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ABSTRACT

In many machine learning applications, like Brain - Com-
puter Interfaces (BCI), only high-dimensional noisy data are
available rendering the discrimination task non-trivial.In
this work, we focus on feature selection, more precisely on
optimal electrode selection and weighting, as an efficient
tool to improve the BCI classification procedure. The pro-
posed framework closely integrates spatial feature selection
and weighting within the classification task itself. Spatial
weights are considered as hyper-parameters to be learned by
a Support Vector Machine (SVM). The resulting spatially
weighted SVM (sw-SVM) is then designed to maximize the
margin between classes whilst minimizing the generalization
error. Experimental studies on eight Error Related Potential
(ErrP) data sets, illustrate the efficiency of the sw-SVM from
a physiological and a machine learning point of view.

Index Terms— Support Vector Machines, spatial filters,
feature extraction, Brain Computer Interfaces.

1. INTRODUCTION

The problem of learning a robust classifier from high dimen-
sional noisy data arises in many machine learning applica-
tions. In this study, we focus on Brain Computer Interfaces
(BCI). The majority of BCI applications make use of Elec-
troencephalography (EEG) signals to categorize two or more
classes of cerebral activity and associate them with simple
computer commands. The EEG is a relatively cheap record-
ing system, measuring the potential field at the scalp, which
is an instantaneous reflection of the electrocerebral activity.
It generally consists of recordings from8 to 128 electrodes,
sampling the potential field at a sample rate of128Hz to sev-
eral kHz. Unfortunately, an inherent default of this recording
setup is its high sensitivity to noise. Classification of EEG
brain signals thus requires adequate processing techniques to
tackle the problems of feature reduction and noise cancella-
tion.

In general, the classification is dealt with in two parts [1,
2]. Firstly, data preprocessing admits the representationof the
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data in an adequate form. This part generally includes a fea-
ture selection and/or a feature extraction, known as filtering.
Features might be of frequential, temporal and/or spatial na-
ture. Secondly, this data representations are fed to a classifier,
which is often borrowed from the machine learning commu-
nity without inquiring much into possible improvements that
could be done, thus resulting in classifiers that are not fully
exploiting the characteristics of the data in hand.

Concerning spatial filtering techniques, signal-processing
criteria like signal-to-noise ratio [1] and ratio of class vari-
ances [2], have frequently been employed. They rely on the
physical propagation model assuming that brain activitiesare
in a quasi-linear and instantaneous relation to the recorded
signals.

As for feature selection and noise cancellation, some al-
gorithms have been proposed or adapted to the BCI scheme.
For instance, genetic algorithms [3] have been successfully
adapted for BCI spatial feature selection. Moreover, recent re-
searches treat the problem of how to rate the relevance of fea-
tures in terms of classification performance, using a zero norm
optimization [4] or a recursive feature elimination [5]. More
recently, a sensor selection procedure, based on the SNR, has
been proposed in [6].

A common characteristic of all these feature extraction
and selection methods is that they do not directly optimize
a discrimination function. In fact, they construct or select
features according to criteria that do not consider the over-
all BCI classification performance. A relation might be found
between the objective functions yielding optimal spatial fil-
ters and class separability. But this relation has, to the best of
our knowledge, never been addressed explicitly before.

In this work, we focus on the optimal selection and
weighting of spatial features so as to improve the separa-
bility of the classes. The problem is treated within the SVM
classification task itself. By introducing the spatial feature
weights as hyper-parameters in a Support Vector Machine
(SVM), they can be optimized for the specific classification
problem in hand. In our spatially weighted SVM (sw-SVM),
no assumption is made regarding the EEG data structure, i.e.,
the approach is completely data-driven. sw-SVM offers a
highly flexible approach, in that it can handle any kind of
features, thus adapting to any kind of EEG-based BCI (P300,
motor imagery, SSVEP, etc.). To show the evaluate the sw-



SVM framework, experiments are conducted on8 subjects in
a controlled Error-related Potential (ErrP) scenario [7].The
proposed sw-SVM algorithm is compared to a classical SVM
approach to ascertain its efficiency.

The remainder of this paper is organized as follows. The
proposed sw-SVM framework is introduced in Section 2. The
sw-SVM optimization problem and one variant of the possi-
ble solutions are presented. Section 3 accounts for BCI data
sets description and discusses the so obtained experimental
results. Finally, Section 4 holds our conclusions.

2. METHOD

2.1. Problem description

BCI applications with two classes of action provide a training
set of labeled trials from which a decision function should
be learned that correctly classifies unlabeled trials. Let us
consider an EEG trial recorded overs electrodes in a short
time period ofT samples as a matrix̃Xp ∈ R

S×T . A pat-
tern xp ∈ R

d×1 will be obtained by unfolding the matrix
X̃p, as such identifyingRS×T with R

d×1, whered = ST .
xp thus contains the commplete spatio-temporal recorded in-
formation of a single trial. Hence, the entire available set
of data can be denoted{(x1, y1), ..., (xp, yp), ..., (xP , yP )}
with yp ∈ {−1, 1} the class labels.

