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ABSTRACT

Analyzing the energy performance in a building is an important task in en-
ergy conservation. To accurately predict the energy consumption is difficult in
practice since the building is a complex system with many parameters involved.
To obtain enough historical data of energy uses and to find out an approach
to analyze them become mandatory. In this paper, we propose a simulation
method with the aim of obtaining energy data for multiple buildings. Support
vector machines method with Gaussian kernel is applied to obtain the prediction
model. For the first time, a parallel implementation of support vector machines
is used to accelerate the model training process. Our experimental results show
very good performance of this approach, paving the way for further applications
of support vector machines method on large energy consumption datasets.

Keywords: Energy consumption, building, prediction, support vector machines,
parallel computing, grid computing

1 INTRODUCTION

Nowadays, energy conservation is a critical task. It is involved in almost every
aspect of energy flow including exploitation, delivery and end-use. Predicting
the energy consumption of a building is an important approach in energy con-
servation which benefits both individual and society. With the basic knowledge
of the energy performance of a building, it is possible to more wisely design a
new building.

However, it is difficult to realize in practice. The first reason lies on the fact
that a building is a rather complex system with a great number of influencing
factors involved. Taking the heating load for example, it is influenced by the
outside weather conditions, the structures, the thermal behavior of the materi-
als, the inner facilities and the behavior of the occupants. Another important
reason is that there is not enough data available because of the difficulties in
gathering valuable data from the real world [1]. The third reason lies in the
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difficulty of analyzing the historical data due to the lack of methods, especially
regarding the time consuming aspects when dealing with large datasets.

In order to achieve accurate predictions, it is necessary to collect enough his-
torical data and to find out a practical way to analyze these data. This paper
generates data of multiple buildings from simulations with the EnergyPlus [2]
software. A well known statistical learning theory, the support vector machines
(SVMs) method [3], together with the Gaussian kernel (RBF) are applied to
obtain the prediction model. A parallel implementation of SVMs is used for the
first time to accelerate the model training process on large datasets. Our exper-
imental results show that SVMs method has a good performance in predicting
unknown buildings, and that the parallel implementation makes it possible to
analyze large energy consumption datasets in practice. Section 2 of this paper
briefly introduces the related work, and Section 3 introduces the learning theory
and its parallel implementation. How to collect the data is introduced in Section
4. Description of the experiments and analysis of the results are presented in
Section 5. Finally, the conclusions are presented in Section 6.

2 RELATED WORK

In recent years, the analysis of building energy performance is wildly stud-
ied. A large number of software have been developed for evaluating energy
efficiency and sustainability of buildings [2, 4], such as DOE-2, AkWarm, An-
therm, Apache, etc. Most of them are simulation tools which calculate, on an
hourly or monthly basis, the thermal transfer or energy variation of buildings
and facilities from an engineering point of view.

At the same time, researchers have developed several analyzing models to
predict the energy performance based on historical data. The regression model
proposed in [5-7] is well suited for long period energy predictions and is easy
to develop. The time-series analysis [8] and the Fourier series model [9] were
proposed for analyzing historical time series data. The neural network related
methods are the most frequently applied approaches [10-14]. Some of these
methods have been thoroughly tested and thus can be used as benchmark cal-
culations for other prediction methods.

Support vector machines (SVM) are a set of methods for classification and
regression. It is close to multi-layer neural network and has good generalization
abilities in solving non-linear problems [3, 15]. Despite it is widely used in
industries, only few work has been done for applying it to analyze building
energy behaviors [16-18].

Dong et al. [16] first applied SVMs to predict the monthly electricity con-
sumption of four buildings in tropical region. Three years’ data was trained and
the derived model was applied on one year’s data to predict the landlord utility
in that year. The results showed good performances of SVMs on this problem.

