support vector regression for predicting building energy
consumption. IEEE Symposium Series on Computational Intelligence (SSCI 2011), Apr 2011, Paris,
France. �hal-00617935�

https://hal.science/hal-00617935
https://hal.archives-ouvertes.fr

New Parallel Support Vector Regression for

Predicting Building Energy Consumption

Hai-xiang Zhao, Frédéric Magoulès

Applied Mathematics and Systems Laboratory

Ecole Centrale Paris

Châtenay Malabry, France

Email: haixiang.zhao@ecp.fr, frederic.magoules@hotmail.com

Abstract—One challenge of predicting building energy consump-
tion is to accelerate model training when the dataset is very
large. This paper proposes an efficient parallel implementation
of support vector regression based on decomposition method for
solving such problems. The parallelization is performed on the
most time-consuming work of training, i.e., to update the gradient
vector f . The inner problems are dealt by sequential minimal
optimization solver. The underlying parallelism is conducted by
the shared memory version of Map-Reduce paradigm, making
the system particularly suitable to be applied to multi-core
and multiprocessor systems. Experimental results show that our
implementation offers a high speed increase compared to Libsvm,
and it is superior to the state-of-the-art MPI implementation
Pisvm in both speed and storage requirement.

Index Terms—Support Vector Regression (SVR); Building en-
ergy consumption; Parallel computing; Multi-core; Map-Reduce

I. INTRODUCTION

Since proposed in 1990s by V.N. Vapnik, support vector ma-

chine (SVM) has been a popular supervised learning method

of solving classification and regression problems [1]. The

support vector regression (SVR) has shown robust generaliza-

tion ability in the application of predicting building energy

consumption [2]–[5]. The essential computation of SVR is

to solve a quadratic problem (QP) which is both time and

memory costly, causing it a challenge to solve large scale

problems. Despite of several optimizing or heuristic methods

such as shrinking, chunking [6], kernel caching [7], approxi-

mation of kernel matrix [8], sequential minimal optimization

(SMO) [9], primal estimated sub-gradient solver [10], a more

sophisticated and satisfactory resolution is always expected

for this challenging problem. As stated in [5], the building’s

energy system is extremely complex involving large number

of influence factors, making it a common situation that we

tackle large scale datasets.

With the development of chip technologies, computers with

multi-core or multiprocessor are becoming more available and

affordable in modern market. This paper therefore attempts

to investigate and demonstrate how SVR can benefit from

this modern platform when solving the problem of predicting

building energy consumption. A new parallel SVR that is par-

ticularly suitable to this platform is proposed. Decomposition

method and inner SMO solver compose the main procedure

of training. A shared cache is designed to store the kernel

columns. For the purpose of achieving easy implementation

without sacrificing performance, the new parallel program-

ming framework Map-Reduce is chosen to perform the un-

derlying parallelism. The proposed system is therefore named

as MRPsvm (abbreviation of “Map-Reduce parallel SVM”).

Comparative experiments are conducted on three simulated

energy consumption datasets, showing significant performance

improvement in our system compared to Libsvm [11] and

Pisvm [12].

The following sections are organized as follows. Section II

introduces the principle of SVR training and the decompo-

sition method. Section III explains how MRPsvm is imple-

mented. Section IV states the related work. Section V presents

how to prepare the energy consumption datasets and the

numerical experiments. Conclusions are drawn in section VI.

II. SUPPORT VECTOR REGRESSION

A. Principle of ǫ-SVR

Let’s present the training data as (x1, z1), ..., (xl, zl),where
vector xi is the ith sample, zi is the ith target value corre-

sponding to xi, l is the number of samples. The goal of ǫ-SVR

is to find a decision function g(x) that makes the deviation

between the calculated targets and the actual targets is at most

ǫ [1]. The dual form of the SVR can be written in the following

quadratic form:

min
α

1

2
αTQα−

2l
∑

i=1

piαi (1)

subject to

yTα =0 (2)

0 ≤ αi ≤ C ∀i = 1, ..., 2l (3)

where α is a vector of 2l variables, Q is a 2l by 2l positive
semidefinite matrix. Each element of Q has the following

form:

