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Indirect controllability of locally coupled systems under geometric
conditions

Fatiha Alabau-Boussouira∗, Matthieu Léautaud†‡

December 8, 2010

Abstract

We consider systems of two wave/heat/Schrödinger-type equations coupled by a zero order term, only one of them
being controlled. We prove an internal and a boundary null-controllability result in any space dimension, provided that
both the coupling and the control regions satisfy the Geometric Control Condition. This includes several examples in
which these two regions have an empty intersection.

Abstract

Contrôlabilité indirecte de systèmes localement couplés sous des conditions géométriques. On s’intéresse à des
systèmes constitués de deux équations d’ondes, de la chaleur ou de Schrödinger, couplées par un terme d’ordre zéro, et dont
seulement l’une est controlée. En supposant que les zones de couplage et de contrôle satisfont toutes deux la Condition
Géométrique de Contrôle, on montre un résultat de contrôle interne et frontière en dimension quelconque d’espace. Ceci
fournit de nombreux exemples pour lesquels ces deux régions ne s’intersectent pas.

Version française abrégée

Durant les dix dernières années, les propriétés de contrôlabilité des systèmes paraboliques du type
eiθu′1 − ∆cu1 + au1 + δpu2 = b f dans (0,T ) ×Ω,
eiθu′2 − ∆cu2 + au2 + pu1 = 0 dans (0,T ) ×Ω,
u1 = u2 = 0 sur (0,T ) × ∂Ω,
(u1, u2)|t=0 = (u0

1, u
0
2) dans Ω,

(1)

avec θ = 0, ont été étudiées intensivement. Ici, a, b, c, p sont des fonctions réelles régulières de x ∈ Ω, avec b ≥ 0 et p ≥ 0,
δ > 0 est un paramètre, −∆c est un opérateur autoadjoint uniformément elliptique sur Ω, et f est le contrôle. Le résultat
général concernant ces systèmes, prouvé par différentes méthodes dans [16, 4, 7, 9] est un théorème de contrôlabilité à zéro
dès qu’on suppose {p > 0} ∩ {b > 0} , ∅. Qu’en est-il du cas {p > 0} ∩ {b > 0} = ∅? Le second problème auquel on
s’intéresse ici est le problème du contrôle frontière associé à (1) (cf.(4)). S’il semble résolu en dimension 1 d’espace pour a
et p constants (voir [6]), il reste complètement ouvert en dimension supérieure ou pour des coefficients variables. Pour ces
deux problèmes, il semblerait que la théorie des équations paraboliques et les outils utilisés se heurtent pour le moment à
de sérieuses difficultés. D’autre part, on sait depuis [15] que les propriétés de contrôlabilité des équations hyperboliques se
transmettent aux équations paraboliques. Poursuivant l’étude initiée dans [2], nous répondons aux deux questions ci-dessus
pour le système hyperbolique (3) (consistant à remplacer eiθu′j par u′′j , pour j = 1, 2, dans (1)) sous certaines hypothèses.
Nous en déduisons ensuite une réponse partielle à ces questions pour (1).

Dans le cadre du contrôle frontière, on renvoie aux systèmes (4) et (5) ci-dessous, pour lesquelles le contrôle agit par
la condition au bord u1|∂Ω = b∂ f , avec b∂ ∈ C∞c (∂Ω), b∂ ≥ 0. On appellera GCC (resp. GCC∂) la condition de contrôle
géométrique interne (resp. frontière) de [5], que nous rappelons dans la section 2.

