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Résumé : Brain-Computer Interfaces (BCI) translate variations inthe Electroencepha-
logram (EEG) into a set of particular commands, in order to control a real world ma-
chine. For this purpose, it is necessary to classify reliably EEG signals. Classifying EEG
activities is a challenging task since EEG recordings exhibit distinct and individualized
spatial and temporal characteristics correlated with noise and various physical and men-
tal activities. To increase classification accuracy, it is thus crucial to enhance the Signal
to Noise Ratio (SNR) and to identify relevant spatio-temporal features.
This paper presents a method for denoising Event-Related Potential (ERP) data and
for identifying discriminant spatio-temporal characteristics. First, a Blind Source Sepa-
ration (BSS) strategy is used to denoise data and enhance SNR. Second, a resampling
procedure based on Global Field Power (GFP) automatically selects temporal windows.
Third, a spatially weighted SVM (sw-SVM) learns a spatial filter optimizing the clas-
sification performance for each temporal feature. Finally,the so obtained ensemble of
sw-SVM classifiers are combined using a weighted combination of all sw-SVM out-
puts. Results indicate that denoising and identification ofspatio-temporal features of
ERP enhance the classification accuracy, yield a better understanding of the underlying
physiology and provide useful insight about the spatio-temporal characteristics of the
ERP.
Mots-clés: Analyse de Données Spatiales et Spatio-Temporelles, Apprentissage su-
pervisé, Sélection, Construction et Extraction de Variables.

1. Introduction

Many brain computer interfaces (BCI) make use of Electroencephalogra-
phy (EEG) signals to categorize two or more classes and associate them to
simple computer commands. Classification of brain signals is challenging be-
cause EEG records are high dimensional measurements corrupted by noise
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Congedoet al. (2008). Thus, it is important to remove noise in order to en-
hance signal, and to perform feature extraction in order to feed the classifica-
tion algorithm with relevant features.

Several methods based on Independent Component Analysis have been
proposed to enhance the Signal to Noise Ratio (SNR) and to remove arte-
facts. However, these methods are not specifically designedto separate brain
activities and they are supervised. Indeed, after decomposition in different
components, it is necessary to select (manually or thanks tospatio-temporal
prior) components containing evoked potentials. In this work, Event-Related
Potentials (ERPs) are considered and an unsupervised denoising method is
used. It is based on the xDAWN algorithm Rivetet al. (2009), which has been
specifically conceived to maximize the SNR of ERPs.

Concerning feature extraction, usually spatial decomposition is performed
to extract the ERP components, including Principal Component Analysis,
Independent Component Analysis, etc. These methods define the decompo-
sition in terms of statistical proprieties the components should satisfy in a
specific time window. However, ERPs describe several temporal components
(peaks), thus, spatial decomposition should be performed for each interesting
interval occurring in the windows of interest. To this end, some algorithms
have been proposed to study where the discriminative information lies into
the spatio-temporal plane. They visualize a matrix of separability measures
into the spatio-temporal plane of the experimental conditions. The matrix is
obtained by computing a separability index for each pair of spatial electrode
measurement and time sample. Several measures of separability have been
used, for instance the signed-r2 Blankertzet al. (2010), Fisher score and Stu-
dent’s t-statistic Mülleret al. (2004), or the area under the ROC curve Green
& Swets (1966). Separability matrix should be sought as to automatically de-
termine intervals with fairly constant spatial patterns and high separability
values. This proves difficult and heuristics are often employed to approximate
interval borders. In addition, the three first aforementioned measures rely on
the assumption that the class distributions are Gaussian, which is seldom ve-
rified.

To overcome all these drawbacks, we develop a spatio-temporal data dri-
ven decomposition technique without any a priori knowledgeor any assump-
tion regarding EEG dynamics. A two-stage feature extraction technique is
proposed. First, a time feature extraction is performed based on Global Field
Power (GFP) Lehmann & Skrandies (1980), defined for each timesample as
the sum of the square potential across electrodes. GFP peaksare associated
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with maximal SNR. Second, a spatially weighted SVM (sw-SVM), proposed
in Jradet al. (2011), is used to learn for each time interval a sparse spatial
filter optimizing directly the classification performance.Finally, the ensemble
of sw-SVMs obtained on the selected temporal features are combined using a
weighted average, to get a robust decision function.

The remainder of this paper is organized as follows. The proposed method
is introduced in Section 2.. Section 3. accounts for data sets description and
discusses the experimental results. Finally, Section 4. holds our conclusions.

