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Abstract

This paper deals with the joint estimation of the pair dynamical carrier phase/Doppler shift and the time-delay, in
a digital receiver. We consider a Binary Offset Carrier shaping function as used in satellite positioning, which is
a time-limited pulse with a large excess bandwidth, and a Data Aided synchronization scenario, where we have a
constant time-delay and a Brownian phase evolution with a linear drift. The proposed study is relative to the use
of an oversampled signal model after matched filtering, leading to a colored reception noise and a non-stationary
power signal. The contribution of this paper is twofold. First, we derive the Hybrid Cramér-Rao Bound for the
joint phase/Doppler estimation problem. Then, we propose a method for the joint time-delay/carrier synchronization,
which couples an Extended Kalman Filter and an Expectation-Maximization type algorithm. Our numerical results
show the potential gain of using the oversampled signal for carrier synchronization, obtaining better performances
than using a classical synchronizer, and good time-delay estimation.

Key words: Carrier synchronization, time-delay synchronization, hybrid Cramér-Rao bound, nonlinear filtering,

extended Kalman filter, expectation-maximization, oversampling, GNSS, BOC

1. Introduction

Synchronization is a fundamental part of global navi-
gation satellite systems (GNSS). In the synchronization
step, we estimate some parameters, such as carrier fre-
quency, carrier phase and time-delay, between each visi-
ble satellite and the receiver to estimate the correspond-
ing pseudorange. The synchronizer is coupled with a
triangulation algorithm to obtain the receiver’s position.
In this paper, we focus our attention on the joint carrier
phase/frequency offset and time-delay estimation prob-
lem in a GNSS-type receiver [2], where we consider a
Binary Offset Carrier (BOC) shaping function (as used
in new civil GNSS Galileo and the modernized GPS) [3]
within a Data-Aided (DA) synchronization scenario.

Many estimation methods for joint carrier and time-
delay synchronization have been proposed over the past
decades. The time-delay, phase and frequency offset
estimation problem is usually solved using Maximum
Likelihood (ML) methods.

*Part of this work was presented in conference [1].
Email address: jordi.vila-valls@upc.edu (Jordi
Vila-Valls)
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Historically, the delay and the frequency shift were
assumed to be deterministic. In this context, assuming
a known transmitted sequence, the optimal way to es-
timate these two parameters is to search for the maxi-
mum of the ambiguity function (delay/Doppler correla-
tion method) [4, 5].

For time varying parameters, the previous method is
still useful to provide an initialization to some track-
ing procedure and the synchronization is then per-
formed as a two-step procedure: coarse and fine es-
timation, referring to acquisition and tracking, respec-
tively. The acquisition system provides a first estimate
of the time-delay and the Doppler shift and the tracking
stage performs a local search for a fine estimation [6].
The tracking is usually based on Phase Locked Loops
(PLL)/Delay Locked Loops (DLL) architectures [7, 8].
These methods perform correctly with slowly varying
phase errors.

For carrier synchronization, an alternative to the clas-
sical synchronization methods [8, 9] is to reformulate
the problem with a dynamic state-space model and to
apply Bayesian estimation methods. Several contribu-
tions show the use of Kalman-type solutions [10] for
carrier synchronization [11, 12, 13, 14]. For the joint
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time-delay and carrier estimation, a solution to solve
the ML problem within the state-space formulation is
to use a recursive Expectation-Maximization (EM) type
algorithm [15]. Recently this approach has been ap-
plied to several problems such as channel estimation
in OFDM systems [16, 17], speech recognition [18]
and several parameter estimation and learning problems
[19, 20, 21].

When having an estimation problem, we need lower
bounds on the estimation performance to be used as
a benchmark. The family of Cramér-Rao Bounds
(CRBs) has been shown to give accurate estimation
lower bounds in many scenarios [22]. For time-varying
parameter estimation, an analytical expression of a gen-
eral on-line recursive Bayesian CRB (BCRB) is given
by Tichavsky er al. [23] and the general formulation for
the Hybrid CRB (HCRB), which applies when having
both random and deterministic parameters, is derived by
Bay et al. [24].

In the literature, most of the lower bounds and the
corresponding algorithms assume a white observation
noise and a stationary signal.

This contribution, extends and completes the work
presented in [25]. We assume a time-varying phase off-
set modeled as a Brownian motion with a Doppler shift
[26] and a constant time-delay over the observation win-
dow. We consider an oversampled (regarding the sym-
bol time interval) signal model after receiver matched
filtering. This implies dealing with a colored reception
noise and taking into account the non-stationarity of the
digital signal power (cyclostationarity when transmit-
ting a random sequence).

Although this scenario is standard in satellite radio-
localization based on a Binary Offset Carrier (BOC)
time-limited shaping pulse modulation, there is no the-
oretical study concerning the performance of the over-
sampled dynamical phase and frequency offset estima-
tion, and joint time-delay and carrier estimation. In
[25], we presented the derivation of a Bayesian CRB for
the dynamical phase offset and the EKF that approaches
this bound, both presented in a scenario similar to the
one treated in this paper.

