
HAL Id: hal-00617892
https://hal.science/hal-00617892v1

Submitted on 30 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and FPGA Implementation of Stochastic Turbo
Decoder

Quang Trung Dong, Matthieu Arzel, Christophe Jego

To cite this version:
Quang Trung Dong, Matthieu Arzel, Christophe Jego. Design and FPGA Implementation of Stochas-
tic Turbo Decoder. NEWCAS 2011, Jun 2011, Bordeaux, France. pp.21-24. �hal-00617892�

https://hal.science/hal-00617892v1
https://hal.archives-ouvertes.fr

Design and FPGA Implementation of Stochastic Turbo Decoder

Quang Trung Dong1, Matthieu Arzel1 and Christophe Jégo2

1Institut Telecom, Telecom Bretagne, CNRS Lab-STICC UMR 3192
Technopôle Brest Iroise, CS 83818 29238 Brest

Université Européenne de Bretagne, France
 firstname.lastname@telecom-bretagne.eu

2IPB, ENSEIRB-MATMECA, CNRS IMS, UMR 5218
351 Cours de la Libération, 33405 Talence

Université de Bordeaux, France
christophe.jego@ims-bordeaux.fr

ABSTRACT

Stochastic decoding that is inspired by stochastic computation is
an alternative technique for decoding of error-correcting codes.
The extension of this approach to decode convolutional codes and
turbo codes is discussed in this article. The switching activity
sensitivity is circumvented and the latching problem is reduced by
transforming the stochastic additions into stochastic multiplications
in the exponential domain and using multiple streams with
deterministic shufflers. The number of decoding cycles is thus
considerably reduced with no performance degradation. Stochastic
decoding, previously applied to the decoding of LDPC codes, can
now be applied to decoding of turbo codes. In addition, the first
hardware architecture for stochastic decoding of turbo codes is
presented. The proposed architecture makes fully-parallel turbo
decoding viable on FPGA devices. Results demonstrate the
potential of stochastic decoding to implement fully-parallel turbo
decoders.

1. INTRODUCTION

Principles of stochastic computation were elaborated in the
1960’s by Gaines [1] and Poppelbaum et al. [2] as a method
to carry out complex operations with a low hardware
complexity. The main feature of this method is that the
probabilities are converted into streams of stochastic bits
using Bernoulli sequences in which the information is given
by the statistics of the bit streams. Complex arithmetic
operations on probabilities such as multiplication and
division are transformed into operations on bits using
elementary logic gates. Stochastic decoding of Forward
Error Correction (FEC) is inspired by these principles. The
two main appealing features of this approach for iterative
decoding are very simple hardware structures of computing
nodes and high-throughput decoding. Early stochastic
methods were only successful for decoding special
short/acyclic Hamming [3] or LDPC codes [4]. These
methods result in poor decoding performance when used to
decode practical codes on factor graphs (with cycles). An
improved stochastic decoding approach was then proposed
to decode practical LDPC codes [5]. When compared with
conventional Sum-Product implementations, stochastic
decoding could provide near-optimal performance for
practical LDPC codes. The potential of this method for low-
complexity decoding was validated by an FPGA
implementation of a (1024, 512) LDPC decoder. This first
implementation provides a throughput of 706 Mbps at a Bit

Error Rate (BER) of 10−6 with performance loss of about 0.1
dB, compared to the floating-point BP, while occupying
only 36% of a Virtex-4 LX200 FPGA device [6]. High data
rates and architecture efficiencies were achieved thanks to
many recent improvements [7] [8]. In addition, this
approach was extended to well-known linear block codes
with high-density parity-check matrices, namely BCH
codes, Reed Solomon codes and product codes [9].
Moreover, stochastic decoding is also of high interest for
low power decoders [10] and fault-tolerant nanoscale
circuits [11].

