
HAL Id: hal-00617933
https://hal.science/hal-00617933

Submitted on 31 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel support vector machines on multi-core and
multiprocessor systems

H. X. Zhao, F. Magoules

To cite this version:
H. X. Zhao, F. Magoules. Parallel support vector machines on multi-core and multiprocessor sys-
tems. 11th International Conference on Artificial Intelligence and Applications (AIA 2011), Feb 2011,
Innsbruck, Austria. �10.2316/P.2011.717-056�. �hal-00617933�

https://hal.science/hal-00617933
https://hal.archives-ouvertes.fr

Parallel Support Vector Machines on Multi-core and Multiprocessor Systems

Hai-xiang Zhao, Fŕed́eric Magoul̀es
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris

Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France
Email: haixiang.zhao@ecp.fr, frederic.magoules@hotmail.com

Abstract—This paper proposes a new and efficient parallel
implementation of support vector machines based on decom-
position method for handling large scale datasets. The paral-
lelizing is performed on the most time-and-memory consuming
work of training, i.e., to update the vector f . The inner
problems are dealt by sequential minimal optimization solver.
Since the underlying parallelism is realized by the shared
memory version of Map-Reduce paradigm, our system is easy
to build and particularly suitable to apply to multi-core and
multiprocessor systems. Experimental results show that on
most of the tested datasets, our system offers higher than four-
fold increase in speed compared to Libsvm, and it is also far
more efficient than the MPI implementation Pisvm.

Keywords-support vector machine; parallel; multi-core;
Map-Reduce

I. I NTRODUCTION

Support vector machine (SVM) is a popular supervised
learning method of solving classification and regression
problems [1]. It shows robust generalization ability in nu-
merous applications such as image processing, text mining,
neural analysis and energy efficiency modeling [2], [3]. The
training of SVM is essentially a quadratic optimization prob-
lem which is both time and memory costly while running
on computers, making it a challenge to apply SVM on large
scale problems. Several optimizing or heuristic methods
have been proposed to accelerate the training and reduce the
memory occupation, such as shrinking, chunking [4], kernel
caching [5], approximation of kernel matrix [6]. In addition,
certain scalable solvers can be used such as Sequential
Minimal Optimization (SMO) [7], mixture SVMs [8], primal
estimated sub-gradient solver [9]. Despite these efforts,
however, a more sophisticated and satisfactory solution is
still expected for this challenging research problem.

Thanks to the modern chip manufacturing, we are entering
the multi-core era. Computers with multi-cores or multipro-
cessors are becoming more available and affordable. This
paper aims to investigate and demonstrate how SVM — a
popular machine learning algorithm can benefit from this
modern platform. A new parallel SVM that is particularly
suitable to shared memory system is proposed. Decompo-
sition method, caching and SMO inner quadratic problem
solver are composed in the implementation as the key tech-
niques. For the purpose of achieving easy implementation
without sacrificing performance, the state-of-the-art parallel

programming framework Map-Reduce is chosen to perform
the underlying parallelism. The system is therefore called
MRPsvm, which stands for ”Map-Reduce parallel SVM”.
Comparative system analysis and experimental results on
benchmark datasets show significant memory saving and
overwhelming speed increase in our system.

The following sections are organized as follows. Section II
introduces the basic problem of SVM training and how the
decomposition method can solve the problem. Section III
explains the some key points of system implementation.
Section IV describes the related work. Section V presents
the numerical experiments on benchmark datasets and cor-
responding results. Conclusions are drawn in section VI.

II. SUPPORT VECTOR MACHINE

SVM for classification purpose aims at finding a hyper-
plane to separate two classes with maximum margin. Letxi

denotes theith training sample,yi denotes the correspond-
ing label with the value either -1 or 1,i = 1, 2, ..., l. l is the
total number of training samples. The dual form of the SVM
can be written as the following convex quadratic function.

min
α

1

2
αTQα−

l
∑

i=1

αi (1)

subject to

yTα = 0 (2)

0 ≤ αi ≤ C ∀i = 1, 2, ..., l (3)