First, we derive a closed-form expression of the on-
line HCRB for the dynamical phase and frequency off-
set estimation in the Data Aided (DA) scenario, as-
suming a Brownian phase evolution with a linear drift
(Doppler shift). Secondly, we investigate the use of an
EKF based algorithm which can approach this bound
(more sophisticated methods such as particle filters or
sigma-point Kalman filters are not necessary in this con-
text [25]). We have thus to jointly estimate the col-
ored noise, the dynamical phase and the frequency off-

set. And finally, we propose an iterative block method
to jointly estimate the carrier phase and the time-delay,
coupling an EKF-based algorithm and an EM-type so-
lution.

The study allows to measure the potential gain for
carrier synchronization provided by the use of the
fractionally-spaced processing after matched filtering,
instead of the symbol time-spaced signal and the good
performance obtained with the complete solution.

This paper is organized as follows. Section II sets
the signal model. Section III, sets the estimation prob-
lem. Section IV, first recalls the HCRB expressions
and derives the HCRB for this estimation problem, and
then presents the EKF and derives the expressions of
the filter in the oversampled phase and frequency offset
estimation scenario. Section V presents the proposed
method for joint time-delay and carrier synchroniza-
tion. Finally, in section VI, the numerical results are
presented and interpreted. The conclusion is given in
Section VII.

Notations: the (k, )" entry of a matrix A is denoted
[Ali;. E. denotes the expectation over x. Vg and Ag

represent the first and second-order partial derivatives

operator Le., Vg = [0%1 e %]T and Ag = Vl/,Vg.

2. Signal Model

We propose the signal model for the transmission of a
known sequence {a,,},,c7 over an Additive White Gaus-
sian Noise (AWGN) channel affected by a dynamical
carrier phase offset 6(¢) (including the Doppler shift) and
a time-delay 7(¢). For an exhaustive derivation see [25].

2.1. Oversampled Signal Model

2.1.1. Discrete-time general formulation
The received complex baseband signal after matched
filtering is

YO = |Te Y anplt = mTe = 7(1)e™ +n(t) | + p*(-1),

ey
where T,, p(t) and n(t) stands for the symbol period,
shaping pulse and circular complex Gaussian noise with
a known two-sided power spectral density (psd) Ny.

We assume a shaping pulse p(f) with support in
[0,T.], a constant time-delay within the observation
window 7(f) = 7 and a slowly varying phase evolution
during a period T, which is a usual assumption in satel-
lite communications because the phase variation (due to
oscillators phase noise, Doppler shifts, ...) within one



symbol period is small. In this case, the received signal
can be written as [25]

Y0y = ang(t=mT =)™ +b(n), ()

m

where b(¢) stands for the filtered colored noise, and
g(®) = p(t) = p*(—1). If we consider a full digital syn-
chronization architecture where the received signal is
fractionally-spaced at fixed instants #;, = k%, where S
is an integer oversampling factor, we can write the re-
ceived oversampled signal as

i = Ar(@)e™ + by, 3)
where k refers to f; instants, so y, = y(#), 6 = 6(t;) and
by = b(t), and

A@) = ) ang (kg -T- mT) : )

m

Note that the noise b,’( is colored with variance o-ﬁ,

where 02 = Ny X @ is the variance of the AWGN n(t)
measured in the noise equivalent bandwidth of the re-
ceiver filter p*(—f). We can define the symbol index
q = L%J, or equivalently, k = ¢S + s with s the sub-
symbol index (i.e. the position inside the symbol inter-
val)and s = 0,--- ,S — 1. {Ax(7)};ez 1s @ non-stationary
power sequence for S > 1, even if {a,,},,c7 1S a station-
ary power symbol sequence (a2, = 1).

2.1.2. Discrete-time re-formulation for the noise

The g-spaced sequence of noise, {b,’(}ke , is defined
in the previous section from an analog noise n(f). Our
motivation now is to replace this time series by another
{br}rez With the same statistical properties, but which
can be obtained entirely by a discrete-time formulation.
This will be useful for the final state-space model for-
mulation. As we did in [25], we can write that the noise
samples b; have the same statistical properties than sam-
ples by, which are obtained by a g—spaced filtering of the
time series ny:

s-1
by = annk—j—la &)
=0

where I1; are the coefficients of the filter which depend
on the shaping pulse p(?).

2.2. Parameter Evolution Model

We consider a constant time-delay 7 in the observa-
tion window. Concerning the carrier phase, in practice,

we have a frequency shift between transmitter’s and re-
ceiver’s carrier oscillator and a Doppler shift due to the
relative motion between the satellite and the receiver,
so the phase offset is linear with time. We also must
consider jitters introduced by oscillators imperfections
which can be modeled as a random phase. To take it
into account we suppose a Brownian phase offset evolu-
tion with a linear drift [26]:

O = Op—1 + 0 +wy, (6)
O = Ok1, (7

where k > 2, wy is an i.i.d. zero-mean Gaussian noise
sequences with known variance (;—2 and ¢y is the un-
known constant drift. Here o2 stands for the variance
growth of the phase noise in one symbol interval. We
note that the variance of the Gaussian noise is directly
related with the rapidity of evolution of the parameter.
We note X the N X N covariance matrix of the phase

offset evolution, 8 = [6; - - - Oy]".