Our task consists in finding the spatial features and an
appropriate weighting function that maximize the separation
margin between classes. Thus, we aim at finding a matrix
D ∈ R

d×d of electrode weights assigned to each of the trials
xp so that{Dxp}

P
p=1

maximize the margin of the SVM.

2.2. sw-SVM: spatially weighted-SVM

The central idea of classical SVM is to separate data by find-
ing a vectorw ∈ R

d×1 and an offsetb ∈ R of a hyper-
plane which provides us with the largest possible margin be-
tween classes and minimizes the number of misclassified pat-
terns. The proposed sw-SVM suggests to involve spatial fea-
ture weights in the primal SVM optimization problem and
tunes these weights as hyper-parameters of SVM.

For the application of EEG electrode selection, time fea-
tures belonging to a same EEG electrode, hereafter indexed
by s, have to be dealt with in a congeneric way so that a spa-
tial interpretation of the solution becomes possible. The re-
sulting matrixD is thus diagonal withS different unknowns
repeated inT diagonal blocks of sizeS × S, each containing
the spatial filterd ∈ R

S×1 on their diagonal.

According to the above assumptions, the matrixD can be

learned by solving the sw-SVM optimization problem:

min
w,b,ξ,D

1

2
‖w‖

2
+ C

P
∑

p=1

ξp

subject to yp(〈w,Dxp〉+ b) ≥ 1− ξp ∀p ∈ {1, . . . , P}

and ξp ≥ 0 ∀p ∈ {1, . . . , P}

and
S
∑

s=1

D2

s,s = 1 ∀s ∈ {1, . . . , S}, (1)

whereξp are called slack variables that ensure the problem
has a solution in case the data is not linearly-separable, and
C is the regularization parameter that controls the trade-off
between a low training error and a large margin.

The objective function is not convex with respect to all
parameters jointly, but is in each of its parameters. Hence,we
proceed by alternating the search for a solution of (1). For
D fixed, the problem is reduced to à1 soft margin SVM
with the only difference being thatxp is replaced byDxp

in the inequality constraint. The primal and dual objective
functions of such a problem are convex, and their solution can
be obtained by any of the available SVM algorithms. Here we
opt for simpleSVM [8]. Let us denote byJ(D) the optimal
value of this problem. By setting to zero the derivates of the
Lagrangian with respect to the primal variables, the efficient
optimization problem of the dual formulation yieldingJ(D)
can be formulated as follows :

J(D) =















maxα 1
Tα− 1

2
αTY TXTDTDXY α

subject to yTα = 0
and 0 ≤ αp ≤ C ∀p ∈ {1, . . . , P},

whereα is the vector of Lagrangian multipliers,Y =
Diag(y1, ..., yP ) is the matrix containing the trial labels on its
diagonal,X = {x1, ...,xP } andyT = {y1, ..., yP }.

The valueJ(D) is thus obtained for a givenα by solving
the following problem:

min
D

J(D) subject to
S
∑

s=1

D2

s,s = 1. (2)

By settingD̃ = DTD, problem (2) reduces to a mini-
mization problem under̀1 constraints over̃D. This is clearly
an instance of the Multiple Kernel Learning (MKL) problem
proposed in [9] with a homogeneous degree1 polynomial ker-
nel. Authors of [9] prove, with positive assumptions on the
kernel matrices, that the search for the optimalD̃ is convex,
yielding fast convergence toward the optimal conditional so-
lution. Hence, the optimization problem can be solved effi-
ciently using a gradient descent algorithm as in SimpleMKL
[9].

We initializeD asS−1
I, whereI is the identity matrix.

We proceed by alternating the search for a solution of (1) for



D, given a fixedα and forα given previous estimation ofD.
The alternating optimization scheme is stopped when the`2
norm of the changes onD becomes negligible.

3. EXPERIMENTAL RESULTS

3.1. ErrP data set

The proposed method was evaluated on a visual feedback
ErrP [7] experiment. Eight BCI-naif healthy subjects per-
formed the experiment. They had to retain the position of
a sequence of digits displayed in square boxes on a computer
screen in front of them. Then, the sequence disappeared, a
target digit was shown and subjects were asked to click on the
box where it previously appeared. If the answer was correct,
the chosen box background color turned into green, otherwise
it turned into red. The number of digits composing the se-
quences continuously adapted to subject performance with an
algorithm tuned to allow around20% errors for all subjects,
regardless the working memory ability and limits.