WhereQ is a l by l positive semi-definite matrix. Each
element ofQ has the formQij = yiyjK(xi, xj) where
K(xi, xj) is called kernel function which can be substituted
by any Mercer kernel.C > 0 is the upper bound used to
trade off between classifier performance on training data and
its generalization ability.α is a vector ofl variables, where
each elementαi is the weight of the corresponding training
sample(xi, yi). The objective of the problem is to find the
solution ofα which makes (1) minimized and the constraints
(2) (3) fulfilled. After we find out the optimalα, we can use
the following decision function to predict the labels with the
new input ofx:

sgn

(

l
∑

i=1

yiαiK(xi, x)− b

)

whereb is a constant value which can be easily calculated
in the training step, and

sgn(u) =

{

−1, for u < 0
1, for u > 0

A. Decomposition method

Since the size of the kernel matrixQ is the square of the
number of samples, i.e.,l2, so that it is difficult to store
the whole matrix in memory whenl is very big. Osuna et
al. [4] proposed a method to decompose the problem into
smaller tasks. In each task, certain parts ofα are chosen to
be optimized, while the rest ofα remains in constant value.
The selected part is called working set. Then the program
repeats the select-optimize process until global optimality
conditions are satisfied. LetB denote the working set with
n variables andN denote the non-working set with(l− n)
variables. Then,α, y andQ can be correspondingly written
as:

α =

∣

∣

∣

∣

αB

αN

∣

∣

∣

∣

, y =

∣

∣

∣

∣

yB
yN

∣

∣

∣

∣

, Q =

∣

∣

∣

∣

QBB QBN

QNB QNN

∣

∣

∣

∣

Accordingly, the small task can be written as:

min
1

2
αT
BQBBαB − αT

B(1−QBNαN)

+
1

2
αT
NQNNαN − αT

N (4)

subject to

αT
ByB + αT

NyN = 0 (5)

0 ≤ αB ≤ C (6)

Since(12α
T
NQNNαN −αT

N) in (4) remains constant in an
iteration, this term can be omitted while calculating. So that
function (4) has essentially the same form as function (1).
The advantage of this problem decomposition method is that
the newly generated task is small enough to be solved by
most off-the-shelf methods. In our work, we choose SMO
as the inner small task solver due to its relative simplicity,
yet high performance characteristics. Interestingly, SMOis
itself an extreme case of the decomposition method where
the working set contains only two variables. This kind of
binary sub-problem can be easily solved analytically [7],
[10]. As stated in [5], the solution of the sub-problem (4)
is strictly feasible towards the optimum solution of global
problem (1). This feature guarantees the global convergence
of this decomposition method.

B. Optimality condition

When to stop the optimizing process is evaluated by the
Karush-Kuhn-Tucker condition iteratively. The evaluating
procedure can be summarized as follows. Firstly, we classify
the training samples into two categories:

Iup(α) = {t|αt < C, yt = 1 or αt > 0, yt = −1}

Ilow(α) = {t|αt < C, yt = −1 or αt > 0, yt = 1}

Secondly we search two extreme valuesm(α) and M(α)
by

m(α) = max
i∈Iup(α)

− yifi

M(α) = min
i∈Ilow(α)

− yifi

wherefi =
∑l

j=1 αjQij − 1 is the gradient of (1). Since
fi should be calculated for alll variables andQij may not
be stored in the memory, the calculation offi becomes the
main task of the whole optimizing work.

After we find outm(α) and M(α), we define the stop
condition as:

m(α)−M(α) ≤ ǫ (7)

whereǫ is a pre-defined value.

C. Working set selection

The selection of working setB directly influences the
speed of convergence. For inner SMO solver, the maximal
violating pair is selected to be the binary working set
according to the second order information [11]. We do not
state here how inner SMO solver works since it has been
discussed in detail in [7] [10]. For the selection of working
set B, we simply consider the first order information and
select, in some sense, the maximal violating pairs as pro-
posed by Zanni et al. [12]. Suppose the required size ofB

is n, we chooseq (q < n) variables fromα by sequentially
selecting pair of variables which satisfy (7). The remaining
(n − q) variables are chosen as those who enteredB in
the last iteration but not yet selected in currentB. The
selection of these(n−q) variables follows the sequence: free
variables which satisfy0 < αi < C, lower bound variables
which are equal to 0, upper bound variables which have the
valueC. The reason for putting restraint on the number of
new variables entering the working set is to avoid frequent
entering-leaving of certain variables. Otherwise, the speed
of convergence would considerably slow down [12].