Lai et al. [17] applied robust regression model on one year’s data of a build-
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ing. The dataset was recorded on a daily basis with electricity consumption
and climate variation involved. In these experiments, the authors trained the
model on one year’s data and then applied it to three month’s data to test the
predication ability of this derived model. The authors also trained the models
on each daily basis dataset and then compared the obtained models to verify
the stability of this approach. In addition, perturbation to certain data has
been added and detection of the perturbation by examining the change of the
contributing weights has been investigated.

Li et al. [18] used SVMs to predict the hourly cooling load of an office build-
ing. The performance of the support vector regression was compared with the
conventional back-propagation neural networks and it was proved to be better
than the traditional solution.

The above three works have shown that SVMs can provide good perfor-
mances in predicting hourly and monthly building energy. However, there are
several shortages in these studies. Firstly, all the experiments were performed
on a small number of buildings which means that we do not know the ability
of SVMs in predicting the energy performance in a completely new building for
instance. Secondly, the datasets for model training were not large enough, which
could lead to a certain degree of limitations of these models. For instance, the
relation between the energy consumption and a limited number of features such
as weather conditions are considered, and the time duration is not long enough.

3 THEORY OF SUPPORT VECTOR MACHINES

3.1 Support vector regression

Support vector machine is a supervised learning method which aims at finding
a decision function to represent the relationship between the features and the
target. This function is also called a model or a pattern. The features are also
called the variables. According to different types of targets, SVM is classified
into two types: one is the classification in which the target has only two val-
ues, e.g. {0,1}, and the other type is the regression in which the target has
continuous real value.

Let vector x; represents the ith sample of the features and y; represent the
corresponding target value, therefore, all of the samples can be represented as:

(z1,91), (T2, Y2), (21, 91)

where x; € R™ and means that there are n features, y; € R and [ is the number
of samples. We are aiming at finding a decision function of the form:

flx)=wz+b (1)

where f(z;) is the estimation of the corresponding y;. If such a function is
found, we can use it to predict the unknown y; with the new input x;. This is
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defined as the prediction ability of the derived model. The process to find (1) is
called model training. In the above function, w and b are coefficients. The main
task now is to find out the proper values of w and b. We approximate them by
minimizing the empirical risk with respect to the loss function:

I
L(y = f(@) = > lyi — f ()] (2)
i=1

In this paper, the target is the total energy consumption in a building—which is
a real continuous variable. Thus we only use support vector regression (SVR) to
estimate the target, and we talk about SVR. To make our estimation robust, we
use an e-insensitive loss function instead of the above quadratic loss function.

0 if [y — f(z)| <e
ly — f(z)] —¢ otherwise

Ly - fia) = {

This loss function corresponds to an e-tube around the measured target values.
We assume that there is no deviation of the predicted values from the measured
ones if they lie inside the tube. To find out the vector w, the problem is equiva-
lent to the following quadratic optimization problem after introducing two slack
variables & and &£ , 7 =1,2,...,], and where we minimize

l l
1
Slel’+eQ g +3 ) (3)
i=1 i=1
subject to the constraints

yi— flzi) <e+ &

flzi) —yi <e+&
£5.6 >0, i=1,2,..1

where C'is a regularizing constant, which determines the trade off between the
capacity of f(z) and the number of points outside the e-tube. To find the
saddle point of the function (3) under the previous inequalities constraints, one
can turn to the Lagrange function by introducing four Lagrange multipliers, a*,
a, v*, v. The Lagrange function becomes:

1
L(w,b,€"6,0%0,7,7) = 5w’

l l
+o) g +> 8
=1 =1

—Z)w$+%> (4)
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The four Lagrange multipliers satisfy the constraints o™ > 0, > 0,4* > 0 and
~v>0,i=1,2,...,1. If the relations

oL 0L _ oL _ oL
Ow Ob  0&  O¢

occur, we get the following conditions,

=1
! l
Z = Z (5)
=1 i=1
0<aj,0; <C (6)
C=a+vy =a; + i, i=1,2,..,1 (7)