2.3. State-Space Model

When using an optimal filtering approach a state-
space model formulation is needed. As we want to take
into account that the observation noise on the output of
the matched filter can be colored, we must include it
into the state evolution

The state to be considered includes the phase offset,
the drift and the colored noise:

T
xkz[é'k O b v Vk—S+1] , (B

T . .-
where [ Vi Viel Vi—S +1 ] is a sliding vector
over an i.i.d noise sequence 7.
We define the state evolution matrix as

1 1 0 O . 0
01 0 O . 0
0 0 0 I Il
00 0 O o - 0
Mg=| O
. . . 1
0 0 0 0 1 0

and the state noise as Wi =

T
[wk 0 0 nmp O --- 0] From this we
have that the state evolution and the observation
equation of the state-space model are

Xp = Mgxi + wg, (10)
Ai(t) exp (i6r) + by. (11)

Yk



We note that the state equation is linear and the obser-
vation equation depends non-linearly on the state. With
this formulation we have no observation noise because
we have included it in the state.

3. Estimation problem

In this section, we state the estimation problem and
we introduce the proposed solution that we will develop
in the following sections.

In general, the objective is to jointly estimate the con-
stant time-delay 7 and the states (including the carrier
phase 6, which has a dynamical evolution, and the con-
stant linear drift 4, which is hidden in the phase evolu-
tion) using the received signal y. We use the state-space
model proposed in section 2 (eqs. (10,11)) and we con-
sider that the transmitted symbol sequence is known at
the receiver (DA synchronization scenario).

In a positioning context, we are interested in the time-
delay 7 to obtain the pseudorange estimation between
each visible satellite and the receiver. In this case, we
have to estimate the carrier phase and Doppler shift to
obtain a correct estimation of the time-delay. If the re-
ceived signal is not perturbed by a carrier phase error
and a Doppler shift, the time-delay estimation problem
can be solved with a simple correlation method. So
what complicates the problem is the presence of these
parameters.

If 7 is known, the states can be inferred using a
Kalman filter. Due to the presence of unobserved data
(carrier phase and Doppler shift), the ML method to
obtain a time-delay estimate can’t be used because the
computation of the likelihood function in a closed-form
and its maximization w.r.t T seems to be an intractable
problem. To solve this problem we have to resort to
iterative methods and the natural solution is to use an
EM-type solution.

In the following, we first propose a method for phase
and frequency shift estimation considering a known de-
lay, and then we use this solution to propose a method
for the joint carrier and time-delay estimation.

4. Carrier phase and frequency shift estimation

We consider in this section that we have a good time-
delay synchronization (known time-delay), and we fo-
cus our attention on the joint carrier phase and fre-
quency shift estimation. First, we compute the HCRB
to be used as a benchmark on the estimation error, and
then we propose a solution based on a Kalman-type al-
gorithm.

4.1. Hybrid Cramér-Rao Bound

When dealing with an estimation problem we aim to
know the ultimate accuracy that can be achieved by the
estimator. The Cramér-Rao Bounds (CRB) provide a
lower bound on the Mean Square Error (MSE) achiev-
able by any unbiased estimator. Depending on the na-
ture of the parameters to be estimated we use different
bounds of the CRB family. If the vector of parameters
is assumed to be deterministic we use the standard CRB
and if the vector of parameters is random and an a priori
information is available we use the so-called Bayesian
CRB [27]. When dealing with both random and de-
terministic parameters an Hybrid CRB (HCRB) is used
[24]. The CRB suited to our problem is the HCRB as
we want to estimate the phase offset evolution vector 6
which is a random vector with an a priori probability
density function (pdf) p(6) and the linear drift 6 which
is a deterministic parameter.

In the on-line synchronization mode, at time k the re-
ceiver updates the observation vector y = [y; - y_117
including the new observation y; to obtain the updated
vector y = [y;---y]” in order to estimate 6. In this
section we recall the expression of the Hybrid CRB and
we present the closed-form expression of the HCRB for
an oversampled dynamical phase and frequency offset
estimation problem in a Data Aided scenario.

4.1.1. HCRB: background

We have a set of measurements y and we want to
estimate an N-dimensional vector of parameters g =
(p,Tyg)T. We consider the case where the random (u,)
and the deterministic (u,) parts of the vector of param-
eters can be statistically dependent. We note u; the true
value of p,;. The joint probability density of the pair
(¥, ) is pyu(y,p) and the a priori pdf of the random
part of u is p(u, | ;) # p(u,). If i(y) is our estimate
of u, the HCRB satisfies the following inequality on the
MSE:

Ey e, {[2y) - pllay) — ) | ) = B, (12)

where H(y)) is the so-called Hybrid Information Matrix
(HIM) defined as [24]

H() = Eygu s, |~y log p(y, 1, L) 1 5] (13)

Expanding the log-likelihood the HIM can be rewritten
as

Hy,)) = Epu, [F(ﬂr»ﬂ:z)]
+Eg ur, [~y log pl, | ) | 5]



where F(u,, i) is the Fisher Information Matrix (FIM)
defined as

Flt,, 1)) = Eypa gu [~y 10 p(y Lty ) | 15] . (14)

We can see that H(u)) = HP(u}) + H" (i), where the
first term represents the average information about u
brought by the observations y and the second term rep-
resents the information available from the prior knowl-
edge on u, i.e., p(u, |pg).