Turbo codes [12] are a family of FECs that are especially
attractive for mobile communication systems and have been
adopted as part of several channel coding standards for high
data rates such as UMTS and CDMA2000 (third-generation)
or 3GPP-LTE (the last step toward the fourth generation). A
major challenge in the implementation of turbo decoders is
high-throughput decoding. Indeed, the next generations of
mobile communication systems will require data rates of 1
Gb/s and beyond. Designers try to exploit the maximum
feasible amount of parallelism in turbo decoders for the sake
of higher throughput. However, due to the lack of
parallelism in the MAP-based decoding algorithm, the
implementation of fully-parallel turbo decoders is still
challenging for practical turbo codes.

Another form of stochastic algorithm was proposed in [13]
and used for trellis decoding algorithm of an acyclic (16,11)
Hamming code and a (256,121) product Turbo code based
on 32 component decoders of this Hamming code. An
improved stochastic decoding approach was recently
introduced to decode convolutional codes and turbo codes
[14]. The results provided in this paper validate the potential
of stochastic decoding as a practical approach for high-
throughput turbo decoders and encourage to keep on
investigating in this way. One major problem in stochastic
decoding which deeply degrades the performance is related
to the sensitivity to the level of random switching activity.
Different solutions such as Edge Memories (EMs) [7] have
been suggested to solve this latching problem. In [15],
authors introduced an original idea to reduce the number of
clock cycles required to decode one codeword and to replace
the EMs by simple deterministic shufflers. The proposed
architecture, that uses multiple streams in parallel to
represent the same probability, presents the best architecture

efficiency defined as the ratio between data throughput and
hardware complexity.

Thanks to these previous studies, this paper discusses the
implementation issues of stochastic turbo decoders. The first
FPGA-based implementation of a stochastic turbo decoder is
presented. The remainder of the paper is organized as
follows. Section 2 recalls the basic principles of turbo
decoding and stochastic computation. Details of multiple
stream decoding of turbo codes are given in Section 3.
Synthesis and turbo decoding performance results for a
turbo decoder are finally presented.

2. STOCHASTIC IMPLEMENTATION OF THE APP
ALGORITHM

For convolutional turbo codes, the decoding is performed
using the BCJR algorithm, also known as the MAP
algorithm [16]. It was adapted by Anderson and Hladik to
deal with tail-biting codes. A sub-optimal version of the
MAP algorithm in the logarithmic domain with an
acceptable loss of performance referred to as Sub-MAP
algorithm was then introduced. The stochastic decoding of
turbo codes requires the stochastic computation to be
applied to a tail-biting A Posteriori Probability (APP)
algorithm, which relies on the trellis representation. Fig. 1
details the exchange of information between the various
sections of a tail-biting APP decoder.

Fig.1. Stochastic tail-biting APP decoder

There are as many sections as symbols to decode and each
section is made up of five modules. A module is fed by
the channel outputs ui and vi, which are associated with the
ith transmitted symbol di and its parity bit yi. This module
converts ui and vi into a priori probabilities, represented by
two stochastic streams to compute the branch metrics and
then the forward metrics in an A module and the backward
metrics in a B module. These modules are involved in a
recursive process since they use the forward and backward
metrics αi and βi+1 from their neighbors and provide them
αi+1 and βi. A Dec module decides the final value of each
binary symbol, di for the transmitted symbol di. A last

module is also required if the APP decoder is part of a turbo
decoder: the Extr module. This module computes the output
extrinsic probability Prex

out which is then used by a module
 of the second APP decoder as the input Prex

in. In
stochastic decoding, probabilities received from the channel
are transformed to streams of stochastic bits using Bernoulli
sequences. Each bit in the stream is likely to be ‘1’ with the
probability to be transformed. All the modules exchange
stochastic streams over a logic gate network based on the
code trellis representation. Each stochastic decoding step is
referred to as a decoding cycle (DC) and corresponds to the
output of one new bit for each stochastic unit. The decoding
process terminates when a maximum number of DCs is
reached.