Putting them back into the above Lagrange function, we obtain the solution of
the optimization problem which is equal to the maximum of the function (4)
with respect to the Lagrange multipliers. The next step is to find o and «; in
order to maximize the following function:

l l l

W(of, 1) = 3 wilaf —ai)—< (o tan)— 5 3 (0 —an) (0} —ay)(ioas) (8)

i=1 i=1 1,j=1

under the constraints (5) and (6), where x; - ; stands for the dot product of
two vectors z; and z;. Normally, only some of the samples satisfy the property
of of —a; # 0, which are called support vectors (SVs). In fact, only these
samples lying outside the e-tube will contribute to determine the decision func-
tion Eq. (1). In practice, it is difficult to find out a linear function f(x) for real
problems with a large dataset. In such cases, one often maps the 1-dimensional
problem into a higher dimensional feature space where it is easier to find a linear
function similar to the previous decision function. Fortunately, it is not neces-
sary to express the mapping explicitly. Instead, the final form f(x;) = p(z;)+b
is good enough. Thus, the last term z; - ; of (8) is changed into p(z;) - ©(v;)
which is called the kernel function and the term K(z; - y;) is used to replace it.
Then, combining with Eq. (4), the decision function goes to:

l

flx) = (af —a)K(wi-x) +b (9)

i=1
where o and «; are determined by maximizing the quadratic function:

! !
D)= yilaf —a)—e Y (af +a;) -
i=1 i=1

l

> (af — i) (o — o) K (a4 ;)

1,j=1

DN | =

(10)
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under the constraints (5) and (6).

There are four frequently used kernel functions in SVMs, which are the
linear function, the polynomial function, the radial basis function (RBF) and
the sigmod function. They represent different decision shapes in the feature
space. In this paper, we chose RBF in the training process because it has been
tested to be proper for some industrial applications [16]. RBF is also called
Gaussian kernel, with the form K(z;, z;) = emp(—*y”xi - xjH2) where v > 0 is
the kernel parameter.

3.2 Solving the quadratic problem

When solving Eq. (10) via standard quadratic problem (QP) techniques, there
would be a matrix in the memory whose number of elements is equal to the
square of the number of samples [19]. If the trained data is very large, it
would become difficult to load the whole matrix into the computer memory.
Furthermore, there are a significant number of numerical problems when solving
such a function. Therefore, sequential minimal optimization (SMO) method
was proposed and has been proved to be a better alternative to handle these
two difficulties when dealing with large datasets. The main idea of SMO is
to divide the entire optimization problem into sub-problems and to solve each
sub-problem step by step, until finally conquer the whole problem. In each step,
two Lagrange multipliers are optimized analytically until the Karush-Kuhn-
Tucher (KKT) conditions are satisfied. Which two Lagrange multipliers are
selected in current step is decided by an heuristics algorithm. The parameter b
is re-computed in each step. More details on the SMO method could be found
n [15, 19].

3.3 Parallel implementation

SVM training becomes a time consuming process when applied to large datasets.
Brugger [15] integrated SMO method to solve the quadratic problem in parallel.
By profiling the performance of the optimization process in different datasets,
the author found that the most time-consuming part is located in the kernel eval-
uation. Therefore, he parallelized the kernel evaluations and gradient updates,
combined with inner sequential QP solver and distributed storage of kernel rows,
achieved linear speedup for regression in his test. The tool Pisvim was developed
using this idea.

In this paper, we trained our model on multiple buildings datasets with the
Pisvm tool for the purpose of accelerating the training process in high burden
conditions.

3.4 Performance evaluation

Two performance evaluation methods were applied in this work. One is the
mean squared error (MSE) which gives the average deviation of the predicted
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values to the measured one. The lower the MSE, the better the performance of
the prediction. The other method is the squared correlation coefficient (SCC)
which lies between [0, 1] and gives the ratio of successfully predicted number of
target values on the total number of target values, i.e. how certain the predicted
values are compared to the measured one. The higher the SCC, the stronger
the evaluating ability.

