Nisrine Jrad 
  
Marco Congedo 
  
Identification of sparse spatio-temporal features in Evoked Response Potentials

Electroencephalographic Evoked Response Potentials (ERP)s exhibit distinct and individualized spatial and temporal characteristics. Identification of spatio-temporal features improves single-trial classification performance and allows a better understanding of the underlying physiology. This paper presents a method for analyzing the spatio-temporal characteristics associated with Error related Potentials (ErrP)s. First, a resampling procedure based on Global Field Power (GFP) extracts temporal features. Second, a spatially weighted SVM (sw-SVM) is proposed to learn a spatial filter optimizing the classification performance for each temporal feature. Third, the so obtained ensemble of sw-SVM classifiers are combined using a weighted combination of all sw-SVM outputs. Results indicate that inclusion of temporal features provides useful insight regarding the spatio-temporal characteristics of error potentials.

Introduction

Many brain computer interfaces (BCI) make use of Electroencephalography (EEG) signals to categorize two or more classes and associate them to simple computer commands. Classification of brain signals is not an easy task because EEG records are high dimensional measurements corrupted by noise. Interestingly, EEG signals often reveal various spatial and temporal characteristics. Thus, it is important to characterize both spatial and temporal dynamics of EEG data to provide reliable BCI control.

Usually spatial decomposition is performed to extract the Evoked Response Potential (ERP) components, including Principal Component Analysis, Independent Component Analysis, etc. These methods define the decomposition in terms of statistical proprieties the components should satisfy in a specific time window. However, ERPs reflect several temporal components, thus, spatial decomposition should be performed for each interesting interval occurring in the pre-fixed window. To this end, some algorithms have been proposed to study where the discriminative information lies into the spatio-temporal plane. They visualize a matrix of separability measures into the spatio-temporal plane of the experimental conditions. The matrix is obtained by computing a separability index for each pair of spatial electrode measurement and time sample. Several measures of separability have been used, for instance the signed-r 2 -values [START_REF] Blankertz | Single-trial analysis and classification of ERP components -a tutorial[END_REF], Fisher score and Student's t-statistic [START_REF] Müller | Machine learning techniques for brain-computer interfaces[END_REF], or the area under the ROC curve [START_REF] Green | Signal detection theory and psychophysics[END_REF].

Separability matrix should be sought as to automatically determine intervals with fairly constant spatial patterns and high separability values. This proves difficult and heuristic techniques are often employed to approximate interval borders. In addition, the three first aforementioned measures rely on the assumption that the class distributions are Gaussian, which is seldom verified.

To overcome all these drawbacks, we develop a spatio-temporal data driven decomposition technique without any a priori knowledge or any assumption regarding EEG dynamics. A two-stage feature extraction technique is proposed. First, a time feature extraction is performed based on Global Field Power (GFP) [START_REF] Lehmann | Reference-free identification of components of checkerboard-evoked multichannel potential fields[END_REF], defined for each time sample as the sum of the square potential across electrodes. GFP peaks are associated with maximal signal-to-noise ratio. Second, a spatially weighted SVM (sw-SVM) is proposed to learn for each time interval a sparse spatial filter optimizing directly the classification performance. Finally, the ensemble of sw-SVMs obtained on the selected temporal features are combined using a weighted average, to get a robust decision function.

The remainder of this paper is organized as follows. The proposed method is introduced in Section 2. Section 3 accounts for data sets description and discusses the experimental results. Finally, Section 4 holds our conclusions.

Method

Problem description

BCI applications with two classes of action provide a training set of labeled trials from which a decision function is learned. The decision function should correctly classify unlabeled trials. Let us consider an EEG post-stimulus trial recorded over S electrodes in a short time period of T samples as a matrix Xp ∈ R S×T . Hence, the entire available set of data can be denoted {( X1 , y 1 ), ..., ( Xp , y p ), ..., ( XP , y P )} with y p ∈ {-1, 1} the class labels. Our task consists in finding the spatio-temporal features that maximize discrimination between two classes.

Temporal features

To select temporal intervals in the ERP where discriminative peaks appear, Global Field Power (GFP) [START_REF] Lehmann | Reference-free identification of components of checkerboard-evoked multichannel potential fields[END_REF] is computed on the difference of the grand averages of the two class post-stimulus trials. Pronounced deflections with large peaks, denoting big dissimilarities between the two activities, are associated with large GFP values. Windows involving significant temporal features are chosen as intervals where GFP is high relative to the background EEG activity.