The N x N HCRB matrix can be written as

HCRB = (HGs)| ' = (B + B @) . (1)

where the k”* element of the diagonal, [HCRB]; rep-
resents the lower bound on the estimation of [u]; from
the observations block 'y = [y - - - yn].

4.1.2. HCRB: application to dynamical phase and fre-
quency offset estimation

In this paragraph, a closed-form expression for the
HCRB for an on-line fractionally-spaced phase-offset
and linear drift estimation problem is presented. On the
following we drop the dependence of the different ma-
trices on p; = 6" for easier notation. As we consider a
constant drift, for the derivation of the HCRB, we note
Ok = 0.

We use the model presented in section 2 (egs.

(6),(11)):

O
Yk

Or_1 + 0+ wy,
Ak(T) exp (lgk) + bk,

where, as stated before, b; is a non-white noise with
covariance matrix I'. The index k refers to #; instants
and Ay (7) are the coefficients specified in eq. (4) with
7 = 1, so we can write that A, (1) = A;.

Comparing this state-space model to the general
model presented on the last paragraph, and supposing
that we have N available measurements, we identify
i, =0 =1[6;---0y]" and p, = 6. From this the HIM
can be rewritten into a (N + 1) X (N + 1) block matrix as
(24]

Hi;p hp
H-= s 16
( hy,  Hxp ) (16)

where
Hi = Eyg,|-0flogpy10.0)10]
+Egy. [—Az log p(@ | 5*)] :
hiy = b} =E g, [-Aflogp(y 6.6)] 6
+Egs. |-A% log p(8 167,
Hy = E,g, |-Alogp(y|6.6) 6]

+Egs. [-A5log p(@16")].

So to compute the HIM we need the likelihood function
and the a priori pdf. From the model we can write the
log-likelihood as

log p(y | 6,6") = log miy — [y —m]”" T [y -m] ,
a7

where y is the N-dimensional received signal array and
m is the mean vector of y, where the kh component is

[m];, = Ave™. The a priori pdf is
logp(816) = logp(@) + (N - 1)log ()
Y
B ezkglz )
(18)
e Expression of Hj;: we can write that
H, =H} +H},, (19)

where

HY, = E g, [—AZ log p(y [ 6,96) | 5*],

H}, = Eg. [-A§ 1020157

The first term can be computed from eq.(17). We
note A(6) = log p(y | 6,0). The first derivative of
A(6) with respect to the I phase parameter is

0 .
PR = {-ly-m)T"'[y - m]|

= {B=T ' [y - m] + [y - m)"T" 2}

=2R {06“0}71‘*1[y - m]}.

(20)
If we compute now the derivative with respect to
the k" phase parameter we have that

6*m’ omf__ om
R I'y-m]- —1Ir'—1}.
{c%?kc%h ly = m] 06, 06, }
(21

NG _
00,00, B




The (k, )™ element of the matrix H?, is

— A6
[HlDl Y EO\&* {Ey|0,5* {_ 96,00, }}

Egy (2R (5T 52}

‘We note that

o H .
0m . 0, T
(9_9k=|:07‘..’0’lAke 7Oa'..70:| > (23)

with the non-null values on the /* and k" position
respectively, and so the coefficients can be written
as

[Hﬂ]k,, = Eg;s {2%{A;‘Ak-[I“l]k’lej(gk—ﬂz)}}

% —1 (0, —
2R {a;ac-[071], Egy )}
‘We can write that

Eg { et(ek—en} = Eg {ei<uz;0>}

24
=¢(wy), @9

wherew}, = [0,---,0,(+1),0,---,0,(-1),0,---,0],
+1 in the k”* position and —1 in the I"* position of
the array, ¢(-) is the characteristic function of a
Gaussian random variable 6:

¢ (u) = exp {—%UZIZ_I ukl}

= exp {_% ([Eil]k,k * [271]1,1 =2 [Zil]k,l)}’

(25)
with X the covariance matrix of the phase evolution
6. Finally

|1, o= 2R {A;‘Ak [r—l]k’l e‘Y}, (26)

where

W= {—% ([E’l]k’k [z, -2 [z‘]k’[)}. 7)

We note that the elements [Z_l ]k , are proportional

to S /02, so for small values of o2 (02 < 0.1) we
have that e¥ ~ 0 except when k = [ where e? = 1.
As an example representing the worst of the cases,
when we set S = 1,02 = 0.1,k = l and [ = N,
e’ =454.107.

As we assume that the phase variation is small over
the symbol interval (hypothesis done in section 2),
we can consider that H? is a diagonal matrix with

[HR ], =214 1] (28)

kk
On the following we compute the second term of
eq. (19). From the state evolution eq. (6) and as-
suming that the initial phase 6; does not depend on
0, we have that

p@16") = pODILL, plc | 6-1,6"),  (29)

and due to this expansion we can rewrite the ex-
pression as

N
AY I p(6.5%) = Af n p@r) + kZ‘ AY I p(Oi | 61-1.6%).
. (30)

The first term in (eq.30) is a matrix with only one
non-zero element, namely, the entry (1,1) which is
equal to

_0%In p(6))

= (3D
11 96?

|48 10 pion)

The other terms are matrices with only four non-
zero elements, namely, the entries (k — 1,k — 1),
(k—1,k), (k,k—1) and (k, k). Due to the Gaussian
nature of the noise, one finds

) _s

[Az In p(9k|9k_1,6)] = = 3
Kk o
’ S

[Ag m p@tac80] = = @y
kk—1 g

w

The values for (k — 1,k — 1) and (k — 1, k) are, re-
spectively, the same that for (k,k) and (k — 1, k).