Pour formuler nos résultats, on utilisera les hypothèses suivantes:
(i) L’Opérateur −∆c + a est uniformément coercif sur Ω.
(ii) On a {p > 0} ⊃ ωp pour un ouvert ωp ⊂ Ω et on pose p+ := ‖p‖L∞(Ω).
(iii) On a {b > 0} ⊃ ωb (resp. {b∂ > 0} ⊃ Γb) pour un ouvert ωb ⊂ Ω (resp. Γb ⊂ ∂Ω).
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Theorem 0.1 (Systèmes d’équations d’ondes). On suppose que (i) est satisfaite, que ωp satisfait GCC, et que ωb (resp.
Γb) satisfait GCC (resp. GCC∂). Il existe alors une constante δ∗ > 0 telle que pour tout (δ, p+) satisfaisant

√
δp+ < δ∗,

il existe un temps T∗ > 0 tel que pour tout T > T∗, tous p, b (resp. b∂) satisfaisant (ii) et (iii), et toutes données initiales
(u0

1, u
0
2, u

1
1, u

1
2) ∈ H1

0(Ω) × H2 ∩ H1
0(Ω) × L2(Ω) × H1

0(Ω) (resp. (u0
1, u

0
2, u

1
1, u

1
2) ∈ L2(Ω) × H1

0(Ω) × H−1(Ω) × L2(Ω)), il existe
un contrôle f ∈ L2((0,T )×Ω) (resp. f ∈ L2((0,T )× ∂Ω)) tel que la solution de (3) (resp. (5)) vérifie (u1, u2, u′1, u

′
2)|t=T = 0.

On remarque que les espaces dans lesquels u1 et u2 sont contrôlés ne sont pas les mêmes, ce qui est naturel. Ce résultat
est montré dans un cadre abstrait (voir Section 3), incluant aussi des systèmes de plaques couplées. On en déduit, grâce
aux méthodes de transmutation de [15, 11, 13, 12] les résultats suivants pour deux équations de diffusion ou de Schrödinger
couplées.

Theorem 0.2 (Systèmes d’équations de diffusion). On suppose que (i) est satisfaite, que ωp satisfait GCC, et que ωb (resp.
Γb) satisfait GCC (resp. GCC∂). Il existe alors une constante δ∗ > 0 telle que pour tout (δ, p+) satisfaisant

√
δp+ < δ∗, pour

tout T > 0, θ ∈ (−π/2, π/2), pour tous p, b (resp. b∂) satisfaisant (ii) et (iii), et toutes données initiales (u0
1, u

0
2) ∈

(
L2(Ω)

)2

(resp. (u0
1, u

0
2) ∈

(
H−1(Ω)

)2), il existe un contrôle f ∈ L2((0,T ) × Ω) (resp. f ∈ L2((0,T ) × ∂Ω)) tel que la solution de (1)
(resp. (4)) vrifie (u1, u2)|t=T = 0.

Ce résultat répond donc partiellement aux deux questions posées, fournissant de nombreux exemples pour lesquels {p >
0}∩{b > 0} = ∅ ainsi qu’un résultat de contrôle frontière en toute dimension d’espace pour un couplage variable. Cependant,
on notera que les hypothèses géométriques ne sont pas naturelles pour des équations paraboliques. Par conséquent, le
théoreme 0.2 n’est qu’un premier pas pour cette étude.

Theorem 0.3 (Systèmes d’équations de Schrödinger). Sous les hypothèse du théorème 0.2, le même résultat de contrôlabilité
est valide pour le système (1) (resp. (4)) avec θ = ±π/2, pour des données initiales (u0

1, u
0
2) ∈ L2(Ω) × H1

0(Ω) (resp.
(u0

1, u
0
2) ∈ H−1(Ω) × L2(Ω)).