Qij = K(xm, xn)

m =

{

i if i ≤ l

i− l if i > l

n =

{

j if j ≤ l

j − l if j > l

i, j = 1, ..., 2l

where K(xi, xj) is called kernel function which can be

substituted by any Mercer kernel, the most common ones

are radial basis function (RBF), polynomial function, sigmoid

function and linear function. The parameter p in (1) is defined

as:

pi =

{

ǫ+ zi if i = 1, ..., l
ǫ− zi if i = l + 1, ..., 2l

(4)

y in the constraint (2) is defined as:

yi =

{

1 if i = 1, ..., l
−1 if i = l + 1, ..., 2l

(5)

In the constraint (3), C is the upper bound used to trade off

between model performance on training data and its gener-

alization ability. The objective of the problem is to find the

solution of α which makes (1) minimized and the constraints

(2) (3) fulfilled. After the optimum α is found, the decision

function can be formulated as:

g(x) =

l
∑

i=1

(−αi + αi+l)K(xi, x) + b

where b is a constant value which can be easily calcu-

lated in the training step. The training samples that satisfy

(−αi+αi+l 6= 0) are called support vectors. It is obvious that

only support vectors have contribution to the decision function,

this is the reason why the algorithm is called support vector

regression.

B. Decomposition Approach

In building energy application, large amounts of datasets

are highly available for model analysis. Since the size of the

kernel matrix Q is 2l ∗ 2l, it is difficult to store the whole

matrix in memory when l is very large. For the example of

20 buildings which will be described in section V, to store the

whole Q for this dataset we need more than 74GB memory

which is not affordable by ordinary users. And for the case of

50 buildings, the memory requirement is even larger. Osuna

et al. [6] proposed a method to decompose the problem into

smaller tasks. In each task, a working set which contains

certain parts of α is chosen to be optimized, while the rest of

α remains in constant value. The program repeats the select-

optimize process iteratively until global optimality conditions

are satisfied. In each iteration, only the involved partition of

kernel matrix needs to stay in the memory. Let B denote the

working set which has n variables and N denote the non-

working set which has (2l − n) variables. Then, α, y, Q and

p are correspondingly written as:

α =

∣

∣

∣

∣

αB

αN

∣

∣

∣

∣

, y =

∣

∣

∣

∣

yB
yN

∣

∣

∣

∣

, Q =

∣

∣

∣

∣

QBB QBN

QNB QNN

∣

∣

∣

∣

, p =

∣

∣

∣

∣

pB
pN

∣

∣

∣

∣

Accordingly, the small task in this case can be written as:

min
1

2
αT
BQBBαB − αT

B(pB −QBNαN)

+
1

2
αT
NQNNαN − αT

NpN (6)

subject to

αT
ByB + αT

NyN = 0 (7)

0 ≤ αB ≤ C (8)

Since the last term (12α
T
NQNNαN −αT

NpN) of (6) remains

constant in each iteration, it can be omitted while calculating,

so that function (6) has the same form as function (1). One of

the advantages of this decomposition method is that the newly

generated task is small enough to be solved by most off-the-

shelf methods. In our work, we choose SMO as the inner small

task solver due to its relative simplicity, yet high performance

characteristics. In fact, SMO is itself an extreme case of the

decomposition method where the working set contains only

two variables. This kind of binary sub-problem can be easily

solved analytically [9] [11]. As stated in [7], the solution of (6)

is strictly feasible towards the optimum solution of global

problem (1). This feature guarantees the global convergence

of the decomposition method.

The Karush-Kuhn-Tucker (KKT) optimality condition is

verified through evaluating the gradient of (1), i.e., fi =
∑2l

j=1 αjQij + pi for all i = 1, ..., 2l. This procedure can be

summarized as follows. First, we classify the training samples

into two categories

Iup(α) = {i|αi < C, yi = 1 or αi > 0, yi = −1}

Ilow(α) = {i|αi < C, yi = −1 or αi > 0, yi = 1}

Then we search two extreme values m(α) and M(α):

m(α) = max
i∈Iup(α)

− yifi (9)

M(α) = min
i∈Ilow(α)

− yifi (10)

And then, we define the stop condition as:

m(α)−M(α) ≤ ǫ (11)