To select significant windows we require a statistical threshold for the observed GFP of the difference grand average trials in the two classes. Such threshold is estimated with a resampling method as the 95 th percentile (5% type I error rate) of the appropriate empirical null distribution. For P and Q observed single trials in classes labeled 1 and -1, respectively, we resample P and Q trials with random onset from the entire EEG recording. We compute the difference of the grand average of the P and Q random trials and retain the maximum value of GFP. The procedure is repeated 1000 times and the sought threshold is the 95 th percentile of such max-GPF null distribution after 10% trimming. The trimming makes the estimated GFP more robust with respect to outliers given by eye blinks and other large-amplitude artefacts. Taking the max-GPF at each resampling ensures that the nominal type I error rate is preserved regardless the number of windows that will be declared significant.

Noteworthily, contiguous samples with high GFP coincide with stable deflection configurations where spatial characteristics of the field remains unchanged [START_REF] Lehmann | Reference-free identification of components of checkerboard-evoked multichannel potential fields[END_REF]. Since within each selected time window the spatial pattern is fairly constant, average across time is calculated. Averaging over time rules out aberrant values, reduces signal variability and attenuates noise. Besides, it reduces dramatically time dimensionality to I where I is the number of significant time features.

Spatial features and classifier : sw-SVM

Temporal filtering provides us with X p ∈ R S×I trials. Each column vector x p ∈ R S×1 reflects a spatial characteristic at a temporal feature i ∈ {1, ..., I}. Hence, I spatial filters are learned over the different time components. In this work, spatial filtering is learned jointly with a classifier in the theoretical framework of SVM. The proposed sw-SVM method (spatially weighted SVM) has the advantage of learning a spatial filter so as to improve separability of classes whilst reducing classification errors. It involves spatial feature weights in the primal SVM optimization problem and tunes these weights as hyper-parameters of SVM. We denote by d ∈ R S×1 the spatial filter and D a matrix with d on the diagonal. Matrix D is learned by solving the sw-SVM optimization problem: 

where w ∈ R d×1 is the normal vector, b ∈ R is an offset, ξ p are called slack variables that ensure the problem has a solution in case the data is not linearlyseparable, and C is the regularization parameter that controls the trade-off between a low training error and a large margin. The objective function is not convex with respect to all parameters jointly. Hence, we proceed by alternating the search for a solution of (1). For D fixed, the problem is reduced to a 1 soft margin SVM with the only difference being that x p is replaced by Dx p in the inequality constraint. The primal and dual objective functions of such a problem are convex, and their solution can be obtained by any of the available SVM algorithms. Let us denote by J(D) the optimal value of this problem. By setting to zero the partial derivates of the Lagrangian with respect to the primal variables, the optimization problem of the dual formulation yielding J(D) can be formulated as follows :

J(D) =        max α 1 T α -1 2 α T Y T X T D T DXY α subject to y T α = 0 and 0 ≤ α p ≤ C ∀p ∈ {1, . . . , P },
where α is the vector of Lagrangian multipliers, Y = Diag(y 1 , ..., y n ) is the matrix with trial labels on its diagonal, X = {x 1 , ..., x n } and y T = {y 1 , ..., y n }.

The value J(D) is thus obtained for a given α by solving the following :

min D J(D) subject to S s=1 D 2 s,s = 1. (2) 
By setting D = D T D, problem (2) reduces to a minimization problem under 1 constraints over D. This is clearly an instance of the Multiple Kernel Learning (MKL) problem proposed in [START_REF] Rakotomamonjy | SimpleMKL[END_REF] with a homogeneous degree 1 polynomial kernel.

Authors of [START_REF] Rakotomamonjy | SimpleMKL[END_REF] prove that the search for the optimal D is convex, yielding fast convergence toward the optimal conditional solution. Hence, the optimization problem can be solved efficiently using a gradient descent as in SimpleMKL [START_REF] Rakotomamonjy | SimpleMKL[END_REF].

For effect of the 1 constraints, the sought spatial filters will be sparse.