The experiment involved2 sessions that lasted together
approximately half an hour. Each session consisted of6
blocks of6 trials, for a total of6× 6× 2 = 72 trials. Record-
ings of the EEG were made from31 electrodes using the
extended10/20 international system. Raw EEG potentials
were first re-referenced to the common average. A window
of 1000ms posterior to the stimulus has been considered for
each trial since studies on feedback ErrP report two peaks
around250ms and300 − 500ms as main components of the
evoked potential. Then, a1 − 10Hz 4th order butterworth
filter was applied as error related potentials are known to be
a relatively slow cortical potential. Finally, EEG samples
were averaged in16 continuous equally spaced windows. No
artifact rejection algorithm was applied and all trials were
kept for analysis.

3.2. Results

A sw-SVM 5 Cross-Validation was performed with differ-
ent values for the regularization parameterC. A 5 Cross-
validation experiments with classical SVM (without spatial
feature selection) was carried out as a comparative baseline.

Table 1 reports the5 top weighted electrodes for the8 sub-
jects and the number of spatial features selected for1 of the
5 partitions. Figure 1 shows the electrode weights averaged
across the5 partitions as topographic maps (associated with
that value ofC allowing the highest classification rate). Table
1 and Figure 1 show that, according to sw-SVM,11 spatial
features at most suffice to capture error-related potentials in
this data set. This confirms results in [10], where it was found
that a substantial reduction of sensors performs well in noisy
data and when the training set is small. Electrode selectionis
also known to be strongly subject-dependent. However, in6
out of8, the subjects’ central area holds the strongest weight.
This is in accordance with current knowledge on ErrP.

Subject 5 top weighted electrodes # of elec.

S1 CP3 C3 P7 CP4 TP7 10
S2 F7 TP8 T4 P3 C3 9
S3 P8 CPz T3 FP2 FC3 10
S4 O1 Cz TP8 FP2 FCz 11
S5 O1 FCz P7 FC3 Oz 6
S6 P7 F3 FCz FC4 P4 9
S7 Cz 1
S8 F8 FPz Cz Ft7 F7 7

Table 1. For the8 subjects and a given partition: the5 top
weighted electrodes, and the number of selected electrodes
according to sw-SVM.

Fig. 1. Topographical maps of the weights averaged across
the5 partitions. Each map refers to a subject (S1 to S8).

Subject SVM sw-SVM p-value

S1 72.86± 3.19 78.57±10.10 0.1778
S2 68.57± 14.81 77.14± 11.74 0.0327
S3 58.57± 10.59 74.29± 6.39 0.0042
S4 87.14± 12.78 90.00± 10.83 0.1778
S5 60.00±6.39 78.57± 13.36 0.0486
S6 85.71± 8.75 91.43± 7.82 0.0161
S7 68.57± 27.01 81.43± 8.14 0.2859
S8 64.29± 11.29 74.29± 9.58 0.3111

Mean 70.71±11.85 80.72±9.75

Table 2. Performances of classical SVM and sw-SVM for the
8 subjects. t-test p-values of sw-SVM and baseline SVM are
also reported.



Table 2 reports the single trial recognition rates (mean and
standard deviations) for the8 subjects. Classification accu-
racy is between74% and91%, averaging to about81% for
sw-SVM. These figures have been achieved with a relatively
low number of features (from1 to 11 electrodes). Noteworthy
is also that available data include a small number of trials and
even a smaller number of errors (less than20% of the avail-
able data). Thus, as expected, the cross-validation variance
is high. It will be interesting to consider more in depth the
performance of sw-SVM on larger data-sets.

Table 2 reports also the5 Cross-Validation performance
provided by a classical SVM approach where all electrodes
are used. A repeated-measure t-test has been performed to
test the null hypothesis of no difference in the performanceof
the two methods. The p-value of such null hypothesis being
true is also reported. While tolerating a0.05 type II error level
we can reject the null hypothesis for4 out of the8 subjects.
Combining the8 individual p-values with the combination
function proposed by Edgington and Fisher (see [11] for de-
tails), yields a combined p-value of0.000024 and0.000157,
respectively.1 In conclusion, as compared to a standard SVM,
on this data set sw-SVM both yields a significant dimension-
ality reduction and a considerable performance improvement.

4. CONCLUSION

In this paper, EEG spatial feature selection and weighting was
considered from a machine learning point of view. Feature
weights are introduced in the SVM theoretical framework and
tuned as hyper-parameters of SVM. Hence, they maximize
the margin between classes and minimize generalization er-
ror. The proposed method guarantees an automatic and reli-
able selection and appropriate weighting of spatial features.
Though sw-SVM was designed as a spatial feature selector
for BCI applications, there is no reason to restrict it for this
particular application.

Experimental results on Error-related Potentials data sets
illustrate the efficiency of the method. The algorithm per-
forms well in terms of both spatial feature selection and clas-
sification accuracy. It is a promising tool for flexible and ro-
bust data classification that could perform well even with a
small number of training observations. These results moti-
vate further research that may aim to extend SVM toward a
spatio-temporal filtering SVM. Hence, all relevant aspectsof
brain post-stimulus dynamics recorded in an EEG could be
modeled in a supervised learning fashion.
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