The selection of working set directly influences the speed

of convergence. For inner SMO solver, maximal violating

pair is selected to be the binary working set according to

the second order information [13]. We do not state here how

inner SMO solver works since it has been discussed in detail

in [9] and [11]. For the selection of working set B, we simply

consider the first order information and select, in some sense,

the maximal violating pairs as proposed by [14]. Suppose the

required size of B is n, we choose q (q < n) variables from

α by sequentially selecting pair of variables which satisfy (9)

and (10). The remaining (n− q) variables are chosen as those

who entered B in the last iteration but not yet selected in

current B. The selection of these (n − q) variables follows

the sequence: free variables (0 < αi < C), lower bound

variables (αi = 0), upper bound variables (αi = C). The

reason for putting restraint on the number of new variables

entering the working set is to avoid frequent entering-leaving

of certain variables. Otherwise, the speed of convergence

would considerably slow down [14].

After the working set is optimized, f is updated by the

newly optimized αj , ∀j ∈ B. This procedure is crucial as it

prepares f for the next iteration to do optimality condition

evaluation and working set selection. In fact, this is the most

computational expensive step in SVR training due to the heavy

work of computingQij . The updating procedure can be written

as follows:

f∗

i = fi +
∑

j∈B

∆αjQij i = 1, ..., 2l (12)

where ∆αj is the newly optimized αj minus the old αj . The

whole decomposition method is summarized in algorithm 1.

Algorithm 1 Decomposition solver of SVR

Input: data set (xi, zi), ∀i ∈ 1, ..., l

Initialize: αi = 0, pi by (4), yi by (5),

fi = pi, ∀i ∈ 1, ..., 2l

Calculate: Iup, Ilow, m(α), M(α)

Repeat

select working set B until | B |= n

update αi by SMO solver, ∀i ∈ B

update fi, ∀i ∈ 1, ..., 2l

calculate Iup, Ilow, m(α), M(α)

Until m(α)−M(α) ≤ ǫ

III. SYSTEM IMPLEMENTATION

Next, we will introduce some key points of our system im-

plementation, including why and how Map-Reduce is used to

do the parallelism, shared caching technique and the difference

of our system compared to Pisvm.

A. Parallelizing the QP Solver

Map-Reduce is a new parallel programming framework

originally proposed in [15]. It allows users to write code

in a functional style: map computations on separated data,

generate intermediate key-value pairs and then reduce the

summation of intermediate values assigned to the same key. A

runtime system is designed to automatically handle low-level

mapping, scheduling, parallel processing and fault tolerance.

It is a simple, yet very useful framework. It can help people

extract parallelism of computations on large datasets by taking

advantage of distributed systems.

Problem (12) can be regarded as a summation of several

computational expensive terms as shown in the top right corner

in Figure 1. Therefore, Map-Reduce is naturally suitable to

deal with this problem. The working set B is uniformly

decomposed into several small pieces, the calculation of f∗

is also divided into several parts in the same manner as for

B. Each part is then assigned to a mapper. After the parallel

calculations of these mappers, final f∗ is summed up by

the reducer. Here, (jk, k = 1, ..., n) is the variable index of

working set in kernel matrix, which gives the kth variable in

B with its index in Q as jk. In practice, since some of ∆αi

are so marginal that they can be omitted, it is not necessary

to update f on all of the n variables.

In some recent work, Map-Reduce is proved to be an

effective parallel computing framework on multi-core systems.

Chu et al. [16] have developed Map-Reduce as a general

programming framework on multi-core systems for machine

learning applications. Phoenix designed in [17] implements

a common API for Map-Reduce. It allows users to easily

parallelize their applications without conducting concurrency

management. The Map-Reduce tasks are performed in threads

on multi-core systems. An efficient integrated runtime system

is supposed to handle the parallelization, resource management

and fault recovery by itself. This system is adopted as the

underlying Map-Reduce handler in our MRPsvm. We show

the parallel architecture of one iteration in Figure 1. The

small tasks are uniformly distributed to mappers which have

the same number of processors. Phoenix serves as the role

of creating and managing mappers and reducers, making the

system is easy to be implemented.