After the working set is optimized,f is updated by:

f∗

i = fi +
∑

j∈B

∆αjQij i = 1, 2, ..., l (8)

where∆αj is the newly optimizedαj minus the oldαj .
This procedure is crucial as it preparesf for the next

iteration to do optimality condition evaluation and working
set selection. In fact, this is the most time-consuming step
in SVM training due to the computation ofQij . Therefore,
the main parallelizing work of MRPsvm is based on the
updating off . The whole parallel decomposition method is
briefly outlined in algorithm 1.

Algorithm 1 Parallel decomposition solver

INPUT: data set(xi, yi), ∀i ∈ {1, ..., l}, n, ǫ

INITIALIZE: αi = 0, fi = −1, ∀i ∈ {1, ..., l}

CALCULATE: Iup, Ilow, m(α), M(α)

REPEAT

select working setB, | B |= n

optimizeαi, ∀i ∈ B, by SMO solver

updatefi, ∀i ∈ {1, ..., l} in parallel

calculateIup, Ilow, m(α), M(α)

UNTIL m(α)−M(α) ≤ ǫ

III. SYSTEM IMPLEMENTATION

In this section, we introduce some key points of our
system implementation, i.e., why and how Map-Reduce
is used to do the parallelism, caching technique and data
representation.

A. Map-Reduce on multi-core system

Map-Reduce is a parallel programming framework orig-
inally proposed by Google [13]. It can help us extract
parallelism of computations on large data sets by taking
advantage of distributed systems. It allows users to write
code in a functional style: map computations on separated
data, generate intermediate key/value pairs and then reduce
the summation of intermediate values assigned to the same
key. The runtime system automatically handles low-level
mapping, scheduling, parallel processing and fault tolerance.
It is a simple but very useful framework.

Except the plenty researches of Map-Reduce in dis-
tributed environments, such as [14]–[17], Chu et al. [18]
has attempted to use this technology to develop a general
programming framework on multi-core systems for machine
learning applications. For SVM, they have parallelized linear
SVM with primal problem. To conduct further development,
our work attempts to develop a parallel SVM for general
classification problem, and the solved SVM problem is in
dual form.

According to the mechanism of Map-Reduce, this frame-
work is naturally suitable to deal with our problem (8) in
parallel. Phoenix designed by Ranger et al. [19] implements
Map-Reduce on shared memory systems. It supplies a com-
mon API for users to easily parallelize their applications
without conducting concurrency management. The map and

reduce tasks are performed in threads. An efficient inte-
grated runtime system is supposed to handle the parallelism,
resource management and fault recovery by itself. Their
experimental results show that this system works just as
efficient as pure Pthreads implementation. Therefore, we
choose this system as the underlying Map-Reduce handler
to implement our MRPsvm.

The parallel computation works as follows. Variables in
working setB is divided into several parts, the calculation
of f∗ is also divided into several parts in the same manner
as forB. Each part is then assigned to a map process. The
major work of each map process is thus to calculateQij

if they are not saved in the memory, and then calculate
∑

j ∆αjQij for all i = 1, 2, ..., l. After the distributed
calculations of these maps, finalf∗ is summed up by the
reduction. Figure 1 explicitly depicts the detailed problem
and the partitioning manner. It is obvious that the problem is
divided on kernel columns.(jk, k = 1, ..., n) are the variable
index of working set in kernel matrix, which gives thekth
variable inB with its index inQ asjk. In practice, it is not
necessary to updatef on all then variables since some of
them are so marginal that can be omitted.

B. Caching technique

As stated in the previous sections, for large scale prob-
lems, kernel matrixQ is too large to be stored in memory,
and the calculation of kernel elementsQij is the dominant
work that slows down the training. It is an effective tech-
nique to cache the kernel elements in memory as much as
possible. MRPsvm maintains a fix-sized cache which stores
recently accessed or generated kernel columns. The cache
replacement policy is a simple least-recent-use strategy,as
same as that of Libsvm. Only the column currently needed
but not hit in the cache will be calculated. All parallel
maps share an unique copy of cache in the shared memory.
In consequence, the operation of inserting a new column
into the cache performed by whichever map should be
synchronized.