Assuming that Ey, [Az In p(el)] = 0 that corre-

sponds to the case of non-informative prior about
6,, we obtain that

H}, = Eg. |0 log p®1 57|

1 -1 0 0
-1 2 -1 . (34)

=25 0 0

-1 2 -1

0 0 -1 1



e Expression of hy,: the log-likelihood (eq.17) does
not depend on ¢ so the first term of hy, is null, so

hiy = Egy,. [-Af log p@1 5%

From the state model we have that

S s
hpj, = [0'_% Opv—2 — 0'_%] .

e Expression of Hj,: as the log-likelihood does not
depend on § and using eq.(18) we have that

H22 = E0|5* _Ag lOg P(0 | 6*)
2
= Egs |2 logp@|6°)
S(N—l).

a2

Remarks: as we analyze the estimation problem in a
DA scenario the bound depends on the transmitted se-
quence a. In this paper, we suppose the transmission
of a known sequence to analyze the performance of the
proposed algorithm and the bound. We note that the
HCRB is computed for a specific known sequence. The
bound depends on the sequence, the oversampling fac-
tor S and the position s inside the symbol interval of the
current transmitted symbol (index M):

@), 9
[H' )] (36)
withN=(M-1)*S +1+s.

HCRBy(a,S,s) =

HCRBs(a,S,s) = N+1N+1°

4.2. Extended Kalman Filter for carrier phase and fre-
quency shift estimation
In the sequel, we recall the notation and the basics
of the Kalman filter and we derive the EKF [28] for the
oversampled carrier phase and frequency offset estima-
tion.

4.2.1. Kalman background
We consider that we have a system described by the
following state-space equations pair

Xer1 = fi (%) + Wy,
37
Vi & (Xi) + Vi, (37

where x; is the state vector, w; is a zero-mean white

noise with covariance matrix Q, y, is the observation
vector at time k which is a partial and noisy observation
of the state x; and vy is the observation noise with co-
variance matrix R;. Noises w; and v; are supposed to
be uncorrelated. The functions f; (-) and g (-) can be
non-linear in a general case.

We note Xy, the estimation of x; from the observa-
tions up to time m, Xy, = X — Xgpm, the estimation error
and Py, = E (§k|m§,zlm), the covariance matrix of the es-
timation error. For Gaussian, linear state models, the
KF gives the best Mean Square Error (MSE) estimation
of the state x; from observations up to time k. For non
linear problems, the EKF gives a sub-optimal estimator
Xy in a recursive way: the main idea is to linearize the
state-space equations at each iteration in order to trans-
form the filtering problem into a usual Kalman one.

4.2.2. EKF: the algorithm

To derive the EKF, we need to compute 9 f; (Xx) /0%
and 0gy (X) /0%

In the state-space model for oversampled phase es-
timation presented in Section II (eqs. (10),(11)), the
state equation is linear, hence dfj (X) /0x; = Mg. The
state noise covariance Q is independent from k and
has only two non-zero elements : [Q];; = O'%V/S and
[Qls3 = o2. Because we introduced the colored noise
by into the state, there is no observation noise and the
covariance matrix R is null. The observation equation
is non-linear versus the state, we have to apply a lin-
earization:

gk Xigk-1) i 7 T
g:a—xk=[ i@ 0 1 0 o 0]
(38)

Finally, the EKF expressions for the oversampled algo-
rithm are:

Py = MgPpoiMY +Q

X1 = MgXioip-1

K; = Pyigh {nglk— gt }_l

Py = [I-Kig] Py

Xk = X1 + K [yk — Ag(r)eln _Zk\k—l]

(39)
where I is the identity matrix with appropriate dimen-
sion.

5. Joint time-delay and carrier synchronization
method

In this section, we propose an iterative block method
for joint time-delay and carrier synchronization. The
method is inspired by the EM algorithm [15], which is
an iterative method to find the ML estimate of given de-
sired parameter in the presence of unobserved data or



nuisance parameters. The idea behind the algorithm is
to augment the observed data with latent data, which
can be either missing data or parameter values.

Our method is then based on an iterative optimization
of a cost function to find the time-delay (desired param-
eter in the EM formulation), coupled with the Kalman-
type solution proposed in section 4 for the estimation of
the carrier phase and the Doppler shift (nuisance param-
eters in the EM solution).