B. Kernel Matrix Caching

Since the calculation of kernel elements dominates the

training work, it is an effective consideration to cache the

kernel elements in memory as much as possible. MRPsvm

maintains a fix-sized cache which stores recently accessed or

generated kernel columns. The cache replacement policy is a

simple least-recent-use strategy, the same as that of Libsvm.

Only the column currently needed but not hit in the cache

will be calculated. All parallel mappers share an unique copy

of cache in the shared memory. As a result, the operation of

inserting a new column into the cache should be synchronized.

For inner SMO solver, since the kernel matrix size is

small enough and is dependent on the size of working set

B which is normally set to 1024 according to the knowledge

of experience, it is practical to cache the full version of this

small matrix.

To reduce the storage requirements, the sample vectors xi

are stored by sparse representation. When calculating a kernel

column (Qij , i = 1, ..., 2l), we need to unroll the jth sample

vector to dense format and then calculate the dot products of

this vector with all 2l sample vectors. There is only one copy

of the whole dataset (x, z) in the shared memory.

C. Comparison of MRPsvm with Pisvm

Pisvm also uses decomposition method to train SVM in

parallel. It is an efficient tool to analyze multiple buildings’

energy behaviors as stated in our previous work [5]. However

its implementation is different from our new implementation

MRPsvm in many aspects. First, Pisvm is based on MPI imple-

mentation and aims at extracting parallelism from distributed

memory systems, while our parallel algorithm is conducted

Select B

Update aa

Split task

mapper mapper mapper

1 1 2 2

*

1 1 1 1 1 1 1k k m m n nj j j j j j j j j jf f Q Q Q Q Q ! " # " # " " # " " # " #

1 1 2 2

*

2 2 2 2 2 2 2k k m m n nj j j j j j j j j jf f Q Q Q Q Q ! " # " # " " # " " # " #

1 1 2 2

*

k k m m n nd d j dj j dj j dj j dj j djf f Q Q Q Q Q ! " # " # " " # " " # " #

Phoenix

Master

reducer

…… ……

*, 1,...,if i d

… … ……

B

Fig. 1: Architecture of the parallelization in one iteration (d = 2l).

by Map-Reduce threads on shared memory system. The two

implementations are based on totally different models. Second,

in Pisvm, each process stores a copy of data samples, while

in the contrary, MRPsvm stores only one copy in the shared

memory. This means MRPsvm can save large amount of

storage when the dataset is huge. The saved space can be

used to cache more kernel matrix in order to further improve

training speed. Third, Pisvm adopts a distributed cache strategy

in order to share the saved kernel elements among all of the

processes. Each process stores locally a piece of the cache.

Consequently, the work for updating gradients is divided and

assigned globally to proper processors according to the cache

locality. In contrast, MRPsvm has only one copy of the cache,

and each processor accesses the cache equally, so that the

overhead of global assignment is avoided. However, we have

to note that synchronization on cache write is required.

In section V, we will compare the performance of Pisvm

with that of MRPsvm in the application of building energy

prediction, providing direct evidence that our system is more

efficient and suitable than the MPI implementation on multi-

core systems.

IV. RELATED WORK

Several approaches have been proposed to parallelize SVM,

mostly for solving classification problem. They can be classi-

fied into several categories according to the type of QP solver.

Based on stochastic gradient descent method, P-packSVM

optimizes SVM training directly on the primal form of SVM

for arbitrary kernels [18]. Very high efficiency and competitive

accuracy have been achieved. Psvm proposed in [8] is based

on interior point QP solver. It approximates the kernel matrix

by incomplete Cholesky Factorization. Memory requirement is

reduced and scalable performance has been achieved. Bickson

et al. [19] solve the problem by Gaussian belief propagation

which is a method from complex system domain. The parallel

solver brings competitive speedup on large scale problems.

The decomposition method attracts more attention than the

above solvers. Graf et al. [20] train several SVMs on small data

partitions, then they aggregate support vectors from two pair

SVMs to form new training samples on which another training

is performed. The aggregation is repeated until only one SVM

remains. The similar idea is adopted by Dong et al. [21],

in their work, sub-SVMs are performed on block diagonal

matrices which are regarded as the approximation to the

original kernel matrix. Consequently, nonsupport vectors are

removed when dealing these sub-problems. Zanni et al. [14]

parallelize SVM-light with improved working set selection

and inner QP solver. Hazan et al. [22] propose a parallel

decomposition solver using Fenchel Duality. Lu et al. [23]

parallelize randomized sampling algorithms for SVM and

SVR.