1 Introduction
During the last decade, the controllability properties of coupled parabolic equations like

eiθu′1 − ∆cu1 + au1 + δpu2 = b f in (0,T ) ×Ω,
eiθu′2 − ∆cu2 + au2 + pu1 = 0 in (0,T ) ×Ω,
u1 = u2 = 0 on (0,T ) × ∂Ω,
(u1, u2)|t=0 = (u0

1, u
0
2) in Ω,

(2)

with θ = 0, have been intensively studied. Here, ∆c is a selfadjoint elliptic operator, and all the parameters are precisely
defined in Section 2. The null-controllability problem under view is the following: given a time T > 0 and initial data, is it
possible to find a control function f so that the state has been driven to zero in time T? It has been proved in [16, 4, 7, 9]
with different methods that System (2) is null-controllable as soon as {p > 0} ∩ {b > 0} , ∅. In these works, the case
{p > 0} ∩ {b > 0} = ∅ has been left as an open problem. However, Kavian and de Teresa [8] have proved for a cascade
system (i.e. taking δ = 0 in (2)) that approximate controllability holds. The natural question is then whether or not null-
controllability (which is a stronger property) still holds in the case {p > 0} ∩ {b > 0} = ∅?

The second Problem under interest here is the boundary controllability of systems like (2) (or more precisely System
(4) below). The recent work [6] studies slightly more general systems in one space dimension and with constant coupling
coefficients. The cases of higher space dimensions and varying coupling coefficients (and in particular when the coefficients
vanish in a neighborhood of the boundary) are to our knowledge completely open.

Concerning these two open problems, it seems that the parabolic theory and associated tools encounter for the moment
some essential difficulties.

On the other hand, it is known from [15] that controllability properties can be transferred from hyperbolic equations to
parabolic ones. And it seems, at least for boundary control problems, that the theory for coupled hyperbolic equations of
the type 

u′′1 − ∆cu1 + au1 + δpu2 = b f in (0,T ) ×Ω,
u′′2 − ∆cu2 + au2 + pu1 = 0 in (0,T ) ×Ω,
u1 = u2 = 0 on (0,T ) × ∂Ω,
(u1, u2, u′1, u

′
2)|t=0 = (u0

1, u
0
2, u

1
1, u

1
2) in Ω,

(3)

is better understood (see [2]), even less studied. In the case of varying coefficients and several space-dimensions, the
associated stabilization problem is addressed in [1, 3].
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In the present work, we answer these two questions for hyperbolic problems improving the results of [2, 3], and then de-
duce a (partial) solution to the two open questions raised above. Indeed, we prove that Systems (2)-(3) are null-controllable
(in appropriate spaces) as soon as {p > 0} and {b > 0} both satisfy the Geometric Control Condition (recalled below)
and

√
δ‖p‖L∞(Ω) satisfies a smallness assumption. This contains several examples with {p > 0} ∩ {b > 0} = ∅ in any

space-dimension, and partially answers to the first question. We prove as well that the same controllability result holds
for boundary control, which partially answers to the second question. Of course, the geometric conditions needed here
are essential (and even sharp) for coupled waves, but inappropriate for parabolic equation. However, this is a first step
towards a better understanding of these types of systems. In one space dimension in particular, the geometric conditions
are reduced to a non-emptiness condition and are hence optimal for parabolic systems as well. Similar results have been
obtained simultaneously in [14] with different methods in one space dimension for cascade systems.

In this note, we first state our results for wave/heat/Shrödinger-type Systems. Then, we introduced an abstract setting
adapted to these problems and give some elements of the proof in this context.

Acknowledgements. The authors want to thank B. Dehman for discussions on the article [5], S. Ervedoza for having
pointed out the papers [11, 12], and L. Miller for discussions on these two articles. The first author would like to thank
the Fondation des Sciences Mathématiques de Paris and the organizers of the IHP trimester on control of PDE’s for their
support. The second author wishes to thank O. Glass and J. Le Rousseau for very fruitful discussions and encouragements.
Both authors were partially supported by l’Agence Nationale de la Recherche under grant ANR-07-JCJC-0139-01 and the
GDRE CONEDP (CNRS/INDAM/UP).