Ensemble of sw-SVM classifiers

As seen above, a way to reduce EEG variability is to perform signal averaging across time. Another way to reduce this influence, from a classification point of view, is to use an ensemble of classifiers. According to this strategy, a multiple sw-SVM system is designed for each temporal feature. A weighted average on sw-SVM outputs is used to determine a set of significant classifiers. Weights are set as the product of two functions growing proportionally with the accuracies of the two classes (evaluated on a validation set). This weighting strategy is ideal for unbalanced data sets since it seeks classifiers that jointly present good accuracies in both classes. Spatio-temporal features with highest discriminant power are associated with high weights and constitute good candidates for classification.

3 Experimental results

ErrP data set

The proposed method was evaluated on a visual feedback ErrP [START_REF] Miltner | Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a generic neural system for error detection[END_REF] experiment.

Eight BCI-naif healthy subjects performed the experiment. They had to retain the position of a sequence of digits and to localize where a target digit previously appeared. A visual feedback indicates wether the answer was correct (green feedback) or not (red). Number of digits composing the sequences was adapted with an algorithm tuned to allow around 20% errors for all subjects. Experiment involved 2 sessions that lasted together approximately half an hour. Each session Fig. 1: Top : GFP computed on the difference of the grand average errorminus-correct 1s trials and selected intervals. Middle : the difference computed on electrode FCz and topographies associated with the average in the selected intervals. Bottom : accuracies for error (blue bar) and correct (green bar) classes and sw-SVM associated weights (red bar, normalized between 0 and 1). consisted of 6 blocks of 6 trials, for a total of 72 trials. Recordings of EEG were made from 31 electrodes. Raw EEG potentials were re-referenced to the common average and filtered using a 1 -10Hz 4 th order butterworth filter. A window of 1000ms posterior to the stimulus has been explored for each trial. No artifact rejection was applied and all trials were kept for analysis.

Results

Single trial classification of error-related potentials is assessed using a 5-Cross Validation technique. Each single training sw-SVM involves a selection procedure for setting its regularization parameter C and weights associated to its outputs. Figure 1 shows the average of the difference error-minus-correct for channel FCz of subject 7. It also reports GFP computed on the difference average. Five components are to be noted. A negative deflection can be seen around 240ms after the feedback and a second positive component occurs about 350ms. Three more peaks are also detected; a negative deflection around 500ms, a less pronounced negative deflection around 700ms and a small positive deflection around 800ms. Scalp potentials topographies associated with the 5 extracted temporal features are also shown on Figure 1. The 1 st negative peak seems to be occipital whereas the 2 nd positive peak covers a rather fronto-central area. The 3 rd peak covers a parieto-central area, the 4 th peak covers the whole right hemisphere and the last one is more central. Figure 1 shows accuracies for error and correct classes for each sw-SVM and their corresponding weights (normalized between 0 and 1). Only sw-SVMs learned on the most pronounced peaks (2 nd and 3 rd ) show good accuracies in both classes and are thus retained.

Figure 2 shows the 5 Cross-Validation performance provided by a classical SVM approach where all electrodes are used, the sw-SVM where only one spatial filter was used on the whole trial duration and the proposed method where spatio-temporal features were extracted. The proposed method proved constantly superior to SVM and sw-SVM. A paired student's t-test (7 df) was evaluated to compare the proposed method to SVM and sw-SVM and p-values of 0.0044 and 0.0265 were obtained. We conclude that inclusion of temporal features, along with learning an ensemble of classifiers, provide with superior performance.

Conclusion

In this paper, a spatio-temporal feature identification was addressed. An analysis of Global Field Power highlighted time periods of interest where effects are likely to be the most robust yielding to a data-driven temporal feature extraction. For each temporal feature, a spatial filter was learned jointly with a classifier in the SVM theoretical framework. Spatial filters were learned to optimize classification performance. A weighted averaging on the so obtained ensemble of classifiers yielded to a robust final decision function. Experimental results on Error-related Potentials data sets illustrate the efficiency of the method from a physiological and a machine learning points of view. These results motivate further research that may aim to extract all relevant aspects of brain post-stimulus dynamics recorded in EEG (spatio-temporal-frequential).
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 2 Fig. 2: Performances of classical SVM (Left bar), sw-SVM (Middle bar) and proposed method (Right bar) for the 8 subjects. Mean (std) accuracies across the 8 subjects were 70.71(10.77), 80.71(6.61) and 87.51(3.37) respectively.
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