Cao et al. [24] and Catanzaro et al. [25] parallelize SMO

solver for training SVM for classification. Both work mainly

focuses on updating gradient for KKT condition evaluation and

the working set selection. The difference between them lies

on the implementation details and the programming models.

Specifically speaking, the first work is conducted by using

MPI on clusters while the second one by Map-Reduce threads

on modern GPU platform. In our work, we also adopt SMO

algorithm. But we use it as the inner QP solver without any

parallel computation, in fact, we perform the parallelization on

external decomposition procedure. The main advantage of our

coarse-grained parallelism is that it can significantly reduce the

burden of overheads since the number of iterations in global

decomposition procedure (where n ≫ 2) is extremely smaller

than that of pure SMO algorithm (where n = 2). Although
both GPU SVM [25] and our system are implemented in

threads, we will not compare them in experiments since they

are designed for different platforms and GPU SVM is specially

used to solve classification problems.

V. PREDICTING BUILDING ENERGY CONSUMPTION

In this part, we present the application of SVR on predicting

building energy consumption. The proposed parallel SVR is

compared with Libsvm and Pisvm on three datasets to demon-

strate how much performance improvement can be achieved by

the new implementation. Libsvm is a widely used sequential

implementation while Pisvm is the state-of-the-art parallel

implementation. Although Pisvm is not especially designed for

multi-core architecture, we still have good reasons for doing

this comparison. Firstly, as the best knowledge as we know,

there is no existing parallel implementation of SVR that is

specially developed for multi-core systems. Therefore there

is a strong need to verify if our system could outperform

the parallel implementation designed for distributed memory.

Secondly, most of the systems surveyed in section IV are

not available to the public, while Pisvm, as a typical parallel

implementation of SVM, is easy to obtain. Thirdly, the QP

solver of Pisvm is the same as MRPsvm, hence, if we

compare our system with Pisvm, the advantage of Map-Reduce

framework is more convincing.

A. Energy Consumption Datasets

Three datasets are prepared for the model training. They

denote the historical energy consumption of one building,

20 buildings and 50 buildings respectively. The datasets are

simulated in Energyplus which is a widely applied, state-of-

the-art and effective building energy simulation tool [26].

The buildings are designed as follows. All of them are for

office use and located in urban area. We evenly distribute

them into five typical cities of France which are Paris-Orly,

Marseilles, Strasbourg, Bordeaux and Lyon. As outlined in

Figure 2, the five cities vary remarkably in ambient dry bulb

temperatures, making the datasets represent energy require-

ments under five typical weather conditions. Each building has

similar structures, i.e., single-story, mass-built, one rectangle

room with attic roof and four windows without shading.

Electrical equipments including lighting system, fans, water

heaters, are scheduled as common office use. In winter season

(from November 1st to March 31st), district heating is applied

in order to keep the room temperature at a constant level.

Ventilation is adopted for indoor thermal comfort. The number

of occupants depends on the housing space and people density,

with the average of 0.2 people per zone floor area. During the

simulation, some input variables such as size, orientation, win-

dow area, scheduling, are set differently to achieve diversity

among multiple buildings.

Fig. 2: Dry bulb temperature in the first 11 days of January.

The dataset of one building is hourly energy dynamics in

a period of one year. We record 8 important features [27]

as shown in Table I. For other two datasets, the recording

period is from November to March which is winter season

in France, and we record 4 more features which generate the

building diversity, i.e., height, length, width and window/wall

area ratio.

TABLE I: The features of one building’s consumption data.

Features Unit

Outdoor Dry Bulb C

Outdoor Air Density kg/m3

Water Mains Temperature C

Number of Occupants -

Lights Total Heat Gain J

Electric Equipment Total Heat Gain J

Zone Mean Air Temperature C

Zone Infiltration Volume m3

Since people usually do not work in weekends or holidays,

the energy requirement in these days is quite small compared

to normal working days. This means weekends and holidays

have totally different energy behaviors from working days.