For inner SMO solver, the kernel matrix size is dependent
on the size of working setB which is normally set as 1024
according to the knowledge of experience, it is practical to
pre-compute and cache the full version of this small kernel
matrix.

C. Sparse data representation

To reduce the storage requirements, the sample vectors
xi are stored by sparse representation. When calculating a
kernel column(Qij , i = 1, 2, ..., l), we need to unroll the
jth sample vector to dense format and then calculate the
dot products of this vector with the otherl sample vectors.

IV. RELATED WORK

Since the essential convex quadratic problem can be
solved by several methods, different kinds of parallel SVMs

1 1 2 2

*

1 1 1 1 1 1 1k k m m n nj j j j j j j j j jf f Q Q Q Q Q ! "# "# " "# " "# "#

1 1 2 2

*

2 2 2 2 2 2 2k k m m n nj j j j j j j j j jf f Q Q Q Q Q ! " # " # " " # " " # " #

1 1 2 2

*

k k m m n ni i j ij j ij j ij j ij j ijf f Q Q Q Q Q ! " # "# " "# " "# "#

1 1 2 2

*

k k m m n nl l j lj j lj j lj j lj j ljf f Q Q Q Q Q ! " # "# " "# " "# "#

…
… …

…

…
…

…map.1 map.r

Figure 1. Problem partitioning and tasks assignment to mappers for parallel computing.

were proposed according to the particular quadratic problem
solver. Based on stochastic gradient descent method, P-
packSVM optimizes SVM training directly on the primal
form for arbitrary kernels [20]. Very high efficiency and
competitive accuracy have been achieved by the parallel
implementation. Psvm proposed in [6] is based on interior
point solver. It approximates the kernel matrix by incomplete
Cholesky factorization. Memory requirement is reduced and
scalable performance has been achieved. Bickson et al. [21]
solve the problem by Gaussian belief propagation, a method
from complex system domain. The parallel solver brings
competitive speedup on large scale problems.

The decomposition method attracts more attentions than
the above solvers. Graf et al. [22] train several SVMs on
small data partitions, then they aggregate support vectors
from two pair SVMs to form new training samples on which
another training is performed. The aggregation is repeated
until only one SVM remains. The similar idea is used by
Dong et al. [23], in this work, sub-SVMs are performed on
block diagonal matrices which are the approximation to the
original kernel matrix. Consequently, nonsupport vectorsare
removed when dealing these sub-problems. Zanni et al. [12]
parallelize SVM-light with improved working set selection
and inner quadratic problem solver. Hazan et al. [24] propose
a parallel decomposition solver using Fenchel Duality.

Similar to our implementation, Cao et al. [25] and Catan-
zaro et al. [26] parallelized SMO solver for training SVM.
Both work mainly focuses on updating gradient for Karush-
Kuhn-Tucker condition evaluation and the working set selec-
tion. The difference between them is on the implementation
details and the programming models. Specifically speaking,
the first work is conducted by using MPI on clusters while
the second one by Map-Reduce threads on modern GPU
platform. In our work, we also adopt SMO algorithm. But
we use it as the inner quadratic problem solver without any
parallel computation, instead, we perform the parallelization
on external decomposition procedure. The main advantage

of our coarse-grained parallelism is that it can significantly
reduce the burden of overheads since the number of itera-
tions in global decomposition procedure (wheren ≫ 2) is
extremely smaller than that of pure SMO algorithm (where
n = 2).

Pisvm [27] uses the same decomposition method as ours
to train SVM in parallel. But its implementation is different
from our MRPsvm in many aspects. First, it is based on
MPI implementation and aims at extracting parallelism from
distributed memory systems, while our parallel algorithm
is conducted by Map-Reduce threads on shared memory
system. They are based on totally different models, and
the number of threads, the granularity are different as
well. Second, in its implementation, each process stores
a copy of data samples. In the contrary, MRPsvm stores
only one copy in the shared memory. Third, Pisvm adopts
a distributed cache strategy in order to share the saved
kernel elements across all of the processes. Each process
stores locally a piece of the cache. Consequently, the work
for updating gradients is divided and assigned globally to
proper processors according to the cache locality. In contrast,
our MRPsvm has only one copy of the cache, and each
processor accesses the cache equally, so that the overhead
of global assignment is avoided. However, we have to note
that synchronization on cache write is required. In next
section, we will compare the performance of Pisvm with that
of MRPsvm on some benchmark datasets, providing direct
evidence that our system is more efficient and suitable than
the MPI implementation on multi-core systems.

