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Résumé : Brain-Computer Interfaces (BCI) translate variationthie Electroencepha-
logram (EEG) into a set of particular commands, in order totrab a real world ma-
chine. For this purpose, itis necessary to classify refi&lflG signals. Classifying EEG
activities is a challenging task since EEG recordings @kHibktinct and individualized
spatial and temporal characteristics correlated withenaigl various physical and men-
tal activities. To increase classification accuracy, ihisstcrucial to enhance the Signal
to Noise Ratio (SNR) and to identify relevant spatio-tenapéeatures.

This paper presents a method for denoising Event-Relatéeh®al (ERP) data and
for identifying discriminant spatio-temporal characs#ids. First, a Blind Source Sepa-
ration (BSS) strategy is used to denoise data and enhance S#¢8nd, a resampling
procedure based on Global Field Power (GFP) automaticalécts temporal windows.
Third, a spatially weighted SVM (sw-SVM) learns a spatiakfiloptimizing the clas-
sification performance for each temporal feature. Findtlg, so obtained ensemble of
sw-SVM classifiers are combined using a weighted combinatioall sw-SVM out-
puts. Results indicate that denoising and identificatiospatio-temporal features of
ERP enhance the classification accuracy, yield a betterstacheling of the underlying
physiology and provide useful insight about the spatiogeral characteristics of the
ERP.

Mots-clés: Analyse de Données Spatiales et Spatio-Temporelles, Appiessage su-
pervisé, Sélection, Construction et Extraction de Variabés.

1. Introduction

Many brain computer interfaces (BCI) make use of Electrephalogra-
phy (EEG) signals to categorize two or more classes and iassdbem to
simple computer commands. Classification of brain sigsatballenging be-
cause EEG records are high dimensional measurements tsafrbp noise
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Congedocet al. (2008). Thus, it is important to remove noise in order to en-
hance signal, and to perform feature extraction in ordeeeal the classifica-
tion algorithm with relevant features.

Several methods based on Independent Component Analyssheen
proposed to enhance the Signal to Noise Ratio (SNR) and toverarte-
facts. However, these methods are not specifically designeeparate brain
activities and they are supervised. Indeed, after decoitnposn different
components, it is necessary to select (manually or thankpdtio-temporal
prior) components containing evoked potentials. In thiskw&vent-Related
Potentials (ERPs) are considered and an unsupervisedstienonethod is
used. Itis based on the xXDAWN algorithm Riee@l. (2009), which has been
specifically conceived to maximize the SNR of ERPs.

Concerning feature extraction, usually spatial decomjuwsis performed
to extract the ERP components, including Principal Compbaalysis,
Independent Component Analysis, etc. These methods déindecompo-
sition in terms of statistical proprieties the componeiitsutd satisfy in a
specific time window. However, ERPs describe several tealpomponents
(peaks), thus, spatial decomposition should be performeedch interesting
interval occurring in the windows of interest. To this endime algorithms
have been proposed to study where the discriminative irdtam lies into
the spatio-temporal plane. They visualize a matrix of sepiéity measures
into the spatio-temporal plane of the experimental cood#i The matrix is
obtained by computing a separability index for each pairmpattial electrode
measurement and time sample. Several measures of sejppradie been
used, for instance the signedBlankertzet al. (2010), Fisher score and Stu-
dent’s t-statistic Milleet al. (2004), or the area under the ROC curve Green
& Swets (1966). Separability matrix should be sought as toraatically de-
termine intervals with fairly constant spatial patternsl dmgh separability
values. This proves difficult and heuristics are often erygdito approximate
interval borders. In addition, the three first aforemergmeasures rely on
the assumption that the class distributions are Gaussisichvs seldom ve-
rified.

To overcome all these drawbacks, we develop a spatio-teahgata dri-
ven decomposition technique without any a priori knowledgany assump-
tion regarding EEG dynamics. A two-stage feature extractexhnique is
proposed. First, a time feature extraction is performeetas Global Field
Power (GFP) Lehmann & Skrandies (1980), defined for each sianeple as
the sum of the square potential across electrodes. GFP pealkssociated
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with maximal SNR. Second, a spatially weighted SVM (sw-SYptpposed
in Jradet al. (2011), is used to learn for each time interval a sparseapati
filter optimizing directly the classification performané&énally, the ensemble
of sw-SVMs obtained on the selected temporal features andired using a
weighted average, to get a robust decision function.

The remainder of this paper is organized as follows. Thegseg method
is introduced in Section 2.. Section 3. accounts for data description and
discusses the experimental results. Finally, Section ldishaur conclusions.