2. Method

2.1. Problem description

Background brain activities, irrelevant to BCI tasks, continuously gene-
rate EEG signals that can be recorded anywhere over the scalp. These signals
interfere with the EEG signals triggered by stimuli. In addition to the back-
ground EEG, there are other sources of artefact which usually affect recor-
dings Congedoet al. (2008). Fortunately, post-stimulus signals present speci-
fic space and temporal characteristics, since they are generated in particular
regions of the brain at a given interval of time. This sectiondescribes a method
for analyzing ERPs considering the sequence :

– a signal denoising,
– a temporal feature extraction,
– a spatial feature extraction embedded in a classification scheme,
– an ensemble of classifiers learning technique.

2.2. Data denoising

A conceptual model for the elimination of noise and other undesirable
components from multi-dimensional data is presented. First, a Blind Source
Separation (BSS) is performed using xDAWN Rivetet al. (2009). xDAWN
performs a signal decomposition described by a linear transformation of data
asν(t) = Bx(t), wherex(t) ∈ R

S is the electrodes measurement vector,
ν(t) ∈ R

S holds the time-course of source components andBS×S is the
unmixing matrix. The unmixing matrixB is computed so that ratio of the
post-stimulus response to signal-plus-noise is maximised.

Due to linearity we can writex(t) = Aν(t), where the mixing matrix
AS×S = B−1 is the inverse of the unmixing matrixB. The entries of es-
timated mixing matrix indicate how strongly each electrodepicks up each
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individual component. Denoising and back projection onto the sensor space
can be written as̃x(t) = ARBx(t), whereR is a diagonal matrix withsth

diagonal element equal to1 if the sth component is to be retained and equal
to 0 if it is to be removed.

This strategy allows us to enhance the SNR while attenuatingbackgroung
EEG and artefacts. Since xDAWN sorts components by decreasing SNR, we
retain the first half of them so as to reduce noise whilst keeping meaningfull
identifiable components.

2.3. Temporal features

In the following, we consider BCI application with two classes of ac-
tion. After denoising recordings, we can get a training set of labeled trials.
A decision function should be learned from this training set. The decision
function should correctly classify unlabeled trials. Let us denote a denoi-
sed post-stimulus trialp(p ∈ {1, . . . P}), recorded over electrodes(s ∈
{1, . . . S}) at instantt(t ∈ {1, . . . T}), as x̃s(t). A post-stimulus trialp re-
corded overS electrodes in a short time period ofT samples can be consi-
dered as a matrix̃Xp ∈ R

S×T . Hence, the entire available set of data is
{(X̃1, y1), ..., (X̃p, yp), ..., (X̃P , yP )}with yp ∈ {−1, 1} the class labels. Our
task consists in finding the spatio-temporal features that maximize discrimi-
nation between two classes.

To select temporal intervals in the ERP where discriminative peaks appear,
the Global Field Power (GFP) Lehmann & Skrandies (1980) is computed on
the difference of the grand averages of the two class post-stimulus trials such
as :

GFP 2(t) =
1

S

S
∑

s=1





∑

X̃P /yp=1

x̃s(t)−
∑

X̃P /yp=−1

x̃s(t)





2

(1)

Pronounced deflections with large peaks, denoting big dissimilarities between
the two activities, are associated with large GFP values. Windows involving
significant temporal features are chosen as intervals whereGFP is high rela-
tive to the background EEG activity.

To select significant windows we require a statistical threshold for the ob-
served GFP of the difference grand average trials in the two classes. Such
threshold is estimated with a resampling method as the90th percentile (10%
type I error rate) of the appropriate empirical null distribution. ForP andQ
observed single trials in classes labeled1 and−1, respectively, we resample
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P andQ trials with random onset from the entire denoised EEG recording.
We compute the difference of the grand average of theP andQ random trials
and retain the maximum value of GFP. The procedure is repeated 1000 times
and the sought threshold is the90th percentile of such max-GPF null distribu-
tion. Taking the max-GPF at each resampling ensures that thenominal type I
error rate is preserved regardless the number of windows that will be declared
significant Westfall & Young (1993).

Noteworthily, contiguous samples with high GFP coincide with stable de-
flection configurations where spatial characteristics of the field remains un-
changed Lehmann & Skrandies (1980). However, artefacts, like blinks, can
also cause peaks in GFP measurement. Hence, denoising signal is recomman-
ded before performing time interval selection. Since within each selected time
window the spatial pattern is fairly constant, average across time can be calcu-
lated within these intervals. Averaging over time rules outaberrant values, re-
duces signal variability and attenuates noise. Besides, itreduces dramatically
time dimensionality toI whereI is the number of significant time features.

