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ABSTRACT 

Stochastic decoding that is inspired by stochastic computation is 
an alternative technique for decoding of error-correcting codes. 
The extension of this approach to decode convolutional codes and 
turbo codes is discussed in this article. The switching activity 
sensitivity is circumvented and the latching problem is reduced by 
transforming the stochastic additions into stochastic multiplications 
in the exponential domain and using multiple streams with 
deterministic shufflers. The number of decoding cycles is thus 
considerably reduced with no performance degradation. Stochastic 
decoding, previously applied to the decoding of LDPC codes, can 
now be applied to decoding of turbo codes. In addition, the first 
hardware architecture for stochastic decoding of turbo codes is 
presented. The proposed architecture makes fully-parallel turbo 
decoding viable on FPGA devices. Results demonstrate the 
potential of stochastic decoding to implement fully-parallel turbo 
decoders. 

1. INTRODUCTION 

Principles of stochastic computation were elaborated in the 
1960’s by Gaines [1] and Poppelbaum et al. [2] as a method 
to carry out complex operations with a low hardware 
complexity. The main feature of this method is that the 
probabilities are converted into streams of stochastic bits 
using Bernoulli sequences in which the information is given 
by the statistics of the bit streams. Complex arithmetic 
operations on probabilities such as multiplication and 
division are transformed into operations on bits using 
elementary logic gates. Stochastic decoding of Forward 
Error Correction (FEC) is inspired by these principles. The 
two main appealing features of this approach for iterative 
decoding are very simple hardware structures of computing 
nodes and high-throughput decoding. Early stochastic 
methods were only successful for decoding special 
short/acyclic Hamming [3] or LDPC codes [4]. These 
methods result in poor decoding performance when used to 
decode practical codes on factor graphs (with cycles). An 
improved stochastic decoding approach was then proposed 
to decode practical LDPC codes [5]. When compared with 
conventional Sum-Product implementations, stochastic 
decoding could provide near-optimal performance for 
practical LDPC codes. The potential of this method for low-
complexity decoding was validated by an FPGA 
implementation of a (1024, 512) LDPC decoder. This first 
implementation provides a throughput of 706 Mbps at a Bit 

Error Rate (BER) of 10−6 with performance loss of about 0.1 
dB, compared to the floating-point BP, while occupying 
only 36% of a Virtex-4 LX200 FPGA device [6]. High data 
rates and architecture efficiencies were achieved thanks to 
many recent improvements [7] [8]. In addition, this 
approach was extended to well-known linear block codes 
with high-density parity-check matrices, namely BCH 
codes, Reed Solomon codes and product codes [9]. 
Moreover, stochastic decoding is also of high interest for 
low power decoders [10] and fault-tolerant nanoscale 
circuits [11]. 

Turbo codes [12] are a family of FECs that are especially 
attractive for mobile communication systems and have been 
adopted as part of several channel coding standards for high 
data rates such as UMTS and CDMA2000 (third-generation) 
or 3GPP-LTE (the last step toward the fourth generation). A 
major challenge in the implementation of turbo decoders is 
high-throughput decoding. Indeed, the next generations of 
mobile communication systems will require data rates of 1 
Gb/s and beyond. Designers try to exploit the maximum 
feasible amount of parallelism in turbo decoders for the sake 
of higher throughput. However, due to the lack of 
parallelism in the MAP-based decoding algorithm, the 
implementation of fully-parallel turbo decoders is still 
challenging for practical turbo codes.  