2 Main results
Let Ω be a bounded domain in Rn with smooth (say C∞) boundary (or a smooth connected compact riemannian manifold
with or without boundary) and ∆c = div(c∇) a (negative) Laplace operator (or Laplace Beltrami operator with respect to
the riemannian metric) on Ω. Here, c denotes a smooth (say C∞) positive symmetric matrix i.e. in particular C−1

0 |ξ|
2 ≤

c(x)ξ · ξ ≤ C0|ξ|
2 for some C0 > 1, for all x ∈ Ω, ξ ∈ Rn. We consider the control problems (2) with θ ∈ [−π/2, π/2],

including Schrödinger-type systems for θ = ±π/2 and diffusion-type systems for θ ∈ (−π/2, π/2), and (3) consisting in a
wave-type system, with only one control force. In these systems, a = a(x), p = p(x) and b = b(x) are smooth real-valued
functions on Ω, δ > 0 is a constant parameter and f is the control function, that can act on the system.

We shall also consider the same systems controlled from the boundary through the (smooth) real-valued function b∂:
eiθu′1 − ∆cu1 + au1 + δpu2 = 0 in (0,T ) ×Ω,
eiθu′2 − ∆cu2 + au2 + pu1 = 0 in (0,T ) ×Ω,
u1 = b∂ f , u2 = 0 on (0,T ) × ∂Ω,
(u1, u2)|t=0 = (u0

1, u
0
2) in Ω,

(4)


u′′1 − ∆cu1 + au1 + δpu2 = 0 in (0,T ) ×Ω,
u′′2 − ∆cu2 + au2 + pu1 = 0 in (0,T ) ×Ω,
u1 = b∂ f , u2 = 0 on (0,T ) × ∂Ω,
(u1, u2, u′1, u

′
2)|t=0 = (u0

1, u
0
2, u

1
1, u

1
2) in Ω.

(5)

We first notice that, on the space
(
L2(Ω)

)2 endowed with the inner product (u, v)δ = (u1, v1)L2(Ω) + δ(u2, v2)L2(Ω), the

operator Aδ =

(
−∆c + a δp

p −∆c + a

)
, with domain D(Aδ) =

(
H2(Ω) ∩ H1

0(Ω)
)2, is selfadjoint. As a consequence, for

f ∈ L2((0,T ) × Ω), the Cauchy problem (2), resp. (3), is well-posed in
(
L2(Ω)

)2, resp.
(
H1

0(Ω)
)2
×

(
L2(Ω)

)2, in the sense
of semigroup theory. Then, taking f ∈ L2((0,T ) × ∂Ω) the initial-boundary value problem (4), resp. (5), is well-posed in(
H−1(Ω)

)2, resp.
(
L2(Ω)

)2
×

(
H−1(Ω)

)2, in the sense of transposition solution (see [10]).
An important remark to make before addressing the controllability problem is concerned with the regularity of solutions

of (3)-(5). If one takes for system (3) (resp. (5)) an initial data (u0
1, u

0
2, u

1
1, u

1
2) ∈ H1

0(Ω)×H2∩H1
0(Ω)× L2(Ω)×H1

0(Ω) (resp.
(u0

1, u
0
2, u

1
1, u

1
2) ∈ L2(Ω) × H1

0(Ω) × H−1(Ω) × L2(Ω)), and a control f ∈ L2((0,T ) × Ω) (resp. f ∈ L2((0,T ) × ∂Ω)), then the
state (u1, u2, u′1, u

′
2) remains in the space H1

0(Ω) × H2 ∩ H1
0(Ω) × L2(Ω) × H1

0(Ω) (resp. L2(Ω) × H1
0(Ω) × H−1(Ω) × L2(Ω))

for all time. Recall that for Systems (3) and (5), the null-controllability is equivalent to the exact controllability. As a
consequence, it is not possible, taking for instance zero as initial data to reach any target state in

(
H1

0(Ω)
)2
×

(
L2(Ω)

)2 (resp.(
L2(Ω)

)2
×
(
H−1(Ω)

)2). The controllability question for (3)-(5) hence becomes: Starting from rest at time t = 0, is it possible
to reach all H1

0(Ω)×H2 ∩H1
0(Ω)× L2(Ω)×H1

0(Ω) (resp. L2(Ω)×H1
0(Ω)×H−1(Ω)× L2(Ω)) in time t = T sufficiently large?