5.1. The proposed method

The main goal is to write a function that only de-
pends on the time-delay, £(7), that we will optimize
iteratively. The starting point is the joint pdf,

p(y,0;7) = p(yl6; 1)p(6; 7), (40)

From the state-space model, the a priori density p () is

N
p©®) = p@) [ | o), (41)
k=2

where p(6i|0x-1) are Gaussian densities with mean 6;_;
and variance o-fv, SO we can write

|V ;&
exp ] — (O — 61 }
\/EO'W) { 2075, kZ:;
(42)

p(0)=(

In a DA context, the likelihood function w.r.t T is

p(yla,8;7) = N (y;m(0,7),I),

where m(6,7) is the mean vector with [m(0,7)], =

Ap(t)e’® and T is the covariance matrix of the obser-
vation noise. The product of these densities is

1 \V! 1
[ 0) = 43
PP 6) ( «/ﬂaw) A det(D)] @3
1 N
X exp {— [y -m@.0]" T [y -m®.7)] - 2 ; = akl)z} ,

and so
In p(y,6:7) = C(03.T) = [y -m@®, )] T [y - m(6,7)]

N
1
-5 ), O (44)
2072, ;
We assume that at the j”’ iteration of the method, the

time-delay estimated at the previous step U1, is avail-
able. As we want to obtain a function that only depends
on 7, and optimize it with respect to this parameter, all
the terms in the log-density that do not depend on the
time-delay can be omitted. So we consider the function

F@O.1) = -[y-m@0] T [y-m@®,7)
= —yIly+yir'me, 1
+m(0, )Ty - m(6, 7T 'm(9, 7). (45)

At the j™ iteration, we obtain a function that only
depends on the time-delay 7 by taking the (conditional)
expectation of ¥ (6, 1) with respect to the carrier phase

0 (given the knowledge of y, a, 2U1),

L0 = By, [F0,7)]
= Ty +y' T "By, 20-n [m(8,7)]
+Egy az0-n [m@, 0| Ty
~Egy az0-0 [m@, 0 T"'m(0,7)], (46)

where the terms Egyy.a,:0-v [m(0, 7)] and
Egyazo-n [m(@,)T~'m(8,7)| only depend on the
carrier phase. If we consider that we have an estimate
of these two terms, we can estimate the time-delay
at the current iteration from the previous time-delay
estimate #U~1, by maximizing the cost function £V (1)
WIt T

#) = arg max L), (47

The method iterates the optimization until the conver-
gence of the sequence (..., 7, 0D ),

Using the characteristic function of a Gaussian den-
sity, we can write that

, P
[Egy a0 M@, 01|, = AlDEgy o -0 [%] = Ax)ee >
where the estimate of the mean and the variance
0'5 ¥ can be obtained from a Kalman-type solution as
'k
presented in Section 4. The remaining term can be writ-

ten as

=)
0/(

1 1
Egy.a.16- [—zm(a, o"m@, r)] = = 3 AP
O-I'l O—}’l k

So the cost function to be maximized is

L9 = —{y"y - y"diagd@)t(6")
~t"(6V)diag(d(x))y + ) | |Ak(r>|2}
k

- “y - diag(d(‘r))t(aj))nz : (48)

2

where [d(1)]; = Ax(7) and [t@)]; = (ef?"k”e‘%% ) Fi-

nally, the proposed method is based on the following
optimization

2U) = arg max {TR (deiag(d(T))t(@U))) - Z |Ak(‘l')|2} .
T

(49)
The iterative block method is sketched in Algorithm 1
and a scheme is given in figure 1.
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Figure 1: Block scheme of the joint estimation method

Algorithm 1 Joint time-delay, carrier phase an Doppler

shift estimation method

Require: Block of N observations y,.,+y—1, process
and measurement noise statistics.

1: initialization

2: for i=1 to convergence of the algorithm do

3:  for j=pto p+N-1do

4: Estimation of 6; and ¢ using the Extended
Kalman filter in eq.(39).

5:  end for

6:  Time-delay estimation ¢ from eq.(49).

7: end for

To summarize: we have an iterative approximation of
the ML solution for the estimation of the time-delay
(block method) where we embed a Kalman-type solu-
tion to obtain the carrier phase and Doppler shift esti-
mates (operating sample-wise).

This method resembles a classic DA ML method for
the estimation of the time-delay after previous estima-
tion and compensation of the carrier phase and Doppler
shift. Indeed the cost function in (48) can be regarded
as kind of distance between the observations and the ex-
pected noiseless signal after a carrier phase correction.

The advantage of our method is that it works itera-
tively to estimate the carrier phase/Doppler shift and the
time-delay. Each operation can then be used to enhance
the estimation performance of the other one giving rise
to an iterative technique. Actually this intuitive idea is
the basis of all the turbo methods for joint parameters
estimation. The EM-type formulation used here is a way
to arrive to the iterative technique more rigorously [16].

5.2. Computational complexity

The purpose of this section is to determine the imple-
mentation complexity in terms of the number of mul-
tiplications needed for our algorithm. The iterative
method proposed is composed of two stages: carrier

BOC Shaping Pulse BOC autocorrelation

0.5

-05
-1

Figure 2: BOC shaping function I1(¢) and its autocorrelation g(z)

phase and Doppler shift estimation using an extended
Kalman filter and time-delay estimation with the maxi-
mization of a cost function.

Concerning the first stage, the complexity of the time
update step of the Kalman filter (state prediction and
covariance of the prediction error) is (2 + 2n3) and the
complexity of the measurement update step (Kalman
gain, state update and covariance of the measurement
update error) is (2n, + 5n2), where n, = dim(x;) is the
state dimension (n, = 4,5 and 7 for § = 1,2 and 4, re-
spectively, see eq.(8)). So the Kalman stage complexity
is O(Nni), where N is the block size. The computa-
tional complexity of the optimization stage (eq.(49)) is
(3N), therefore, the bottleneck of the algorithm is the
first stage and the overall computational complexity of
our algorithm is at each iteration of the EM algorithm
O(Nnr).