V. EXPERIMENTS AND RESULTS

We test MRPsvm by comparing it with the parallel
implementation Pisvm and the serial implementation Libsvm
on five widely used benchmark datasets. Although this
comparison may not based on systems especially designed
for multi-core architecture, we still have good reasons for
doing so. Firstly, as the best knowledge as we know, there

Table I
THE PHYSICAL FEATURES OF THE MULTI-CORE SYSTEMS.

Features Computer I Computer II

of CPUs 1 2

of cores 4 8

Frequency 1600MHz*4 2327MHz*8

Memory 2G 4G

L2 cache 4M 6M*2

is no existing parallel implementation of general SVM that is
specially developed for multi-core systems. Therefore there
is a strong need to verify if our system could outperform
the state-of-the-art parallel implementation. Secondly,most
of the systems surveyed in section IV are not available to the
public, while Pisvm , as a typical parallel implementation
of SVM, is easy to obtain. Thirdly, the quadratic problem
solver of Pisvm is the same as MRPsvm, hence, if we
compare our system with Pisvm, the advantage of Map-
Reduce framework is more convincing.

Two computers with different hardware architectures are
adopted to check hardware effects. As shown in table I,
the first computer has 4 cores with a shared L2 cache and
memory. The second one is a dual-processor system with
4 cores in each processor. The cores in the same processor
share one cache, and the main memory is shared among all
of the cores. Both of the two computers are running Linux
2.6.27-7.

The five datasets are shown in table II. They vary in sam-
ple size and dimension. We train all SVMs with Gaussian
kernel. The tolerance of termination criterion is set to 0.01.
Since we focus on comparing of three systems, the outputs
of these classifiers may not be optimal. In other words, we
do not guarantee the parameters of SVM, i.e.,C andγ, to
reach optimal values. They are just chosen from the literature
as shown in the last two columns of table II.

Since the caching technique is crucial for performance, for
a reliable comparison, we set the cache size to be the same
for all three systems. Furthermore, we restrict the cache size
to be far smaller than the memory size in order to minimize
page faults in runtime. Here we have to emphasize that the
following reported performance might not be optimal for all
three systems, only serving for comparison purpose.

Table III shows the results of the three implementations
performed on 4 processors. The time columns represent
the whole training time, i.e., from reading the problem to
writing the outputs. Here we use ”Times” to denote how
many times faster of parallel implementation over sequential
implementation:

Times =
Time of Libsvm

——————————————
Time of parallel implementation

By analyzing the results, we can see that MRPsvm has
successfully parallelized SVM training. For all five datasets,

0

1

2

3

4

5

6

7

8

9

10

Web Adult Mnist Covtype Kddcup99

T
im
es

Pisvm

MRPsvm

Figure 2. Times up of Pisvm and MRPsvm over Libsvm when running
on computer II.

much more time is saved when running MRPsvm than
Libsvm. Especially in the first four cases, the speed of
MRPsvm is more than 4 times higher than that of Libsvm.
In all of the cases, MRPsvm achieves outstanding higher
Times than Pisvm, indicating that MRPsvm is more suitable
than Pisvm on multi-core systems.

We note that in these experiments, the accuracy of the
three classifiers is almost the same. In fact, the numbers of
support vectors generated by these classifiers are also quite
close. Actually, these three implementations have essentially
the same mechanism in quadratic problem solving, i.e., to
iteratively optimize one pair of variables until achieving
global optimization. The difference in runtime mainly caused
by the selected working set. Selecting different variables
to perform optimization may induce totally different results
in an iteration, but generally speaking, as long as global
convergence is reached, the influence is marginal.

We show in figure 2 the times up of the two parallel
solvers over the sequential solver when running on the
second computer. MRPsvm again outperforms Pisvm on all
of the datasets. Among them the best Times is achieved on
Adult, while the worst Times is found on Kddcup99. This
indicates that MRPsvm performs better on smaller datasets.
The main reasons for worse performance on larger problem
are due to locality and overheads of reduction. In each
map, the updating off requires accessing the whole data
samples and several temporal vectors with the size close to
l. Therefore, for large datasets, it is difficult to guarantee
the locality for using L2 cache, especially when the cache
is shared by several threads. Since we partition the global
problem by columns, each map generatesl intermediatefi,
so that the reduction is costly whenl is very large.