3



The strategy we adopt here is to prove some controllability results for the hyperbolic systems (3) and (5), extending the
two-levels energy method introduced in [2]. Then, using transmutation techniques, we deduce controllability properties of
(2) and (4).

To state our results, we recall the classical Geometric Control Conditions GCC (resp. GCC∂), which, according to [5], is
a necessary and sufficient condition for the internal (resp. boundary) observability and controllability of one wave equation.
We say that ω ⊂ Ω satisfies GCC (resp. Γ ⊂ ∂Ω satisfies GCC∂) if every generalized geodesic traveling at speed one in Ω

meets ω (resp. meets Γ on a non-diffractive point) in finite time.

We shall make the following key assumptions:
(i) We have

(
(−∆c + a)u, u

)
L2(Ω) ≥ λ0‖u‖2L2(Ω), for some λ0 > 0, for all u ∈ L2(Ω). In the case where c = Id and a = 0, the

best constant λ0 is 1/C2
P

, where CP is the Poincaré’s constant of Ω.
(ii) We have p ≥ 0 on Ω, {p > 0} ⊃ ωp for some open subset ωp ⊂ Ω and set p+ := ‖p‖L∞(Ω),.
(iii) We have b ≥ 0 on Ω, {b > 0} ⊃ ωb (resp. b∂ ≥ 0 on ∂Ω and {b∂ > 0} ⊃ Γb) for some open subset ωb ⊂ Ω (resp.
Γb ⊂ ∂Ω).

We shall also require that the operator Aδ satisfies, for C > 0,
(
Aδ(v1, v2), (v1, v2)

)
δ ≥ C

(
‖v1‖

2
H1

0 (Ω)
+ δ‖v2‖

2
H1

0 (Ω)

)
for all

(v1, v2) ∈ D(Aδ). This is the case when assuming
√
δp+ < λ0.

Theorem 2.1 (Wave-type systems). Suppose that (i) holds, that ωp satisfies GCC and that ωb (resp. Γb) satisfies GCC
(resp. GCC∂). Then, there exists a constant δ∗ > 0 such that for all (δ, p+) satisfying

√
δp+ < δ∗, there exists a time T∗ > 0

such that for all T > T∗, all p, b (resp. b∂) satisfying (ii) and (iii), and all initial data (u0
1, u

0
2, u

1
1, u

1
2) ∈ H1

0(Ω)×H2∩H1
0(Ω)×

L2(Ω) × H1
0(Ω) (resp. (u0

1, u
0
2, u

1
1, u

1
2) ∈ L2(Ω) × H1

0(Ω) × H−1(Ω) × L2(Ω)), there exists a control f ∈ L2((0,T ) × Ω) (resp.
f ∈ L2((0,T ) × ∂Ω)) such that the solution of (3) (resp. (5)) satisfies (u1, u2, u′1, u

′
2)|t=T = 0.

Another way to formulate this result is to say that, under the assumptions of Theorem 2.1, the reachable set at time
T > T∗ with zero initial data is exactly H1

0(Ω) × H2 ∩ H1
0(Ω) × L2(Ω) × H1

0(Ω) in the case of L2 internal control and
L2(Ω) × H1

0(Ω) × H−1(Ω) × L2(Ω) in the case of L2 boundary control.