Using stochastic representation, operations on probabilities
are transformed into bit-serial operations on stochastic
streams using simple processing elements. Multiplication
and division are thus processed by simple logic gates. From
the equations of the APP algorithm, it can be noted that
besides the multiplication and division operations, a huge
number of additions is necessary. Since the addition of
values in the interval [0, 1] may take values bigger than 1,
this operation cannot be done directly with stochastic
streams. In practice, a multiplexer can produce an output
stream that is the scaled sum of the input probabilities by
randomly selecting one of the inputs. But, as the output
sequence length has to be larger than the input sequence
lengths to achieve the same precision, it severely slows
down the decoding convergence speed. For this reason, a
novel technique for implementing the stochastic addition
operation has been proposed in [14]. It consists in
transforming the stochastic additions into stochastic
multiplications in the exponential domain. The number of
DCs is thus considerably reduced with no performance
degradation.

3. MULTIPLE STREAM DECODING
OF TURBO CODES

Different solutions have been suggested to solve the latching
problem, and thus, to improve the BER performance of
stochastic decoding, such as: using supernodes, scaling the
received Log-Likelihood Ratios (LLRs) up to a maximum
value, Edge Memories (EMs) insertion and Noise-
Dependent Scaling (NDS). Basically, these solutions aim at
re-randomizing and decorrelating stochastic streams. An EM
is a complex unit based on a register in which only valuable
bits referred to as regenerative bits, i.e. avoiding signals
stuck at ’0’ or ’1’, are written and randomly read. Such a
unit is efficient to solve the latching problem when the
register depth is sufficient (typically between 32 and 64) and
when it is duplicated for any vertex of the decoding graph,
as detailed in [17]. It means that EMs insertion is costly in
terms of hardware resources. To improve that, some
alternatives have been proposed such as the Tracking
Forecast Memory (TFM) [17] and the Majority-based TFM
(MTFM) [8]. Nevertheless, these solutions still require some
hardware resources such as 8-bit registers, random address

 Fig.2. Stochastic decoding performance of convolutional code

generators, adders and comparators. Re-randomizing and
decorrelating stochastic streams can be done without these
complex units if all the probabilities are represented by
multiple stochastic streams.

An EM picks up a regenerative bit from a pool when
correlation occurs. It is also possible to pick up a
regenerative bit from another independent stochastic stream
representing the same probability. To reduce the correlation
between the concurrent streams, more than two are required.
Moreover, the regenerative bit has to be randomly selected
among them. In a multiple stream architecture, all the
streams and the logic gates are duplicated p times (p>2) and
the random bit selection is done by a simple shuffler. The
shuffler is made of a register of p JK flip-flops – providing
the stochastic normalization –, a p-bit barrel-shifter and p
multiplexers. Note that the barrel-shifter is purely
combinatorial with a circular shuffling rule to avoid
additional random generators. The major interest of multiple
stream decoding is that representing a probability by p
stochastic streams instead of one divides the number of DCs
by p to insure the same precision. It means that a stochastic
architecture based on multiple streams has a throughput
similar to any other stochastic architecture parallelized at
degree p as suggested in [3].
Four digital decoder behavioral models were written in C
language to assess the decoding performance of the four
decoding methods, namely the proposed multiple stream
exponentional stochastic decoder, an exponentional
stochastic decoder, a conventional stochastic decoder and a
floating-point Sub-MAP decoder for both convolutional and
turbo codes. Fig. 2 shows the BER performance of the
stochastic decoding of a tail-biting RSC code (n = 400 bits,
code rate R = 1/2). A decoder combining NDS and EMs
provides a BER performance similar to the one of a
conventional APP floating-point algorithm. Processing
additions in the exponential domain enables a decrease of
the number of DCs from 30K to 4K. Moreover, a 32-stream

Fig.3. Stochastic decoding performance of turbo code

decoder with shufflers achieves similar BER performance
and necessitates only 150 DCs. The stochastic decoding
performance of a (n = 600 bits, R = 1/3) turbo code are
given in Fig. 3. Conventional stochastic decoder based on
EMs and NDS techniques achieves similar BER
performance of a floating-point Sub-MAP turbo decoder
with 6 iterations. The exponential stochastic approach
enables the number of DCs to be reduced from 250K to
32K. The 32-streams stochastic decoder with shufflers
requires only 1K DCs. It means that multiple stream
architectures for stochastic turbo decoding are competitive
in terms of BER performance but also in terms of DCs with
state-of-the-art high-speed turbo decoders.