4 DATA PREPARATION

Buildings for office use located in Paris-Orly were simulated via EnergyPlus.
We chose this tool because, as a succession of the well-known building energy
simulation software BLAST and DOE-2.1E, it is well tested and comprehensive
in calculating energy performance of complex systems. In our work, we gener-
ated the data of a single building in heating season initially. Then, by modifying
some alterable parameters, we generated the data for multiple houses.

Before running the simulation, one has to create an input file (idf file) to
give the parameters of a building for EnergyPlus. The input parameters include
the weather conditions, the building structures, the inside occupants’ behaviors,
the schedule of light using, etc. The most important parameters are shown in
Table 1 and the materials of the surfaces are given in Table 2. The description
of these materials can be found in the documents of EnergyPlus [2].

Table 1: Input parameters of a single building (in metric units).

Parameters Values
Location Paris-orly, City
Duration From Nov 1 to Mar 31
Building Shape Rectangle
Structure Length:11 Width:10 Ceiling Height:4 North axis: 10°
Fenestration surface 14m? for each wall
Thermal Zones 1
People 14
Air infiltration 0.0348 m?3/s
Heating type District heating
Cooling type HVAC windowAirCondioner
Other facilities Light, Water heater

Table 2: Building materials used for the simulation.

Structures Material’s name Thickness(m)|Conductivity (W/mK)
1IN Stucco 0.0253 0.6918
Wall 8IN Concrete HW 0.2033 1.7296
Wall Insulation 0.0679 0.0432
Ground |MAT-CC05 8 HW CONCRETE 0.2032 1.311
Roof Membrane 0.0095 0.16
Roof Roof Insulation 0.1673 0.049
Metal Decking 0.0015 45.006
Windows Theoretical Glass [117] 0.003 0.0185
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Figure 1: Dry bulb temperature in the first day of each month.

We supposed that there was only one floor and one room in this building.
Because it was in heating season, the energy consumed by this building mainly
comes from three sources which are the district heating used to keep the inside
space warm, the electricity lights used mostly in working days, and the hot water
for office use. For the walls in each orientation, there are several construction
layers for thermal reasons. That explains why there are three materials for the
walls as indicated in Table 2. The same occur for the roof. Besides these pa-
rameters, we used hourly recorded weather data in Paris-Orly along with other
important input parameters. The weather data includes dry bulb air tempera-
ture, relative humidity, global horizontal radiation and ground temperature. To
have a glance of these data, the dry bulb air temperatures of the first 20 days
in January and July are plotted in Figure 1, with the relative humidity in the
same days plotted in Figure 2.

In this simulation, the output was hourly damped. There were several output
files in EnergyPlus, where we extracted useful data, mainly from the eso file. As
the analyzing step required, we have to reformat this data into the form required
by the analyzing tools. We take district heating demand or total electricity
consumption as the target. Meanwhile, we take 25 variables as the features for
a single building, which are day type indications if the current day is holiday or
not, weather conditions, zone mean air temperatures, infiltration volume, heat
gain through each window, heat gain through lights and people, zone internal
total heat gain.

In order to generate the data for multiple buildings, we developed an inter-
face to automatically control the simulation process since there was no available
user interface for EnergyPlus for this purpose. In our approach, the input file
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Figure 2: Relative humidity in the first day of each month.

was divided into two parts. The first part is called the alterable part, containing
the parameters which would be different for each building. The values of these
parameters were obtained by stochastic methods. The second part is called
stable part where the parameters are always the same for each building. Af-
ter updating the alterable part for a new building, we combined this part with
the stable part to create the final input file. To analyze multiple buildings, we
have to put all the generated output data of each building into a single output
file, which is named as output.txt. Then, the program constantly updates
the alterable part to create the data for the next building. The above steps of
generating the multiple buildings are shown in Figure 3.