Some comments should be made about this result. First this is a generalization of the work [2] where the coupling
coefficients considered have to satisfy p(x) ≥ C > 0 for all x ∈ Ω. The geometric situations covered by Theorem 2.1
are richer, and include in particular several examples of coupling and control regions that do not intersect. Second, the
coercivity assumption (i) for −∆c + a together with the smallness assumption on

√
δp+ seem to be only technical and

inherent to the method we use here. Note by the way that this smallness assumption contains the coercivity assumption for
Aδ, and allows to consider large p+ or large δ (provided that the other is small enough). Moreover, the control time T∗ we
obtain depends on all the parameters of the system, and not only the sets ωp, ωb and Γb (as it is the case for a single wave
equation). Finally, the fact that we consider twice the same elliptic operator ∆c is a key point in our proof and it is likely that
this result does not hold for waves with different speeds (see [2] for results with different speeds and different operators).

As a consequence of Theorem 2.1 and using transmutation techniques (due to [15, 11] for heat-type equations and to
[13, 12] for Schrödinger-type equations), we can now state the associated results for Systems (2) and (4).

Corollary 2.2 (Heat-type systems). Suppose that (i) holds, that ωp satisfies GCC and that ωb (resp. Γb) satisfies GCC (resp.
GCC∂). Then, there exists a constant δ∗ > 0 such that for all (δ, p+) satisfying

√
δp+ < δ∗, for all T > 0, θ ∈ (−π/2, π/2),

for all p, b (resp. b∂) satisfying (ii) and (iii), and all initial data (u0
1, u

0
2) ∈

(
L2(Ω)

)2 (resp. (u0
1, u

0
2) ∈

(
H−1(Ω)

)2), there exists
a control f ∈ L2((0,T ) ×Ω) (resp. f ∈ L2((0,T ) × ∂Ω)) such that the solution of (2) (resp. (4)) satisfies (u1, u2)|t=T = 0.

Corollary 2.3 (Schrödinger-type systems). Under the assumptions of Corollary 2.2, the same null-controllability result
holds for System (2) (resp. (4)) with θ = ±π/2, taking initial data (u0

1, u
0
2) ∈ L2(Ω)×H1

0(Ω) (resp. (u0
1, u

0
2) ∈ H−1(Ω)×L2(Ω)).

Corollary 2.2 is a direct consequence of Theorem 2.1, combined with [12, Theorem 3.4] and the smoothing effect of
the heat equation. Corollary 2.3 is a direct consequence of Theorem 2.1, combined with [11, Theorem 3.1]. Since there is
no smoothing effect in this case, we still obtain a controllability result in asymmetric spaces here: the uncontrolled variable
u2 has to be more regular than the other one. This shows that the attainable set from zero for a L2 internal control (resp.
L2 boundary control) contains L2(Ω) × H1

0(Ω) (resp. H−1(Ω) × L2(Ω)). Whether or not a general target in
(
L2(Ω)

)2 (resp.(
H−1(Ω)

)2) is reachable for (2) (resp. (4)) with θ = ±π/2 remains open.

3 Abstract setting and ingredients of proof
In this section, we describe the abstract setting (already used in [3]) in which we prove Theorem 2.1 for Systems (3)-(5),
and define the appropriate spaces and operators. Let H be a Hilbert space and (A,D(A)) a selfadjoint positive operator on
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H with compact resolvent. We denote by (·, ·)H the inner product on H and ‖ · ‖H the associated norm. For k ∈ N, we set
Hk = D(A

k
2 ) endowed with the inner product (·, ·)Hk = (A

k
2 ·, A

k
2 ·)H and associated norm ‖ · ‖Hk = ‖A

k
2 · ‖H . We define H−k as

the dual space of Hk with respect to the pivot space H = H0, and ‖ · ‖H−k = ‖A−
k
2 · ‖H is the norm on H−k. The operator A can

be extended to an isomorphism from Hk to Hk−2 for any k ≤ 1, still denoted by A. We denote by λ0 > 0 the largest constant
satisfying ‖v‖2H1

≥ λ0‖v‖2H for all v ∈ H1, that is, the smallest eigenvalue of the selfadjoint positive operator A. We consider
that the coupling operator P is bounded on H and denote by P∗ is its adjoint, p+ := ‖P‖L(H) = ‖P∗‖L(H). In the following,
as in [2], we shall make use of the different energy levels ek(ϕ(t)) = 1

2
(
‖ϕ(t)‖2Hk

+ ‖ϕ′(t)‖2Hk−1

)
, k ∈ Z which are all preserved

through time if ϕ is a solution of ϕ′′ + Aϕ = 0.