Another form of stochastic algorithm was proposed in [13] 
and used for trellis decoding algorithm of an acyclic (16,11) 
Hamming code and a (256,121) product Turbo code based 
on 32 component decoders of this Hamming code. An 
improved stochastic decoding approach was recently 
introduced to decode convolutional codes and turbo codes 
[14]. The results provided in this paper validate the potential 
of stochastic decoding as a practical approach for high-
throughput turbo decoders and encourage to keep on 
investigating in this way. One major problem in stochastic 
decoding which deeply degrades the performance is related 
to the sensitivity to the level of random switching activity. 
Different solutions such as Edge Memories (EMs) [7] have 
been suggested to solve this latching problem. In [15], 
authors introduced an original idea to reduce the number of 
clock cycles required to decode one codeword and to replace 
the EMs by simple deterministic shufflers. The proposed 
architecture, that uses multiple streams in parallel to 
represent the same probability, presents the best architecture 



efficiency defined as the ratio between data throughput and 
hardware complexity.  

Thanks to these previous studies, this paper discusses the 
implementation issues of stochastic turbo decoders. The first 
FPGA-based implementation of a stochastic turbo decoder is 
presented. The remainder of the paper is organized as 
follows. Section 2 recalls the basic principles of turbo 
decoding and stochastic computation. Details of multiple 
stream decoding of turbo codes are given in Section 3. 
Synthesis and turbo decoding performance results for a 
turbo decoder are finally presented.  

2. STOCHASTIC IMPLEMENTATION OF THE APP 
ALGORITHM 

For convolutional turbo codes, the decoding is performed 
using the BCJR algorithm, also known as the MAP 
algorithm [16]. It was adapted by Anderson and Hladik to 
deal with tail-biting codes. A sub-optimal version of the 
MAP algorithm in the logarithmic domain with an 
acceptable loss of performance referred to as Sub-MAP 
algorithm was then introduced. The stochastic decoding of 
turbo codes requires the stochastic computation to be 
applied to a tail-biting A Posteriori Probability (APP) 
algorithm, which relies on the trellis representation. Fig. 1 
details the exchange of information between the various 
sections of a tail-biting APP decoder. 

 

 
 

Fig.1. Stochastic tail-biting APP decoder 
 

There are as many sections as symbols to decode and each 
section is made up of five modules. A  module is fed by 
the channel outputs ui and vi, which are associated with the 
ith transmitted symbol di and its parity bit yi. This module 
converts ui and vi into a priori probabilities, represented by 
two stochastic streams to compute the branch metrics and 
then the forward metrics in an A module and the backward 
metrics in a B module. These modules are involved in a 
recursive process since they use the forward and backward 
metrics αi and βi+1 from their neighbors and provide them 
αi+1 and βi. A Dec module decides the final value of each 
binary symbol, di for the transmitted symbol di. A last 

module is also required if the APP decoder is part of a turbo 
decoder: the Extr module. This module computes the output 
extrinsic probability Prex

out which is then used by a module 
 of the second APP decoder as the input Prex

in. In 
stochastic decoding, probabilities received from the channel 
are transformed to streams of stochastic bits using Bernoulli 
sequences. Each bit in the stream is likely to be ‘1’ with the 
probability to be transformed. All the modules exchange 
stochastic streams over a logic gate network based on the 
code trellis representation. Each stochastic decoding step is 
referred to as a decoding cycle (DC) and corresponds to the 
output of one new bit for each stochastic unit. The decoding 
process terminates when a maximum number of DCs is 
reached. 

Using stochastic representation, operations on probabilities 
are transformed into bit-serial operations on stochastic 
streams using simple processing elements. Multiplication 
and division are thus processed by simple logic gates. From 
the equations of the APP algorithm, it can be noted that 
besides the multiplication and division operations, a huge 
number of additions is necessary. Since the addition of 
values in the interval [0, 1] may take values bigger than 1, 
this operation cannot be done directly with stochastic 
streams. In practice, a multiplexer can produce an output 
stream that is the scaled sum of the input probabilities by 
randomly selecting one of the inputs. But, as the output 
sequence length has to be larger than the input sequence 
lengths to achieve the same precision, it severely slows 
down the decoding convergence speed. For this reason, a 
novel technique for implementing the stochastic addition 
operation has been proposed in [14]. It consists in 
transforming the stochastic additions into stochastic 
multiplications in the exponential domain. The number of 
DCs is thus considerably reduced with no performance 
degradation. 