2. Method

2.1. Problem description

Background brain activities, irrelevant to BCI tasks, aonbusly gene-
rate EEG signals that can be recorded anywhere over the 3¢edpe signals
interfere with the EEG signals triggered by stimuli. In gah to the back-
ground EEG, there are other sources of artefact which ysa##ct recor-
dings Congedet al. (2008). Fortunately, post-stimulus signals present speci
fic space and temporal characteristics, since they are gtexdein particular
regions of the brain at a given interval of time. This sectieacribes a method
for analyzing ERPs considering the sequence :

— asignal denoising,

— atemporal feature extraction,

— aspatial feature extraction embedded in a classificatberse,

— an ensemble of classifiers learning technique.

2.2. Data denoising

A conceptual model for the elimination of noise and otherasndble
components from multi-dimensional data is presentedt,Far8lind Source
Separation (BSS) is performed using xDAWN Riettal. (2009). xDAWN
performs a signal decomposition described by a linear toamstion of data
asv(t) = Bz(t), wherex(t) € R is the electrodes measurement vector,
v(t) € R® holds the time-course of source components &id* is the
unmixing matrix. The unmixing matriB is computed so that ratio of the
post-stimulus response to signal-plus-noise is maximised

Due to linearity we can writec(t) = Awv(t), where the mixing matrix
A% = B7lis the inverse of the unmixing matriB. The entries of es-
timated mixing matrix indicate how strongly each electrquileks up each
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individual component. Denoising and back projection ohi® $ensor space
can be written ag(t) = ARB=x(t), whereR is a diagonal matrix witts*"
diagonal element equal toif the s** component is to be retained and equal
to O if it is to be removed.

This strategy allows us to enhance the SNR while attenuticggroung
EEG and artefacts. Since XDAWN sorts components by decrg&\R, we
retain the first half of them so as to reduce noise whilst keggpaeaningfull
identifiable components.

2.3. Temporal features

In the following, we consider BCI application with two classof ac-
tion. After denoising recordings, we can get a training $dabeled trials.
A decision function should be learned from this training Séte decision
function should correctly classify unlabeled trials. Let denote a denoi-
sed post-stimulus trigh(p € {1,...P}), recorded over electrodgs €
{1,...5}) atinstantt(t € {1,...7T}), asZ4(t). A post-stimulus trial re-
corded overS electrodes in a short time period @fsamples can be consi-
dered as a matriXX, € R5*7. Hence, the entire available set of data is
{(X1,91), . (Xp,4p), oy (X pyyp) } Withy, € {—1, 1} the class labels. Our
task consists in finding the spatio-temporal features treatimize discrimi-
nation between two classes.

To select temporal intervals in the ERP where discrimirgpeaks appear,
the Global Field Power (GFP) Lehmann & Skrandies (1980) mmated on
the difference of the grand averages of the two class pwstikts trials such

as:
2
S

errm =33 X w- Y a0 ®

5=1 \ X p/yp=1 X p/yp=—1

Pronounced deflections with large peaks, denoting bigrditsiities between
the two activities, are associated with large GFP valuesddivs involving
significant temporal features are chosen as intervals w&Efeis high rela-
tive to the background EEG activity.

To select significant windows we require a statistical thods for the ob-
served GFP of the difference grand average trials in the tasses. Such
threshold is estimated with a resampling method a®ttepercentile (0%
type | error rate) of the appropriate empirical null distition. For P and @)
observed single trials in classes labelednd —1, respectively, we resample
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P and@ trials with random onset from the entire denoised EEG rengtd
We compute the difference of the grand average oftfand( random trials
and retain the maximum value of GFP. The procedure is rep@at® times
and the sought threshold is theé percentile of such max-GPF null distribu-
tion. Taking the max-GPF at each resampling ensures thaictmenal type |
error rate is preserved regardless the number of windowsvihde declared
significant Westfall & Young (1993).

Noteworthily, contiguous samples with high GFP coincidéwstable de-
flection configurations where spatial characteristics efftald remains un-
changed Lehmann & Skrandies (1980). However, artefasis,diinks, can
also cause peaks in GFP measurement. Hence, denoisinbisigr@mman-
ded before performing time interval selection. Since wigach selected time
window the spatial pattern is fairly constant, average sstone can be calcu-
lated within these intervals. Averaging over time rulesahgrrant values, re-
duces signal variability and attenuates noise. Besidesgitces dramatically
time dimensionality td where! is the number of significant time features.