4. FPGA IMPLEMENTATION AND
PERFORMANCE RESULTS

Designing stochastic decoding architectures for turbo
codes is a challenging issue. In this section, an
implementation of a turbo decoder based on the proposed
multiple stream exponentional stochastic decoding
algorithm is detailed. The additional cost of addition
operations in the exponential domain in terms of hardware
resources is reasonable as explained in [14]. Indeed,
expanding the Taylor series to the second order is sufficient
for both exponential and logarithmic modules. Note that a
stochastic architecture where all the probabilities are
represented by eight independent streams has been designed.
It offers a compromise between data throughput and
hardware complexity for this first FPGA-based integration.
Implementation results of the turbo decoder for a (n=40 bits,
R=1/3) turbo code is given in Table I. First, the complexities
of one section of the stochastic APP decoder in terms of
resources for stochastic computation and for random bit
generation are summarized. Remember that a randomization
engine is necessary for providing random bits. These
random bits are used in 2-to-1 multiplexers and as the
addresses of stochastic stream generators. Fortunately, the

complexity impact of the random bit generation can be
greatly reduced by reusing them in different modules of the
APP decoder and in the two decoders. In our design, 112
slice LUTs and 1,344 slice Flip-Flops are necessary for one
section of APP decoder. Then, the hardware complexity of
an APP decoder that contains 40 sections is given. Indeed,
there are as many sections as symbols to process in the
proposed fully-parallel architecture. Finally, the stochastic
turbo decoder occupies 149,020 slice LUTs and 90,760 slice
Flip-Flops.

Virtex5 LX330
stochastic

computation
random bit
generation

LUT Flip-Flop LUT Flip-Flop
one

section of
APP

decoder

 80 0

112 269 A/B 1,360 768
Extr 216 168
Dec 152 48

APP decoder
(40 sections)

72,320 39,360

4,480 10,760

turbo decoder
(with interleaver)

144,640 80,000

Table.I. FPGA implementation results of the 8-streams stochastic
decoder of a (n=40 bits, R=1/3) turbo code

In order to validate the designed stochastic turbo decoder,
BER performance measures have to be carried out. For this
reason, we have integrated the designed turbo decoder into
an experimental setup. All the components of the
experimental setup were implemented onto one Xilinx
Virtex5 LX330 FPGA device. A Pseudo Random Generator
(PRG) sends out pseudo random data streams at each clock
period f0. This module is composed of flip-flops and XOR
gates. A (n=40, R=1/3) turbo code encoder processes the
data streams. The last task of the transmitter is a BPSK
mapping. We have chosen to integrate an AWGN channel
from a white Gaussian noise generator adapted to hardware
implementation. The Wallace method generates a variable
that is normally distributed from a pool of variables that
follows a normal distribution as well [18]. The Signal to
Noise Ratio (SNR) is controllable via a computer that sends
it to the experimental setup thanks to a PCI bus. Simulated
performance of stochastic decoding algorithm and measured
performance of designed 8-streams stochastic decoder for
the (n=40 bits, R=1/3) turbo code are considered. The
prototype shows identical performance when compared to
simulation.

CONCLUSION

The paper discussed the architecture of a stochastic turbo
decoder. The number of decoding cycles is considerably
reduced with no performance degradation by transforming
the stochastic additions into stochastic multiplications in the
exponential domain and using multiple streams with
deterministic shufflers. An FPGA-based architecture for a
fully-parallel 8-streams stochastic decoder of a (n = 40, R =
1/3) turbo code is then presented. To the best of our

knowledge, this is the first hardware implementation of a
stochastic turbo decoder.