 

3. MULTIPLE STREAM DECODING  
OF TURBO CODES 

  

Different solutions have been suggested to solve the latching 
problem, and thus, to improve the BER performance of 
stochastic decoding, such as: using supernodes, scaling the 
received Log-Likelihood Ratios (LLRs) up to a maximum 
value, Edge Memories (EMs) insertion and Noise-
Dependent Scaling (NDS). Basically, these solutions aim at 
re-randomizing and decorrelating stochastic streams. An EM 
is a complex unit based on a register in which only valuable 
bits referred to as regenerative bits, i.e. avoiding signals 
stuck at ’0’ or ’1’, are written and randomly read. Such a 
unit is efficient to solve the latching problem when the 
register depth is sufficient (typically between 32 and 64) and 
when it is duplicated for any vertex of the decoding graph, 
as detailed in [17]. It means that EMs insertion is costly in 
terms of hardware resources. To improve that, some 
alternatives have been proposed such as the Tracking 
Forecast Memory (TFM) [17] and the Majority-based TFM 
(MTFM) [8]. Nevertheless, these solutions still require some 
hardware resources such as 8-bit registers, random address  



 

 Fig.2. Stochastic decoding performance of convolutional code 
 

generators, adders and comparators. Re-randomizing and 
decorrelating stochastic streams can be done without these 
complex units if all the probabilities are represented by 
multiple stochastic streams.  

An EM picks up a regenerative bit from a pool when 
correlation occurs. It is also possible to pick up a 
regenerative bit from another independent stochastic stream 
representing the same probability. To reduce the correlation 
between the concurrent streams, more than two are required. 
Moreover, the regenerative bit has to be randomly selected 
among them. In a multiple stream architecture, all the 
streams and the logic gates are duplicated p times (p>2) and 
the random bit selection is done by a simple shuffler. The 
shuffler is made of a register of p JK flip-flops – providing 
the stochastic normalization –, a p-bit barrel-shifter and p 
multiplexers. Note that the barrel-shifter is purely 
combinatorial with a circular shuffling rule to avoid 
additional random generators. The major interest of multiple 
stream decoding is that representing a probability by p 
stochastic streams instead of one divides the number of DCs 
by p to insure the same precision. It means that a stochastic 
architecture based on multiple streams has a throughput 
similar to any other stochastic architecture parallelized at 
degree p as suggested in [3]. 
Four digital decoder behavioral models were written in C 
language to assess the decoding performance of the four 
decoding methods, namely the proposed multiple stream 
exponentional stochastic decoder, an exponentional 
stochastic decoder, a conventional stochastic decoder and a 
floating-point Sub-MAP decoder for both convolutional and 
turbo codes. Fig. 2 shows the BER performance of the 
stochastic decoding of a tail-biting RSC code (n = 400 bits, 
code rate R = 1/2). A decoder combining NDS and EMs 
provides a BER performance similar to the one of a 
conventional APP floating-point algorithm. Processing 
additions in the exponential domain enables a decrease of 
the number of DCs from 30K to 4K. Moreover, a 32-stream  

 
 

Fig.3. Stochastic decoding performance of turbo code 
 

decoder with shufflers achieves similar BER performance 
and necessitates only 150 DCs. The stochastic decoding 
performance of a (n = 600 bits, R = 1/3) turbo code are 
given in Fig. 3. Conventional stochastic decoder based on 
EMs and NDS techniques achieves similar BER 
performance of a floating-point Sub-MAP turbo decoder 
with 6 iterations. The exponential stochastic approach 
enables the number of DCs to be reduced from 250K to 
32K. The 32-streams stochastic decoder with shufflers 
requires only 1K DCs. It means that multiple stream 
architectures for stochastic turbo decoding are competitive 
in terms of BER performance but also in terms of DCs with 
state-of-the-art high-speed turbo decoders. 
 