6. Computer Simulations

In this section we show the behavior of the proposed
method by considering different scenarios. To assess
the method’s performance we assume the transmission
over an AWGN channel of a M-sequence of length 511
bits generated using a Linear Feedback Shift Register
(LFSR) with characteristic polynomial [1021]g (octal
representation). We consider three oversampling factors
(S = 1,2 and 4) and a BOC shaping pulse (see figure 2).
We fix the drift to 6 = 0.2.

First we present the performance obtained with the
Extended Kalman Filter for joint carrier phase and fre-
quency shift estimation considering two scenarios:

e perfect time-delay synchronization,
e estimated time-delay.

In this case, we plot the Root Mean Square Error
(RMSE), obtained over 250 independent Monte Carlo
runs, versus the Signal to Noise Ratio (SNR). The SNR
corresponds to the Carrier to Noise Ratio (%) at the in-
put of the receiver. In our case, as shaping pulse and
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Figure 3: HCRB and RMSE obtained with the EKF, for the carrier
phase estimation, versus the phase noise variance for three different
oversampling factors S = 1,2 and 4, and a fixed low SNR = —20 dB.
We consider two scenarios: perfecte time-delay synchronization and
an error on the delay estimation T — 7 = 7,./8.

symbols a; are normalized (i.e o2 = 1;g(0) = 1) this
ratio is simply % = (r% The performances obtained
are compared with the HCRB. We compute the bound
and the RMSE for the T-spaced symbol reference points
for § = 1,2,4 (see [25] for the comparison of the es-
timation using 7-spaced symbol reference points and
T-spaced symbol mid-points and more scenarios). We
note that we compared our method with the standard
carrier synchronization Fitz’s method [9] but this com-
pletely fails in our scenarios, which is clear because this
method assumes a deterministic phase distortion.

In figure 3 we analyze the HCRB and the EKF be-
havior for a fixed SNR versus phase-noise variance. We
present a scenario with a really low SNR (as used in
satellite based positioning), SNR = —-20 dB. We can
see that using 1 point per symbol (S = 1) the perfor-
mances on the estimation are far from the theoretical
bound. This is because the CRB does not give a good
lower bound in the large error regions. In counterpart,
with § = 2 and S = 4 we can measure the gain given
by the oversampling and the good performances of the
algorithm. The gain obtained with the oversampling is
greater at small 2. We also plot on the same figure
the performances obtained with an error on the time-
delay estimation (T — 7 = T./8), We can see that the
performances are worse than those obtained with a per-
fect time-delay synchronization but still acceptable with
S=2and S =4.

Figure 4 superimposes, versus the SNR, the on-line
HCRB and the RMSE obtained with the EKF. We have
a phase with a moderate variation, o2, = 0.001 rad?.
We assume three different scenarios: a perfect time-
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Figure 4: HCRB and RMSE obtained with the EKF, for the carrier
phase estimation, versus the SNR for three different oversampling fac-
tors S = 1,2 and 4, and a fixed phase noise variance o-lzv =0.001. We
consider three scenarios: perfecte time-delay synchronization, an er-
ror on the delay estimation ¥ — 7 = T./8 and an error T — 7 = T, /4.

delay synchronization, an error on the delay estimation
of t — 17 = T,/8 and a greater error T — 7 = T./4. We
do not plot the case S = 4 because the results are the
same as for § = 2. Let us consider the perfect syn-
chronization case: for § = 1 the performance of the
EKF fits the HCRB except for really low SNR where
the performance is degraded (and the CRB is not a good
benchmark in large error regions). For § = 2 the EKF
performance is slightly looser than the bound. The gain
increases with the oversampling factor S’ and the interest
of oversampling becomes clear at low SNR, what is the
usual case in satellite based positioning. The gain due
to oversampling decreases as the SNR increases. The
performance gain between oversampling factors S de-
creases proportionally to the phase noise variance o2,
For the estimated (error) time-delay scenarios we note
that the performances obtained are a little bit worse than
with the perfect synchronization but are still acceptable.

Figure 5 superimposes versus the SNR, the RMSE
obtained with the EKF and the on-line HCRB for the
Doppler shift estimation. We consider a phase noise
variance o2, = 0.001, three oversampling factors S =
1,2,4 and a fixed block size N = 511 (we note that the
performance on the estimation of the drift depends on
the block size N because the parameter to be estimated
has a constant value). We note that the performances
increase when increasing S and the convergence to the
lower bound depends on the error on the time-delay esit-
mation and the oversampling factor. But in all the cases
we obtain a good estimation of the Doppler shift.

After the analysis of the carrier phase and Doppler
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Figure 5: HCRB and RMSE obtained with the EKF, for the estimation
of the Doppler shift, versus the SNR for three different oversampling
factors S = 1,2 and 4, and a fixed phase noise variance o-ﬁ, = 0.001.
We consider three scenarios: perfecte time-delay synchronization, an
error on the delay estimation ¥ — 7 = T./8 and an error T — 7 = T /4.

shift estimation we consider the joint time-delay and
carrier synchronization estimation problem (the main
concern of the paper).