2.4. Spatial features and classifier : sw-SVM

Temporal filtering provides us Witlfi; € R%*! trials. Each column vector
@, € R%*! reflects a spatial characteristic at a temporal feat@e1, ..., I}.
Hence,l spatial filters are learned over the different time comptsén this
work, spatial filtering is learned jointly with a classifi#ghe method was pro-
posed in Jradt al. (2011) and called sw-SVM method for spatially weighted
SVM. ltinvolves spatial feature weights in the primal SVMtiopization pro-
blem and tunes these weights as hyper-parameters of SVM.ehetel by
d € R%*! the spatial filter andD a matrix withd on the diagonal. MatrixD
is learned by solving the sw-SVM optimization problem :

P
1 2
3l 4 €36
p:
subjectto y,((w, DZ,) +b) >1—-¢, and >0 VYpe{l,..., P}

S
and > DI =1 Vse{l,.. S} 2)
s=1

wherew € R%! is the normal vector; € R is an offset, are called slack
variables that ensure the problem has a solution in casatheshot linearly-
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separable, and’ is the regularization parameter that controls the tradle-of
between a low training error and a large margin.

By setting to zero the derivatives of the partial associategrangian ac-
cording to the primal variables, b and¢, the optimization problem of the
dual formulation can be written as :

1 T~
minmax 17 a — —aTYTX/TDX/Ya
D « 2
subjectto y’a =0

and 0<a,<C Vpe{l,...,P}

S
and Y D,.=1, (3)
s=1

where a are the vectors of Lagrangian multipliet®) = D" D, X =
{z),....,2p}, y* = {y1,...,yp} is the vector containing the labels akd =
Diag(y) is the diagonal matrix containing the labels. The overadbpem
boils down to be equivalent to a Multiple Kernel Learning (MKproblem
where a linear kernel is used over each sensor time seriedapdre the
positive mixing coefficients of the multiple kernels. Sealeyptimization al-
gorithms were proposed to solve MKL optimization problerar fstance,
semi-infinite linear programming, gradient descent levethnd, etc. Bach
(2008) derived equivalence between MKL problems and grasd and Z. Xu
& Lyu (2010) proposed an efficient multiple kernel learningdroup Lasso.
In this work, we used a gradient descent as in SimpleMKL Rakaimonjy
et al. (2008).

2.5. Ensemble of sw-SVM classifiers

As seen above, a way to reduce EEG variability is to perfognaiavera-
ging across time. Another way to reduce this influence, froctaasification
point of view, is to use an ensemble of classifiers Rakotonmgyn® Guigue
(2008). According to this strategy, a multiple sw-SVM systes designed
for each temporal feature. A weighted average on sw-SVMuistis used to
determine a set of significant classifiers.

Weights are set as the product of two functions growing egptally with
the accuracies of the two (positive and negative) classed)a&ed on a va-
lidation set. IfTP, FP, TN and F'N hold for True Positive, False Positive,
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True Negative and False Negative of a given sw-SVM classigspectively,
then Positive Predective Valug V) and Negative Predective Valug 1)
can be defined as :

TP TN
PPV = — NPV = ——~
v TP+ FP’ v FN+TN’

and weights associated to the classifier are such as :

0 if PPV <05 or NPV <0.5
tan(2(PPV —0.5)) x tan(2(NPV —0.5)) otherwise,

where 0.5 is the chance level. The trigonometric tangent functionsedu
because it increases slowly around zero angles (corresmptal PPV or
NPV = 0.5) and it increases rapidly at angles close to one (anglesl equa
to one correspond t& PV or NPV = 1). Taking the product of the two
tangents makes this weighting strategy ideal for unbakhdega sets since it
seeks classifiers that jointly present good accuraciesditr dlasses.

3. Experimental results

3.1. ErrP data set

The proposed method was evaluated on a visual feedback EiiteM
et al. (1997) experiment. Eight BCI-naif healthy subjects perfed the ex-
periment. They had to retain the position of a sequence abdigd to localize
where a target digit previously appeared. A visual feedhadicates wether
the answer was correct (green feedback) or not (red). Nuoflaigits com-
posing the sequences was adapted with an algorithm tundtbvo around
20% errors for all subjects. Experiment involv@dsessions that lasted toge-
ther approximately half an hour. Each session consistédblufcks of6 trials,
for a total of only72 trials. Recordings of EEG were made fr@melectrodes.
Raw EEG potentials were re-referenced to the common avenadjdiltered
using al —10Hz 4" order butterworth filter. A window of000ms posterior to
the feedback has been explored for each trial. All trialsakept for analysis
and no supervised artifact rejection whatsoever was pagdr