Therefore, to simplify the model in our practice, we only use

the consumption data of working days in the experiments. One

more building is simulated for model evaluation purpose. The

attributes of the three datasets are shown in Table II.

B. Experiments and Results

We perform the experiments on two shared memory com-

puters which represent two different hardware architectures.

As outlined in Table III, the first computer has 2 cores while

the second one has 4. Both of them have a shared L2 cache

and memory and running 64 bit Linux system (kernel version

2.6.27-7).

TABLE III: The physical features of the experimental envi-

ronment.

Features Computer-I Computer-II

of CPUs 1 1

of cores 2 4

Frequency 3.4GHz*2 1.6GHz*4

Memory 2G 2G

L2 cache 2M 4M

We train all SVRs with Gaussian kernel, i.e., K(xi, xj) =
exp{−γ‖xi − xj‖

2}. The parameters C and γ are evaluated

by 5-fold cross validation and ǫ is set to 0.01, as shown

in the last three columns of Table II. Since the caching

technique is crucial for performance, for a reliable comparison,

we set the cache size to be the same for all three SVR

implementations. Furthermore, we restrict the cache size to

be far smaller than the memory size in order to minimize

page faults in runtime. Here we have to emphasize that the

following reported performance might not be the best for all

three implementations, only serving for comparison purpose.

TABLE II: Description of the three datasets and the three parameters of SVR on each dataset.

Dataset # training samples # testing samples # Dimensions C γ ǫ

One building 5064 1008 8 32 0.594 0.01

20 buildings 49940 2498 12 16 0.4193 0.01

50 buildings 124850 2498 12 16 0.4357 0.01

Two performance evaluation methods are applied in this

work. One is the mean squared error (MSE) which gives the

average deviation of the predicted values to the real ones.

Another is the squared correlation coefficient (SCC) which lies

in [0, 1] and gives the ratio of successfully predicted number

of target values on total number of target values.

On each dataset, we train the sequential implementation

Libsvm, and the parallel implementations Pisvm and MRPsvm

on both computer-I and computer-II. Table IV shows the

results of the three implementations performed on dual-core

processor, including the number of support vectors (nSVs),

MSE, SCC and training time. We show the training time on

quad-core system in Table V. Since nSVs, MSE and SCC

in quad-core case are the same as those in dual-core case, we

omit them in Table V. Note that the time columns represent the

whole training time, i.e., from reading the problem to writing

the outputs.

The results demonstrate that MRPsvm has successfully

parallelized SVR training. For all three datasets, the accuracy

and the nSVs of MRPsvm are quite close to that of Libsvm

and Pisvm. Much more time is saved when running MRPsvm

than Libsvm and Pisvm in all tests. Here we use speedup to

demonstrate how many times faster is the parallel implemen-

tation than sequential implementation:

Speedup =
Training time of Libsvm

——————————————————
Training time of parallel implementation

We show the speedup of MRPsvm and that of Pisvm

comparatively in Figures 3, 4, 5. For the case of one building,

the speed of MRPsvm is twice higher than that of Libsvm.

For the case of 20 and 50 buildings, MRPsvm performs more

than 16 times faster than Libsvm. On both computers and

on all three datasets, MRPsvm achieves remarkable higher

speedup than Pisvm, indicating that MRPsvm is more suitable

than Pisvm on multi-core systems. The speed improvement

by MRPsvm is particularly obvious in multiple buildings

cases, indicating that MRPsvm performs better than Pisvm

on large scale datasets. However, the better performance is

not guaranteed on even larger problems due to locality and

overheads of reduction. In each mapper, the updating of f

requires the access of the whole data samples and several

temporal vectors which have the size close to 2l. Therefore,
for large datasets, it is difficult to guarantee the locality for

using L2 cache which is shared among several threads. Since

we partition the global problem by columns, each mapper

generates 2l intermediate fi, the reduction is costly when l

goes to a large scale.

It is not surprising that the parallel performance on quad-

core only slightly outperforms that on dual-core. One reason

TABLE V: The training time of the three predictors performed

on computer-II. Time unit is second.

Dataset Libsvm Pisvm MRPsvm

1 building 18.0 7.3 6.9

20 buildings 2532.1 214.1 133.5

50 buildings 32952.2 2325.5 1699.0

������ ������
�

�	

�

�	

�

�	

�

�	

�

����

��
���

�
�
��
�
��

Fig. 3: Speedup of Pisvm and MRPsvm on one building’s data.