Before addressing the control problem, let us introduce the adjoint system
v′′1 + Av1 + δPv2 = 0,
v′′2 + Av2 + P∗v1 = 0,
(v1, v2, v′1, v

′
2)|t=0 = (v0

1, v
0
2, v

1
1, v

1
2)

(6)

which shall stand for our observation system. This system can be recast as a first order differential equation V′ = AδV,
V(0) = V0, where

Aδ =

(
0 Id
−Aδ 0

)
, Aδ =

(
A δP
P∗ A

)
, V = (v1, v2), V = (V,V ′) = (v1, v2, v′1, v

′
2).

Note that the operator Aδ is selfadjoint on the space H × H endowed with the weighted inner product
(
V, Ṽ

)
δ = (v1, ṽ1)H +

δ(v2, ṽ2)H . Since we have
(
AδV,V

)
δ = (Av1, v1)H+δ(Av2, v2)H+2δ(Pv2, v1)H ≥

(
1− p+

√
δ

λ0

)(
‖v1‖

2
H1

+δ‖v2‖
2
H1

)
, we shall suppose

that p+
√
δ < λ0, so that Aδ is coercive. Under this assumption,

(
A

1
2
δ V, A

1
2
δ Ṽ

)
δ defines an inner product on (H1)2, equivalent to

the natural one. Assuming that P, P∗ ∈ L(Hk) and writingHk = (Hk)2×H2
k−1, k ∈ Z, the operatorAδ is an isomorphism from

Hk toHk−1 and is skewadjoint onHk, equipped with the inner product
(
(U,V), (Ũ, Ṽ)

)
Hk

= (A
k
2
δ U, A

k
2
δ Ũ)δ + (A

k−1
2
δ V, A

k−1
2
δ Ṽ)δ.

Note that this is an inner product according to the coercivity assumption for Aδ, which is equivalent to the natural inner
product of Hk. Hence, Aδ generates a group etAδ on Hk, and the homogeneous problem (6) is well-posed in these spaces.
An important feature of solutionsV(t) of System (6) is that all energies Ek(V(t)) = 1/2‖V(t)‖2

Hk
are positive and preserved

through time.

For this system, now studied inH1, we shall observe only the state of the first component, i.e. (u1, u′1), and hence define
an observation operator B∗ ∈ L(H2 × H,Y), where Y is a Hilbert space, standing for our observation space. This definition
is sufficiently general to take into account both the boundary observation problem (taking B∗ ∈ L(H2,Y)) and the internal
observation problem (taking B∗ ∈ L(H,Y)). We assume that B∗ is an admissible observation for one equation:{

For all T > 0 there exists a constant C > 0, such that all the solutions ϕ of ϕ′′ + Aϕ = f satisfy
∫

T
0 ‖B

∗(ϕ, ϕ′)‖2Ydt ≤ C
(
e1(ϕ(0)) + e1(ϕ(T )) + ∫

T
0 e1(ϕ(t))dt + ∫

T
0 ‖ f ‖

2
Hdt

)
.

(A1)

Under this assumption, we have the following lemma.