 

4. FPGA IMPLEMENTATION AND  
PERFORMANCE RESULTS 

 

Designing stochastic decoding architectures for turbo 
codes is a challenging issue. In this section, an 
implementation of a turbo decoder based on the proposed 
multiple stream exponentional stochastic decoding 
algorithm is detailed. The additional cost of addition 
operations in the exponential domain in terms of hardware 
resources is reasonable as explained in [14]. Indeed, 
expanding the Taylor series to the second order is sufficient 
for both exponential and logarithmic modules. Note that a 
stochastic architecture where all the probabilities are 
represented by eight independent streams has been designed. 
It offers a compromise between data throughput and 
hardware complexity for this first FPGA-based integration. 
Implementation results of the turbo decoder for a (n=40 bits, 
R=1/3) turbo code is given in Table I. First, the complexities 
of one section of the stochastic APP decoder in terms of 
resources for stochastic computation and for random bit 
generation are summarized. Remember that a randomization 
engine is necessary for providing random bits. These 
random bits are used in 2-to-1 multiplexers and as the 
addresses of stochastic stream generators. Fortunately, the 



complexity impact of the random bit generation can be 
greatly reduced by reusing them in different modules of the 
APP decoder and in the two decoders. In our design, 112 
slice LUTs and 1,344 slice Flip-Flops are necessary for one 
section of APP decoder. Then, the hardware complexity of 
an APP decoder that contains 40 sections is given. Indeed, 
there are as many sections as symbols to process in the 
proposed fully-parallel architecture. Finally, the stochastic 
turbo decoder occupies 149,020 slice LUTs and 90,760 slice 
Flip-Flops. 
 

Virtex5 LX330  
stochastic 

computation 
random bit 
generation 

LUT Flip-Flop LUT Flip-Flop 
one 

section of 
APP 

decoder 

 80 0 

112 269 A/B 1,360 768 
Extr 216 168 
Dec 152 48 

APP decoder 
(40 sections) 

72,320 39,360 

4,480 10,760  

turbo decoder 
(with interleaver) 

  

144,640 80,000 

 

Table.I. FPGA implementation results of the 8-streams stochastic 
decoder of a (n=40 bits, R=1/3) turbo code 

 

In order to validate the designed stochastic turbo decoder, 
BER performance measures have to be carried out. For this 
reason, we have integrated the designed turbo decoder into 
an experimental setup. All the components of the 
experimental setup were implemented onto one Xilinx 
Virtex5 LX330 FPGA device. A Pseudo Random Generator 
(PRG) sends out pseudo random data streams at each clock 
period f0. This module is composed of flip-flops and XOR 
gates. A (n=40, R=1/3) turbo code encoder processes the 
data streams. The last task of the transmitter is a BPSK 
mapping. We have chosen to integrate an AWGN channel 
from a white Gaussian noise generator adapted to hardware 
implementation. The Wallace method generates a variable 
that is normally distributed from a pool of variables that 
follows a normal distribution as well [18]. The Signal to 
Noise Ratio (SNR) is controllable via a computer that sends 
it to the experimental setup thanks to a PCI bus. Simulated 
performance of stochastic decoding algorithm and measured 
performance of designed 8-streams stochastic decoder for 
the (n=40 bits, R=1/3) turbo code are considered.  The 
prototype shows identical performance when compared to 
simulation. 

CONCLUSION 

The paper discussed the architecture of a stochastic turbo 
decoder. The number of decoding cycles is considerably 
reduced with no performance degradation by transforming 
the stochastic additions into stochastic multiplications in the 
exponential domain and using multiple streams with 
deterministic shufflers. An FPGA-based architecture for a 
fully-parallel 8-streams stochastic decoder of a (n = 40, R = 
1/3) turbo code is then presented. To the best of our 

knowledge, this is the first hardware implementation of a 
stochastic turbo decoder.  
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