������ ������
�

�

�

	

��

��

��

�	

�

��

�
���

������

�
�
��
�
�
�

Fig. 4: Speedup of Pisvm and MRPsvm on 20 buildings’ data.

is that the two computers have different architectures, e.g., the

single processor frequency of computer-II is half slower than

that of computer-I. The other reason is that we set the cache

size to be the same for these two architectures and did not

make full use of memory. This means far more time could

be saved if we increase the cache size with caution to the

maximum. In this optimum case, the cache size of MRPsvm

and Libsvm is larger than that of Pisvm, since the former two

systems generally require less storage space. It is implied that

more improvements can be achieved for MRPsvm than Pisvm.

We note that the accuracy of MRPsvm is almost the

TABLE IV: The training time and performance of the three predictors on three datasets performed on computer-I. bd: building,

nSVs: number of support vectors, MSE: mean squared error, SCC: squared correlation coefficient. The unit of time is second.

Data
Libsvm Pisvm MRPsvm

nSVs MSE SCC Time nSVs MSE SCC Time nSVs MSE SCC Time

1 bd 2150 6.16e-4 0.97 22.3 2162 6.10e-4 0.97 9.2 2168 6.14e-4 0.97 9.0

20 bd 9014 2.11e-3 0.96 3407.0 8967 2.12e-3 0.96 339.5 8970 2.08e-3 0.96 212.7

50 bd 22826 3.73e-4 0.97 44212.5 22823 3.74e-4 0.97 4179.8 22799 3.73e-4 0.97 2745.8

������ ������
�

�

�

	

��

��

��

�	

�

��

�
���

������

�
�
��
�
�
�

Fig. 5: Speedup of Pisvm and MRPsvm on 50 buildings’ data.

same as that of Libsvm. In fact, these three implementations

have essentially the same mechanism in QP solving, i.e.,

to iteratively optimize one pair of variables until achieving

global optimization. Their difference comes from the selection

of variable pair which may induce totally different results

in a sub-task. But in the global point of view, as long as

convergence is reached, the influence of internal difference

is marginal.

VI. CONCLUSION

We focus in parallel SVR for solving large scale problems

since it is suitable to the building energy analysis. The

proposed MRPsvm implements decomposition method with

SMO as the sub-problem solver. The simple, but pragmatic

programming framework Map-Reduce is adopted to conduct

parallel updating of the gradient vector f . The system is

relatively easy to be implemented and very high performance

is achieved.

Experimental results show that the new system provides

the same accuracy as Libsvm does, yet performs far more

efficiently than the sequential implementation in solving stated

problems. On the smallest dataset, MRPsvm achieves a more-

than-twice speed times up than Libsvm while on the largest

dataset, the speed times up can reach higher than 16-fold

and 19-fold on dual-core system and on quad-core system,

respectively. The proposed implementation is superior to the

state-of-the-art Pisvm in all tests in the sense of both speed

and memory requirement. Since the multi-core system is

dominating the trend of processor development and is highly

available in modern market, MRPsvm is potentially very prac-

tical and feasible in solving large scale regression problems.

Furthermore, the success of MRPsvm indicates that Map-

Reduce is a possible option to parallelize machine learning

algorithms.

However, the proposed system is not yet mature, there are

still several aspects worth considering for further improve-

ments, for instance, shrinking, finding the best granularity of

parallel work for a particular dataset.

REFERENCES

[1] V. N. Vapnik, The nature of statistical learning theory. Springer-Verlag
New York, Inc., 1995.

[2] B. Dong, C. Cao, and S. E. Lee, “Applying support vector machines
to predict building energy consumption in tropical region,” Energy and

Buildings, vol. 37, no. 5, pp. 545–553, 2005.

[3] Q. Li, Q. Meng, J. Cai, Y. Hiroshi, and M. Akashi, “Applying support
vector machine to predict hourly cooling load in the building,” Applied

Energy, vol. 86, no. 10, pp. 2249–2256, 2009.