The convergence and performance of the algorithm
mainly depend on the process and measurement noises
affecting the system and on the estimation of the carrier
phase provided by the first stage. We first consider the
joint estimation in a scenario with a SNR = 0 dB where
the algorithm almost always converges to the true value
(see the table at the end of the section). In figure 6(a),
we plot the function to be optimized £(7) for different
iterations of a single realization of the algorithm (with
a really fast varying phase offset with variance o2 =
0.1) and in figure 6(b) we show the convergence of the
algorithm for different carrier phase evolutions (02, =
0.001,0.01 and 0.1). In both cases the true time-delay is
T = T./8 and the algorithm is initialized at 7;,;, = 3T./8.

We note that the speed of convergence depends on
the phase and observation noises, and that stronger the
noises lower the speed of convergence. Indirectly we
can see that the good performance of the algorithm di-
rectly depends on the carrier estimation stage perfor-
mance. We also note that in this scenario (where the
measurement noise is not really strong) we obtain a
good time-delay estimation with few iteration, so the
performances obtained with the proposed method are
encouraging. But we have to analyze the behavior of
the algorithm for lower values of SNR (down to -20dB)
and the error associated on the estimation procedure.

On the following we plot the empirical probability
density function (e-pdf) of the error on the time-delay
estimation for different scenarios, which is computed
over 1000 independent Monte Carlo runs. As a refer-
ence we fit a Gaussian distribution to the same sam-
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Figure 6: SNR= 0dB, 7 = T./8 and 7;,;; = 3T./8. (a) Values of the
function to be optimized £(7) in different iterations for a fast varying
phase evolution, o2 = 0.1. (b) Convergence of the algorithm for three
phase noise variances: o2 =0.001, o-ﬁ, =0.01 and (rﬁ, =0.1.

w

ple data sets. In figure 7, we plot the e-pdf and the
fitted Gaussian distribution for a phase evolution with
02 = 0.001 and a SNR=-10 dB. In figure 8, we con-
sider the same scenario but with a really low SNR=-20
dB. In both cases we use a block size N = 511, the true
time-delay is T = T./4 and the algorithm is initialized
at Tipiy = T /2.

We can see that the Gaussian distribution fits cor-
rectly with the e-pdf of the time-delay estimation er-
ror. On the following table we show the empirical mean
and standard deviation computed from the error sample
set considering different signal to noise ratios and block
sizes:

SNR Mean Std. dev. N
-20dB | T./4 0.17, 511
-10dB | T./4 0.0337, 511

0dB T./4 0.017, 511
10dB T./4 | 2x107°T, | 511

0dB T./4 0.01347,. | 300

0dB T./4 0.01677, | 200

0dB T./4 0.0227T, 100

0dB T./4 0.03097, 50

We note that the mean is always equal to the true time-
delay but the standard deviation is three times greater
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Figure 7: e-pdf and Gaussian fitted distribution (dotted line) for the
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Figure 8: e-pdf and Gaussian fitted distribution (dotted line) for the
time-delay estimation error. SNR=-20 dB and o2, = 0.001.

in the case SNR= -20dB compared with the SNR=-10
dB case. Even in these conditions (really low SNR sce-
narios) the performances obtained are still acceptable.
The error on the other two cases, SNR=0 dB and SNR=
10 dB, are really weak and the algorithm converges to
the true value almost always. We also give the sample
mean and standard deviation with different block sizes
(for SNR=0 dB). We can see that smaller the block size
greater the variance of the estimation error.

7. Conclusion

In usual transmission systems, the roll-off is between
0 and 100%, however, in the context of satellite posi-
tioning systems, like GPS and GALILEO, time limited
shaping pulse are used and the Nyquist-Shannon sam-
pling theorem does not apply. These special conditions
let us hope a significant receiver synchronization perfor-
mance improvement when the received signal is over-
sampled (using more than one sample per symbol).

In this paper, we study the gain due to an oversam-
pling of the received signal for the problem of dynami-
cal carrier phase tracking, and we propose a method for
joint carrier and time-delay synchronization. Assuming
that the data are known at the receiver, we derive the
Hybrid Cramér-Rao Bound for carrier estimation, and
we couple a Kalman-based DA algorithm and an EM-
type method for joint carrier and time-delay estimation
in such an oversampled scenario.

This study shows several improvements when a
fractionally-spaced method for phase and frequency off-
set estimation is used. The estimation MSE decreases as
the oversampling factor S increases and the interest of
oversampling is more important at low SNR. For § = 1
or 2 samples per symbol, the results obtained with the
EKF are close to the theoretical bound for slow and
moderate phase evolutions. For S = 4, the HCRB is
lower than for S = 2 but the EKF performance does not
show the same improvement. We also note the limita-
tions of the algorithm when having an extremely rapidly
varying phase evolution with respect to the symbol in-
terval.

We have shown the good performance of the itera-
tive block method proposed for joint time-delay and car-
rier estimation for high and moderate SNR, and an ac-
ceptable estimation performance in low SNR scenarios.
This method is based on a two-step iterative method,
including the oversampled carrier synchronization solu-
tion based on the EKF. The convergence of the method
directly depends on the phase and Doppler distortion,
and on the estimation of the carrier phase provided by
the EKF stage. For a slowly varying carrier phase the



algorithm convergence is really fast, and as the phase
offset gets stronger the algorithm needs more iterations
to converge to the good time-delay value.
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