5 EXPERIMENTS AND RESULTS

In supervised learning theory, the experiments can be roughly divided into two
steps, training and predicting. Accordingly, the data is divided into two parts,
one is for training, called a training set, and the other is for predicting, called a
testing set. A decision model is obtained in the training step on the training set
to indicate the dependence of the target on the features. In the predicting step,
the trained model is applied on the testing set to predict the target values with
regard to new features. By comparing the predicted target with the measured
one, it is possible to evaluate the prediction performance of the model.

Before training the data by SVR, we need to scale the values linearly into a
small range in order to avoid numerical problems in the training. Here we chose
the range [0, 1]. Likewise, the testing values should also be scaled with the same
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Figure 3: Flow chart of generating energy consumption data of multiple build-
ings.

Simulate next

scaling function. Therefore, it is possible for the scaled test values to be in a
different range from that of the training values.

To choose the optimal values for the SVM parameters is really crucial in
practice. The best parameters should have the ability to well predict on un-
known data without the over-fitting problem. In our experiments, we selected
SVR with RBF kernel to train our model. The parameters needed were C,
v, €. The estimation of v was solved by v = Zig:l(HmZ - xsz) as proposed
in [20] and [15]. The SVR parameters C' and ¢ were solved by 5-fold cross val-
idation on randomly selected 3000 samples from the training set. The above
steps necessary for our experiments are shown in Figure 4.

Three experiments have been performed on different types of datasets. The
first one is to analyze energy consumption data for a single building in order
to test the prediction performance of SVMs method on building energy. The
second one is to analyze multiple buildings with detailed building structures
involved. The third one is to test the performance of parallel SVMs on a large
dataset from multiple buildings. The first and the second experiments were
done in Libsvm [21] which is a widely used sequential implementation of SVMs.
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The third one was performed in the parallel implementation tool — Pisvm. The
experimental environment is a cluster composed by two homogeneous worksta-
tions linked with Gigabit Ethernet. Each PC has 8 x 2.5GHz CPU, 1333MHz
FSB and 4G memory. The operating system is Linux (kernel version 2.6).

In the first experiment, the district heating consumption data was gathered
hourly from November 1st to March 31st. There were 3624 samples with 24
features in the final dataset. We took the samples of the last two days as testing
set, and the rest of them for training use. The number of training samples was
3576 and the number of testing samples was 48. The parameters were set as
C =16, v = 0.7533 and € = 0.01. The result of the learning and predicting
processes showed that the number of support vectors (SVs) was 2229, MSE was
2.3e—3 and SCC was 0.927918. The measured and predicted targets are plotted
in Figure 5 which shows very good prediction performance of the model.

Another important energy type consumed by buildings is electricity. We
also trained a similar model to predict the electricity consumption through one
year. To be different from the first experiment, this time we randomly selected
48 samples as testing set for the evaluation of the model. The features were
the same as in the first experiment. The number of training samples was 8712.
The parameters were set as C' = 16, v = 0.3043 and € = 0.01. The result
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Figure 5: Measured and predicted district heating demand in heating season in
the first experiment.

showed that, there were 2126 support vectors, MSE was 5.27e¢ — 4, and SCC
was 0.959905. The measured and predicted values are plotted in Figure 6. The
model performs very well in this situation, except in the hours 18 and 28.