[4] F. Lai, F. Magoulès, and F. Lherminier, “Vapnik’s learning theory applied
to energy consumption forecasts in residential buildings,” International

Journal of Computer Mathematics, vol. 85, no. 10, pp. 1563–1588, 2008.

[5] H. X. Zhao and F. Magoulès, “Parallel support vector machines applied
to the prediction of multiple buildings energy consumption,” Journal of

Algorithms & Computational Technology, vol. 4, no. 2, pp. 231–249,
2010.

[6] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines:
an application to face detection,” in Proceedings of the 1997 Conference

on Computer Vision and Pattern Recognition, 1997, pp. 130–136.

[7] T. Joachims, “Making large-scale support vector machine learning
practical,” Advances in kernel methods: support vector learning, pp.
169–184, 1999.

[8] E. Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui,
“Psvm: Parallelizing support vector machines on distributed computers,”
in NIPS, vol. 20, 2007.

[9] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” Advances in kernel methods: support vector

learning, pp. 185–208, 1999.

[10] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal estimated
sub-gradient solver for svm,” in Proceedings of the 24th International

Conference on Machine Learning, 2007, pp. 807–814.

[11] C. C. Chang and C. J. Lin, LIBSVM: a library for support vector

machines, 2001, available online at http://www.csie.ntu.edu.tw/∼cjlin/
libsvm.

[12] D. Brugger, “Parallel support vector machines,” in Proceedings of the

IFIP International Conference on Very Large Scale Integration of System

on Chip, 2007.

[13] R. E. Fan, P. H. Chen, and C. J. Lin, “Working set selection using
second order information for training support vector machines,” Journal
of Machine Learning Research, vol. 6, pp. 1889–1918, 2005.

[14] L. Zanni, T. Serafini, and G. Zanghirati, “Parallel software for training
large scale support vector machines on multiprocessor systems,” Journal
of Machine Learning Research, vol. 7, pp. 1467–1492, 2006.

[15] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[16] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,” in NIPS,
2006, pp. 281–288.

[17] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating mapreduce for multi-core and multiprocessor systems,”
in Proceedings of the IEEE 13th International Symposium on High

Performance Computer Architecture, 2007, pp. 13–24.
[18] Z. A. Zhu, W. Z. Chen, G. Wang, C. G. Zhu, and Z. Chen, “P-packsvm:

Parallel primal gradient descent kernel svm,” in Proceedings of the 9th

IEEE International Conference on Data Mining, 2009, pp. 677–686.
[19] D. Bickson, E. Yom-tov, and D. Dolev, “A gaussian belief propagation

solver for large scale support vector machines,” in Proceedings of the

5th European Conference on Complex Systems, 2008.
[20] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik, “Parallel

support vector machines: The cascade svm,” in In Advances in Neural

Information Processing Systems, vol. 17, 2005, pp. 521–528.
[21] J. X. Dong, A. Krzyzak, and C. Y. Suen, “Fast svm training algorithm

with decomposition on very large data sets,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp. 603–618,
2005.

[22] T. Hazan, A. Man, and A. Shashua, “A parallel decomposition solver
for svm: Distributed dual ascend using fenchel duality,” in Computer

Vision and Pattern Recognition, IEEE Computer Society Conference on,
2008, pp. 1–8.

[23] Y. Lu and V. Roychowdhury, “Parallel randomized sampling for support
vector machine (svm) and support vector regression (svr),” Knowledge

and Information Systems, vol. 14, pp. 233–247, 2008.
[24] L. J. Cao, S. S. Keerthi, C. J. Ong, J. Q. Zhang, U. Periyathamby,

J. F. Xiu, and H. P. Lee, “Parallel sequential minimal optimization for
the training of support vector machines,” IEEE Transactions on Nueral

Networks, vol. 17, no. 4, pp. 1039–1049, 2006.
[25] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector ma-

chine training and classification on graphics processors,” in Proceedings

of the 25th International Conference on Machine Learning, 2008, pp.
104–111.

[26] EnergyPlus, 2010, available online at: http://www.EnergyPlus.gov.
[27] H. X. Zhao and F. Magoulès, “Feature selection for predicting building

energy consumption based on statistical learning method,” Journal of

Algorithms & Computational Technology, 2011 (in press).