2.4. Spatial features and classifier : sw-SVM

Temporal filtering provides us with̃X
′

p ∈ R
S×I trials. Each column vector

x̃′

p ∈ R
S×1 reflects a spatial characteristic at a temporal featurei ∈ {1, ..., I}.

Hence,I spatial filters are learned over the different time components. In this
work, spatial filtering is learned jointly with a classifier.The method was pro-
posed in Jradet al. (2011) and called sw-SVM method for spatially weighted
SVM. It involves spatial feature weights in the primal SVM optimization pro-
blem and tunes these weights as hyper-parameters of SVM. We denote by
d ∈ R

S×1 the spatial filter andD a matrix withd on the diagonal. MatrixD
is learned by solving the sw-SVM optimization problem :

min
w,b,ξ,D

1

2
‖w‖2 + C

P
∑

p=1

ξp

subject to yp(〈w,Dx̃′

p〉+ b) ≥ 1− ξp and ξp ≥ 0 ∀p ∈ {1, . . . , P}

and
S
∑

s=1

D2

s,s = 1 ∀s ∈ {1, . . . , S} (2)

wherew ∈ R
d×1 is the normal vector,b ∈ R is an offset,ξp are called slack

variables that ensure the problem has a solution in case the data is not linearly-
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separable, andC is the regularization parameter that controls the trade-off
between a low training error and a large margin.

By setting to zero the derivatives of the partial associatedLagrangian ac-
cording to the primal variablesw, b andξp the optimization problem of the
dual formulation can be written as :

min
D̃

max
α

1
Tα−

1

2
αTY TX̃

′T
D̃X̃

′

Y α

subject to yTα = 0

and 0 ≤ αp ≤ C ∀p ∈ {1, . . . , P}

and
S
∑

s=1

D̃s,s = 1, (3)

whereα are the vectors of Lagrangian multipliers,̃D = DTD, X̃
′

=
{x̃′

1
, ..., x̃′

P}, yT = {y1, ..., yP} is the vector containing the labels andY =
Diag(y) is the diagonal matrix containing the labels. The overall problem
boils down to be equivalent to a Multiple Kernel Learning (MKL) problem
where a linear kernel is used over each sensor time series andD2

s,s are the
positive mixing coefficients of the multiple kernels. Several optimization al-
gorithms were proposed to solve MKL optimization problem. For instance,
semi-infinite linear programming, gradient descent level method, etc. Bach
(2008) derived equivalence between MKL problems and group lasso and Z. Xu
& Lyu (2010) proposed an efficient multiple kernel learning by group Lasso.
In this work, we used a gradient descent as in SimpleMKL Rakotomamonjy
et al. (2008).

2.5. Ensemble of sw-SVM classifiers

As seen above, a way to reduce EEG variability is to perform signal avera-
ging across time. Another way to reduce this influence, from aclassification
point of view, is to use an ensemble of classifiers Rakotomamonjy & Guigue
(2008). According to this strategy, a multiple sw-SVM system is designed
for each temporal feature. A weighted average on sw-SVM outputs is used to
determine a set of significant classifiers.

Weights are set as the product of two functions growing exponentially with
the accuracies of the two (positive and negative) classes, evaluated on a va-
lidation set. IfTP , FP , TN andFN hold for True Positive, False Positive,
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True Negative and False Negative of a given sw-SVM classifier, respectively,
then Positive Predective Value (PPV ) and Negative Predective Value (NPV )
can be defined as :

PPV =
TP

TP + FP
, NPV =

TN

FN + TN
,

and weights associated to the classifier are such as :
{

0 if PPV < 0.5 or NPV < 0.5
tan(2(PPV − 0.5))× tan(2(NPV − 0.5)) otherwise,

where0.5 is the chance level. The trigonometric tangent function is used
because it increases slowly around zero angles (corresponding to PPV or
NPV = 0.5) and it increases rapidly at angles close to one (angles equal
to one correspond toPPV or NPV = 1). Taking the product of the two
tangents makes this weighting strategy ideal for unbalanced data sets since it
seeks classifiers that jointly present good accuracies for both classes.

3. Experimental results

3.1. ErrP data set

The proposed method was evaluated on a visual feedback ErrP Miltner
et al. (1997) experiment. Eight BCI-naif healthy subjects performed the ex-
periment. They had to retain the position of a sequence of digits and to localize
where a target digit previously appeared. A visual feedbackindicates wether
the answer was correct (green feedback) or not (red). Numberof digits com-
posing the sequences was adapted with an algorithm tuned to allow around
20% errors for all subjects. Experiment involved2 sessions that lasted toge-
ther approximately half an hour. Each session consisted of6 blocks of6 trials,
for a total of only72 trials. Recordings of EEG were made from31 electrodes.
Raw EEG potentials were re-referenced to the common averageand filtered
using a1−10Hz 4th order butterworth filter. A window of1000ms posterior to
the feedback has been explored for each trial. All trials were kept for analysis
and no supervised artifact rejection whatsoever was performed.