REFERENCES

[1] B. Gaines, Stochastic computing, in AFIPS SJCC, n° 30, 1967.
[2] W. Poppelbaum, C. Afuso, and J. Esch, Stochastic computing

elements and systems, in AFIPS FJCC, n°31, 1967.
[3] V. Gaudet and A. Rapley, Iterative decoding using stochastic

computation, Electronics Letters, vol. 39, n° 3, Feb. 2003.
[4] W. Gross, V. Gaudet, and A. Milner, Stochastic

implementation of LDPC decoders, in Signals, Systems and
Computers, 2005. Conference Record of the Thirty-Ninth
Asilomar Conference on, Oct. 28 - Nov. 1 2005, pp. 713–717.

[5] S. Sharifi Tehrani, W. Gross, and S. Mannor, Stochastic
decoding of LDPC codes, Communications Letters, IEEE, vol.
10, no. 10, pp. 716–718, Oct. 2006.

[6] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, An area-
efficient FPGA-based architecture for fully-parallel stochastic
LDPC decoding, in the Proc. of the IEEE Workshop on Signal
Processing Systems (SiPS), Shanghai, China, Oct. 2007.

[7] S. Sharifi Tehrani, S. Mannor, and W. Gross, Fully parallel
stochastic LDPC decoders, Signal Processing, IEEE
Transactions on, vol. 56, no. 11, pp. 5692–5703, Nov. 2008.

[8] S. Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor,
and W. Gross, Majority-based tracking forecast memories for
stochastic LDPC decoding, Signal Processing, IEEE
Transactions on, vol. 58, no. 9, pp. 4883 –4896, Sep. 2010.

[9] S. Sharifi Tehrani, C. Jego, B. Zhu, and W. Gross, Stochastic
decoding of linear block codes with high-density parity-check
matrices, Signal Processing, IEEE Transactions on, vol. 56, no.
11, pp. 5733–5739, Nov. 2008.

[10] V. C. Gaudet and W. J. Gross, Switching activity in stochastic
decoders, in Proceedings of the 40th IEEE International
Symposium on Multiple-Valued Logic (ISMVL), May 2010.

[11] C. Winstead and S. Howard, A probabilistic LDPC-coded fault
compensation technique for reliable nanoscale computing,
Circuits and Systems II: Express Briefs, IEEE Transactions on,
vol. 56, no. 6, pp. 484 –488, June 2009.

[12] C. Berrou, A. Glavieux, and P. Thitimajshima, Near shannon
limit error correcting coding and decoding: Turbo-codes,. ICC
93. IEEE International Conference on, vol. 2, May 1993.

[13] C. Winstead, V. Gaudet, A. Rapley, and C. Schlegel,
Stochastic iterative decoders, in Proc. IEEE Int. Symp. on
Information Theory 2005, pp. 1116–1120.

[14] Q. T. Dong, M. Arzel, C. Jego, and W. J. Gross, Stochastic
Decoding of Turbo Codes, Signal Processing, IEEE
Transactions on, Volume 58, Issue 12, December 2010.

[15] M. Arzel, C. Lahuec, C. Jego, W. J. Gross and Y. Bruned,
Stochastic multiple-stream decoding of Cortex codes,
submitted at Signal Processing, IEEE Transactions on, vol.
PP, no.99, pp.1, 0 doi: 10.1109/TSP.2011.2138699.

[16] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding
of linear codes for minimizing symbol error rate," IEEE Trans.
Inf. Theory, vol. IT-20, pp. 284-287, Mar. 1974.

[17] S. Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor, and W.
Gross, Tracking forecast memories in stochastic decoders, in
ICASSP 2009, IEEE International Conference on, April 2009.

[18] O. Sanchez Gonzalez, M. Arzel, C. Jégo, A. Garcia, M.
Guerrero, “Design and implementation of a MIMO channel
emulator onto FPGA device”, IWS'09: XV proyecto Iberchip,
25-27 March, 2009.