In fact, the parallel performance on 8 cores only slightly
outperforms that on 4 cores. As explained at the beginning
of this section, this is because we did not make full use
of the memory on computer II. Far more time can be
saved if we increase the cache size with caution to the
maximum. In this optimal case, the cache size of MRPsvm

Table II
DESCRIPTION OF THE FIVE DATASETS AND THE TWO PARAMETERS OFSVM ON EACH DATASET.

Dataset # training samples # testing samples # Classes # Dimensions C γ

Web 24,692 25,075 2 300 64 7.8152

Adult 32,561 16,281 2 123 100 0.5

Mnist 60,000 10,000 2 576 10 1.667

Covtype 435,759 145,253 8 54 10 2e-5

Kddcup99 898,430 311,029 2 122 2 0.6

Table III
THE TRAINING TIME AND ACCURACY OF THE THREE SYSTEMS ON FIVE DATASETS PERFORMED ON COMPUTERI. THE UNIT OF TIME IS SECOND.

Dataset
Libsvm Pisvm MRPsvm

Time Accuracy Time Accuracy Times Time Accuracy Times

Web 306.4 97.6% 117.5 97.6% 2.6 65.8 97.6% 4.7

Adult 311.6 82.7% 91.4 82.7% 3.4 59.2 82.7% 5.3

Mnist 517.8 99.8% 148.7 99.8% 3.5 123.2 99.8% 4.2

Covtype 20260.7 51.0% 5612.6 51.0% 3.6 3895.1 51.0% 5.2

Kddcup99 726.8 92.0% 415.5 92.0% 1.7 351.9 92.0% 2.1

and Libsvm is larger than that of Pisvm, since the former
two systems generally require less memory. Therefore, it
is implied that more improvements can be achieved for
MRPsvm and Libsvm than Pisvm.

VI. CONCLUSION

This paper proposes a parallel implementation of SVM
for multi-core and multiprocessor systems. It implements
decomposition method and utilize SMO as inner solver.
The parallelism is conducted to update the vectorf in the
decomposition step and is programmed in the simple, yet
pragmatic programming framework Map-Reduce. A shared
cache is designed to save the kernel matrix columns when
the data size is very large. Extensive experimental results
show that MRPsvm is very efficient in solving large scale
problems. For instance, the speed on 4 processors can
increase more than 4 times than Libsvm for most of the
applications. It overwhelms the state-of-the-art Pisvm inall
benchmark tests in the sense of both speed and memory
requirement.

The multi-core system is already highly available in
modern market, and is dominating the trend of processor
development. This makes MRPsvm to be practical since
it requires only easily available, affordable and single
computer. These performance improvements brought by
MRPsvm can extend the potential feasibility of SVM in
solving increasingly challenging problems. Furthermore,the
success of MRPsvm indicates that Map-Reduce is a possible
option to parallelize machine learning algorithms.

However, several aspects are still worth considering for
the purpose of further improvements. For instance, how to
define the best granularity of map work for a particular
dataset, how to improve data locality, shrinking, further

parallelizing other slow operations such as the computation
of inner kernel matrix.

REFERENCES

[1] V. N. Vapnik, The nature of statistical learning theory.
Springer-Verlag New York, Inc., 1995.

[2] F. Lai, F. Magoul̀es, and F. Lherminier, “Vapnik’s learning
theory applied to energy consumption forecasts in residential
buildings,” International Journal of Computer Mathematics,
vol. 85, no. 10, pp. 1563–1588, 2008.

[3] H. X. Zhao and F. Magoulès, “Parallel support vector ma-
chines applied to the prediction of multiple buildings energy
consumption,”Journal of Algorithms & Computational Tech-
nology, vol. 4, no. 2, pp. 231–249, 2010.

[4] E. Osuna, R. Freund, and F. Girosi, “Training support vector
machines: an application to face detection,” inProceedings
of the 1997 Conference on Computer Vision and Pattern
Recognition), 1997, pp. 130–136.