3.2. Results

The proposed technique was applied to the ErrP data. Single trial classifi-
cation of ErrPs is assessed using a5-Cross Validation technique. Each single
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training sw-SVM involves a selection procedure for settingits regularization
parameterC and weights associated to its outputs. Results are those obtai-
ned with the best performance over the5 partitions. Noteworthily, it would
be more realistic to perform a two-level-5-cross validation, a cross-validation
to select hyperparameters and one to compute performance. However, in the
study of this dataset, with very small amount of trials, it was not possible to
perform these two-levels.

Figure 1 shows the average of the difference error-minus-correct for chan-
nel FCz of subjectS7 and the associated GFP. Only two components can
be seen : a negative deflection around150ms after the feedback and a second
negative component occurring in between400 and480ms. Scalp potentials to-
pographies associated with the two extracted temporal features are also shown
in Figure 1. The1st negative peak seems to be occipital whereas the2nd ne-
gative peak covers a rather fronto-central area. Figure 1 shows accuracies for
error and correct classes for each sw-SVM and their corresponding weights
(normalized between0 and1). Only sw-SVM learned on the2nd deflection
shows good accuracies for both classes and is thus retained.

An important question is whether time interval selection, found by GFP,
are consistent across different partitions of the data and across subjects. Figure
2 shows, for each subject, and each of the5 partitions, temporal intervals (in
white) selected on the ErrP data set. Because of the very small number of trials
used in each partition, some inter-partition differences can be noted in these
data, but overall, the procedure appears robust and meaningfull. Latencies,
thus selected time intervals, are different from subject tosubject, which is
not surprising. However, for almost all subjects, an important activity is noted
between400 and600ms. These findings confirm those of Miltneret al. (1997)
where a negative deflection, following an incorrect visual feedback of a time-
production task, peaked at330ms with a duration of260ms. This witnesses in
favor of the effectiveness and the consistency of the proposed temporal feature
extraction.

Concerning classification results, figure 3 shows the5 Cross-Validation
performance provided by a classical SVM approach where all electrodes are
used, the sw-SVM where only one spatial filter was used on the whole trial du-
ration and the proposed method. The proposed method proved constantly su-
perior to SVM and sw-SVM. A paired student’s t-test was computed to com-
pare the proposed method to the sw-SVM and SVM. Results were :t(7) =
3.0893 ; (p = 0.01760) andt(7) = 4.2515 ; (p = 0.0038), respectively. We
conclude that, inclusion of temporal features selection after denoising, along
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FIGURE 1: Denoised ErrP. Top : GFP computed on the difference of the grand
average error-minus-correct for1s trials, selected intervals and to-
pographies associated. Middle : the difference computed onelec-
trode FCz. Bottom : accuracies for error (blue bar) and correct
(green bar) classes and sw-SVM associated weights (red bar,nor-
malized between0 and1).
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FIGURE 2: Denoised data : selected time intervals are shown in whitepixels,
for each of the8 subjects and5 partitions. Each matrix refers to a
subject where columns hold time-course and rows hold partitions.
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FIGURE 3: From left to right : performances of classical SVM, sw-SVM
and the proposed method for the8 subjects. Mean (std) accura-
cies across the8 subjects are of70.71(10.77), 80.71(6.61) and
87.80(3.63) respectively.

with learning an ensemble of classifiers, yield superior performance.

4. Conclusion

In this paper, an unsupervised EEG denoising and a spatio-temporal feature
identification strategies were addressed. Denoising is based on Blind Source
Separation where unmixing matrix is given by xDAWN algorithm. An analy-
sis of Global Field Power highlighted time periods of interest where effects
are likely to be robust yielding to a data-driven temporal feature extraction.
For each temporal feature, a spatial filter was learned jointly with a classi-
fier in the SVM theoretical framework. Spatial filters were learned to opti-
mize classification performance. A weighted averaging on the so obtained
ensemble of classifiers yielded to a robust final decision function. Experimen-
tal results on Error-related Potential data sets illustrate the efficiency of the
method from a physiological and a machine learning points ofview. The ac-
curacies we obtained are clearly competitive against the state-of-the-art clas-
sification of Error-related Potentials. These results motivate further research
that may aim to extract all relevant aspects of brain post-stimulus dynamics
recorded in EEG (spatio-temporal-frequential).
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