The above two learning processes are based on a single building energy con-
sumption data. The evaluation of the model is to predict the unknown future
in the same building. In practice, it is quite useful to predict how much energy
would be used in a completely new building. Therefore, in the second exper-
iment, we tried to learn a model based on the energy data according to the
building structures involved. That is to say, we trained a model from the con-
sumption behaviors of several buildings, then applied the model to predict the
behavior of a different building. In this experiment, one hundred buildings were
simulated in the heating season. They were in the same weather conditions but
have different properties, such as different orientations, volumes, people densi-
ties and fenestration. We chose the data of the first 99 buildings as the training
set and data of the last building as the testing set. The number of features
was 28. The number of training samples was 358776, and the number of testing
samples was 3624. The parameters were set as C' =4, v = 0.3179 and € = 0.01.
In the training step, the number of SVs was 27501, while in the predicting step,
MSE was 5.0le — 5 and SCC was 0.997639. The predicted and measured values
on the first 100 samples in test dataset are plotted in Figure 7. The experimen-
tal results prove that SVR has a very good prediction performance in building
energy consumption when building diversity is taken into account. It gives us
the possibility to predict the energy performance of a building for designing as
well as for retrofitting.
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Figure 6: Measured and predicted electricity consumption through one year in
the first experiment.

To increase the accuracy of the prediction, we have to collect energy con-
sumption data as much as possible. But the problem is that the analyzing time
increases quite fast while the data size is growing. In the second experiment, the
most time-consuming process is the training step which needs 31.4 hours in our
experimental environment. It becomes really long for analyzing 100 buildings.
It is obvious that the time would go even longer if we calculate more build-
ings. To make the model more practical, it is necessary to reduce the learning
time. As explained in Section 4, we turn to a parallel approach of SVMs in the
next experiment. To test the speedup of this parallel solution, we did a set of
experiments on 1, 2, 4, 6, 8 processors with the cache set as 256 MB for each
process. Each experiment was repeated three times and the average training
time and speedup were calculated as shown in Figure 8. From the plotting,
we can see that the speedups in 2 and 4 processors is close to linear speedup.
But the performance enhancement is not obvious in 6 and 8 processors. One
reason is that, in our testing environment with SMP structure inside the node,
the distributed cache approach could not achieve its effect when the number of
processes is big. Another reason is the low speed network connection between
two nodes. However, from the varying trend in 2 and 4 processors, a better
speedup can be expected on servers connected by higher speed devices such as
infiniBand. The prediction performances, MSE and SCC, keep stable in each ex-
periment. The number of SVs, MSE and SCC are compared with the sequential
implementation as shown in Table 3.

Table 3 indicates that the result of parallel implementation is quite close to
the sequential one, which means that the prediction performance of the parallel
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Figure 8: (a) Running time of the training process in parallel implementation
of SVMs. (b) The speedup in comparison with linear speedup.

solution on large datasets is quite close to the sequential implementation on
smaller datasets. The parallel solution can be applied to predict the building
energy performances in more complex situations.

6 CONCLUSION

In this paper, a parallel implementation of support vector machines (SVM)
method is applied for the first time to the prediction of energy consumption
in multiple buildings based on large time series datasets. SVM has showed
good performance in the prediction of building energy performance for some
related work [16-18]. Since building energy problems are quite complex, we
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Table 3: Comparison of parallel and sequential implementations.

Implementations SVs MSE SCC
Sequential 27501 | 5.01097e-05 | 0.997639
Parallel 27382 | 5.08532e-05 | 0.997571

have to obtain historical data as much as possible for making our prediction
more accurate. Consequently, the learning process of SVM would become very
slow as the size of data increases.

This work introduced an approach of collecting abundant energy consump-
tion data of multiple buildings by simulation. The prediction of energy perfor-
mance in a completely new building was performed. A parallel approach of SVM
is applied on those data to accelerate the training process. SVR with carefully
chosen parameters showed a good performance in these experiments. Parallel
SVM has a strong potential for analyzing extremely large energy data which
would contribute to the accuracy of prediction in more complex situations in
practice.

However, the evaluation of our work based on simulated buildings is not good
enough. The better way is to record the real energy consumption data in various
types of buildings. In addition, the speedup is not as good as linear one. To
improve it, there are at least two possibilities, one is to take more consideration
on selecting the features, the other is to improve the parallel solution of SVMs.
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