[5] T. Joachims, “Making large-scale support vector machine
learning practical,” inAdvances in kernel methods: support
vector learning. Cambridge, MA, USA: MIT Press, 1999,
pp. 169–184.

[6] E. Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and
H. Cui, “Psvm: Parallelizing support vector machines on
distributed computers,” inNIPS, vol. 20, 2007.

[7] J. C. Platt, “Fast training of support vector machines using
sequential minimal optimization,” inAdvances in kernel meth-
ods: support vector learning. Cambridge, MA, USA: MIT
Press, 1999, pp. 185–208.

[8] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture
of svms for very large scale problems,”Neural Computation,
vol. 14, no. 5, pp. 1105–1114, 2002.

[9] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal
estimated sub-gradient solver for svm,” inProceedings of the
24th international conference on Machine learning, 2007, pp.
807–814.

[10] C. C. Chang and C. J. Lin,LIBSVM: a library for support
vector machines, 2001, available online at http://www.csie.
ntu.edu.tw/∼cjlin/libsvm.

[11] R. E. Fan, P. H. Chen, and C. J. Lin, “Working set selection
using second order information for training support vector
machines,”Journal of Machine Learning Research, vol. 6,
pp. 1889–1918, 2005.

[12] L. Zanni, T. Serafini, and G. Zanghirati, “Parallel software for
training large scale support vector machines on multiproces-
sor systems,”Journal of Machine Learning Research, vol. 7,
pp. 1467–1492, 2006.

[13] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,”Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[14] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Sto-
ica, “Improving mapreduce performance in heterogeneous
environments,” inProceedings of the 8th USENIX conference
on Operating systems design and implementation, 2008, pp.
29–42.

[15] J. Pan, Y. L. Biannic, and F. Magoulès, “Parallelizing multiple
group-by query in share-nothing environment: a mapreduce
study case,” inProceedings of the 19th ACM International
Symposium on High Performance Distributed Computing,
2010, pp. 856–863.

[16] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: a mapreduce framework on graphics processors,” in
Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, 2008, pp. 260–269.

[17] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker,
“Map-reduce-merge: simplified relational data processing on
large clusters,” inProceedings of the 2007 ACM SIGMOD
international conference on Management of data, 2007, pp.
1029–1040.

[18] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y.
Ng, and K. Olukotun, “Map-reduce for machine learning on
multicore,” in NIPS, 2006, pp. 281–288.

[19] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating mapreduce for multi-core and
multiprocessor systems,” inProceedings of the IEEE 13th
International Symposium on High Performance Computer
Architecture, 2007, pp. 13–24.

[20] Z. A. Zhu, W. Z. Chen, G. Wang, C. G. Zhu, and Z. Chen,
“P-packsvm: Parallel primal gradient descent kernel svm,”
Proceedings of the 9th IEEE International Conference on
Data Mining, vol. 0, pp. 677–686, 2009.

[21] D. Bickson, E. Yom-tov, and D. Dolev, “A gaussian belief
propagation solver for large scale support vector machines,”
in Proceedings of the 5th European Conference on Complex
Systems, 2008.

[22] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vap-
nik, “Parallel support vector machines: The cascade svm,” in
NIPS, 2004.

[23] J. X. Dong, A. Krzyzak, and C. Y. Suen, “Fast svm training
algorithm with decomposition on very large data sets,”IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 4, pp. 603–618, 2005.

[24] T. Hazan, A. Man, and A. Shashua, “A parallel decomposition
solver for svm: Distributed dual ascend using fenchel duality,”
Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, vol. 0, pp. 1–8, 2008.

[25] L. J. Cao, S. S. Keerthi, C. J. Ong, J. Q. Zhang, U. Periy-
athamby, J. F. Xiu, and H. P. Lee, “Parallel sequential minimal
optimization for the training of support vector machines,”
IEEE Transactions on Nueral Networks, vol. 17, no. 4, pp.
1039–1049, 2006.

[26] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support
vector machine training and classification on graphics pro-
cessors,” inProceedings of the 25th international conference
on Machine learning, 2008, pp. 104–111.

[27] D. Brugger, “Parallel support vector machines,” inProceed-
ings of the IFIP International Conference on Very Large Scale
Integration of System on Chip, 2007.