Lemma 3.1. The operator B∗ is an admissible observation for (6). More precisely, for all T > 0, there exists a constant
C > 0, such that all the solutions of (6) satisfy

T

∫
0
‖B∗(v1, v′1)(t)‖2Ydt ≤ C

{
e1(v1(0)) + e0(v2(0))

}
. (7)

Note that only the e0 energy level of the second component v2 is necessary in this admissibility estimate. Hence, we
cannot hope to observe the whole H1 energy of V and the best observability we can expect only involves e0(v2). Our aim
is now to prove this inverse inequality of (7). For this, we have to suppose some additional assumptions on the operators P
and B∗. Let us first precise Assumption (A2), related with the operator P:{

We have ‖Pv‖2H ≤ p+(Pv, v)H and there exists an operator ΠP ∈ L(H), ‖ΠP‖L(H) = 1,
and a number p− > 0 such that (Pv, v)H ≥ p−‖ΠPv‖2H ∀v ∈ H. (A2)

Note that p− ≤ p+ = ‖P‖L(H) and that (A2) implies that the operators P and P∗ are non-negative. In the applications
to coupled wave equations, P is the multiplication by the function p and the operator ΠP is the multiplication by the
characteristic function 1ωp . Next, we shall suppose that a single equation is observable both by B∗ and by ΠP in sufficiently
large time:{

∃T0 > 0 such that for all T > T0 there exists a constant C > 0, such that all solutions ϕ of ϕ′′ + Aϕ = 0
satisfy both e1(ϕ(0)) ≤ C ∫ T

0 ‖B
∗(ϕ, ϕ′)‖2Y and e1(ϕ(0)) ≤ C ∫ T

0 ‖ΠPϕ
′‖2Hdt

(A3)
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In the context of Theorem 2.1, these observability assumptions are satisfied as soon as ωp and ωb satisfy GCC (resp. Γb

satisfies GCC∂). We can now state (without proof) the main result of this note.

Theorem 3.2. Suppose that Assumptions (A1)-(A3) hold. Then there exists a constant δ∗ such that for all (δ, p+) satisfying√
δp+ < δ∗, there exists a time T∗ such that for all T > T∗ there exists C > 0, such that for all V0 ∈ H1, the solution
V(t) = etAδV0 of (6) satisfies

e1(v1(0)) + e0(v2(0)) ≤ C
T

∫
0
‖B∗(v1, v′1)(t)‖2Ydt. (8)

Applying the Hilbert Uniqueness Method (HUM) of [10], we deduce now controllability results for the adjoint system.
In this context, we have to define more precisely the observation operator. We shall treat two cases: First, B∗(v1, v′1) = B∗v′1
with B∗ ∈ L(H,Y), corresponding to internal observability (with Y = L2(Ω)), and second B∗(v1, v′1) = B∗v1 with B∗ ∈
L(H2,Y), corresponding to boundary observability (with Y = L2(∂Ω)). In both cases, we define the control operator B as
the adjoint of B∗, and the control problem reads, for a control function f taking its values in Y ,

u′′1 + Au1 + δPu2 = B f
u′′2 + Au2 + P∗u1 = 0
(u1, u2, u′1, u

′
2)|t=0 = (u0

1, u
0
2, u

1
1, u

1
2).

(9)

This is an abstract version of (3)-(5). Note that under this form, System (9) not only contains (3)-(5), but also locally
coupled systems of plate equations, with a distributed or a boundary control.

First case: B∗(v1, v′1) = B∗v′1 with B∗ ∈ L(H,Y). In this case, B ∈ L(Y,H) and the control problem (9) is well-posed
in H1 for f ∈ L2(0,T ; Y). In this setting, we first deduce from (8) the following other observability estimate for solutions
W of (6) in H0: e0(w1(0)) + e−1(w2(0)) ≤ C ∫ T

0 ‖B
∗w1(t)‖2Ydt. The internal control result of Theorem 2.1 is then a direct

consequence of the HUM since Assumptions (A1)-(A3) are satisfied in this application.
Second case: B∗(v1, v′1) = B∗v1 with B∗ ∈ L(H2,Y). As a consequence of the admissibility inequality (7), System (9)

is well-posed in H0 in the sense of transposition solutions. In this setting, the boundary control result of Theorem 2.1 is a
direct consequence of the HUM and Theorem 3.2 since Assumptions (A1)-(A3) are satisfied in this application.
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