3.2. Results

The proposed technique was applied to the ErrP data. Singlelassifi-
cation of ErrPs is assessed using-@ross Validation technique. Each single
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training sw-SVM involves a selection procedure for setiisgegularization
parameteiC and weights associated to its outputs. Results are those obt
ned with the best performance over theartitions. Noteworthily, it would
be more realistic to perform a two-level-5-cross validatia cross-validation
to select hyperparameters and one to compute performaeevdr, in the
study of this dataset, with very small amount of trials, itsweot possible to
perform these two-levels.

Figure 1 shows the average of the difference error-minugecbfor chan-
nel FCz of subjectS7 and the associated GFP. Only two components can
be seen : a negative deflection arousdms after the feedback and a second
negative component occurring in betwe® and480ms. Scalp potentials to-
pographies associated with the two extracted temporalifesaire also shown
in Figure 1. Thel® negative peak seems to be occipital whereatae-
gative peak covers a rather fronto-central area. Figurewslaccuracies for
error and correct classes for each sw-SVM and their correipg weights
(normalized betweefi and1). Only sw-SVM learned on the™¢ deflection
shows good accuracies for both classes and is thus retained.

An important question is whether time interval selectiayrfd by GFP,
are consistent across different partitions of the data araba subjects. Figure
2 shows, for each subject, and each of ihgartitions, temporal intervals (in
white) selected on the ErrP data set. Because of the veryisumaber of trials
used in each partition, some inter-partition differencas lbe noted in these
data, but overall, the procedure appears robust and mdalirgtencies,
thus selected time intervals, are different from subjecsubject, which is
not surprising. However, for almost all subjects, an imgotactivity is noted
betweent00 and600ms. These findings confirm those of Miltretral. (1997)
where a negative deflection, following an incorrect visegdback of a time-
production task, peaked a30ms with a duration o260ms. This witnesses in
favor of the effectiveness and the consistency of the preghtesmporal feature
extraction.

Concerning classification results, figure 3 shows ih@ross-Validation
performance provided by a classical SVM approach wherdedtredes are
used, the sw-SVM where only one spatial filter was used on tiaentrial du-
ration and the proposed method. The proposed method provesdantly su-
perior to SVM and sw-SVM. A paired student’s t-test was coteduo com-
pare the proposed method to the sw-SVM and SVM. Results wgig =
3.0893; (p = 0.01760) andt(7) = 4.2515; (p = 0.0038), respectively. We
conclude that, inclusion of temporal features selecti¢erafenoising, along
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FIGURE 1: Denoised ErrP. Top : GFP computed on the difference oftduecy
average error-minus-correct fos trials, selected intervals and to-
pographies associated. Middle : the difference computeslen:
trode FCz. Bottom : accuracies for error (blue bar) and cbrre
(green bar) classes and sw-SVM associated weights (reddrar,
malized between and1).
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FIGURE 2: Denoised data : selected time intervals are shown in vplies,
for each of the8 subjects and partitions. Each matrix refers to a
subject where columns hold time-course and rows hold parst
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FIGURE 3: From left to right : performances of classical SVM, sw-SVM
and the proposed method for tResubjects. Mean (std) accura-
cies across th& subjects are of0.71(10.77), 80.71(6.61) and
87.80(3.63) respectively.

with learning an ensemble of classifiers, yield superiofquarance.

4. Conclusion

In this paper, an unsupervised EEG denoising and a spatipetal feature
identification strategies were addressed. Denoising iscbar Blind Source
Separation where unmixing matrix is given by xDAWN algonithAn analy-
sis of Global Field Power highlighted time periods of inttrerhere effects
are likely to be robust yielding to a data-driven temporaltfiee extraction.
For each temporal feature, a spatial filter was learnedlyowith a classi-
fier in the SVM theoretical framework. Spatial filters werarieed to opti-
mize classification performance. A weighted averaging angh obtained
ensemble of classifiers yielded to a robust final decisiontfan. Experimen-
tal results on Error-related Potential data sets illustthe efficiency of the
method from a physiological and a machine learning pointgex. The ac-
curacies we obtained are clearly competitive against tite-stf-the-art clas-
sification of Error-related Potentials. These results wadé further research
that may aim to extract all relevant aspects of brain posttdtis dynamics
recorded in EEG (spatio-temporal-frequential).
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