
HAL Id: hal-00617865
https://hal.science/hal-00617865

Submitted on 30 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic multiple-stream decoding of Cortex codes
Matthieu Arzel, Cyril Lahuec, Christophe Jego, Warren J. Gross, Yvain

Bruned

To cite this version:
Matthieu Arzel, Cyril Lahuec, Christophe Jego, Warren J. Gross, Yvain Bruned. Stochastic multiple-
stream decoding of Cortex codes. IEEE Transactions on Signal Processing, 2011, 59 (7), pp.3486 -
3491. �hal-00617865�

https://hal.science/hal-00617865
https://hal.archives-ouvertes.fr

1

Stochastic Multiple Stream Decoding of Cortex

Codes
Matthieu Arzel, Cyril Lahuec, Christophe Jego Member, IEEE,,

Warren J. Gross Senior Member, IEEE, and Yvain Bruned

Abstract

Cortex codes are short length block codes having a large Hamming distance. Their modular con-

struction, based on simple and very short block codes, yield to difficulties in efficiently decoding them

with digital decoders implementing the Sum-Product algorithm. However, this construction lends itself to

analog decoding with performance close to ML decoding as was recently demonstrated. A digital decoding

method close to analog decoding is stochastic decoding. This paper brings the two together to design

a Cortex stochastic architecture with good decoding performance. Moreover, the proposed stochastic

decoder architecture is simplified when compared to the customary one. Instead of edge or tracking

forecast memories the proposed architecture uses multiple streams to represent the same probability

and deterministic shufflers. This results in a more efficient architecture in terms of ratio between data

throughput and hardware complexity. Finally, the proposed method offers decoding performance similar

to a Min-Sum decoder with 50 iterations. EDICS: HDW-HDSP

Index Terms

Cortex codes, stochastic decoding, Sum-Product algorithm.

Copyright (c) 2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Matthieu Arzel and Cyril Lahuec are with Institut Telecom/Telecom Bretagne, CNRS Lab-STICC UMR 3192, Technopôle
Brest-Iroise F-29238 BREST Cedex 3, France (email: qt.dong@telecom-bretagne.eu; matthieu.arzel@telecom-bretagne.eu).

Christophe Jego is with CNRS IMS, UMR 5218 351 Cours de la Libération F-33405 TALENCE CEDEX (email:
christophe.jego@ims-bordeaux.fr).

Warren J. Gross is with the Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, H3A
2A7, Canada (email: wjgross@ece.mcgill.ca).

Yvain Bruned is with ENS Cachan/Bretagne, Campus de Ker Lann, F-35170 Bruz, France (email:
Yvain.Bruned@eleves.bretagne.ens-cachan.fr).

January 20, 2011 DRAFT

2

I. INTRODUCTION

Turbo [1] and LDPC [2], [3] codes allow near optimal decoding performance for codes of block lengths

larger than a few hundreds of bits. However, these code families are not adapted to smaller blocks. Also

based on iterative encoding and interleaving stages, Cortex codes [4], [5] were invented for this purpose.

They are asymptotically good [6] and possess interesting properties such as a systematic construction of

self-dual codes [4] and the possibility to associate every type-II self dual code with a Cortex code [7].

Although the Cortex construction offers short codes with large Hamming distances, they are generally

difficult to decode with usual digital implementation techniques [7], [8] due to the complexity of the

decoding graphs and the large number of hidden variables.

The first efficient Cortex decoder was implemented for codes based on the (4,2,2) Hadamard code with

analog circuits [9] applying the Sum-Product Algorithm (SPA). But is it possible to achieve such results

with digital circuits? The state-of-the-art digital implementations of the original SPA for LDPC codes

consist of different optimized versions of the Min-Sum solution provided in [10], with the exception

of stochastic circuits originally proposed in [11]. Stochastic decoders have been so optimized that they

provide some of the most efficient implementations of LDPC decoders [12].

Principles of stochastic computation were elaborated in the 1960’s [13], [14] as a method to carry out

complex operations with a low hardware complexity. The probabilities are converted into streams of

stochastic bits using Bernoulli sequences in which the information is given by the statistics of the

bit streams. Complex arithmetic operations on probabilities such as multiplication and division are

transformed into operations on bits using elementary logic gates. Stochastic decoder architectures are

designed with low computational complexity and a high level of parallelism [15] [16] achieving high

throughputs [12], [17], [18]. Moreover, stochastic decoding is of high interest for low-power decoders

[19] and fault-tolerant nanoscale circuits [20].

The main goal of this paper is to show that Cortex codes can be efficiently decoded, despite the complexity

of their decoding graphs, by state-of-the-art techniques, i.e. stochastic processing. An original idea is also

introduced to reduce the number of clock cycles required to decode one codeword and to replace the

Edge Memories (EMs) [17] by simple deterministic shufflers.

The paper is organized as follows. Section II summarizes the principles of Cortex codes. A stochastic

decoder architecture is presented to deal with them in Section III. This architecture is then compared

with analog SPA and digital Min-Sum counterparts in terms of decoding performance in Section IV.

Section V concludes the paper.

January 20, 2011 DRAFT

3

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

C0
0

C0
1

C0
i

C0
p−1

C1
0

C1
1

C1
i

C1
p−1

Cs−1
0

Cs−1
1

Cs−1
i

Cs−1
p−1

Cs
0

Cs
1

Cs
i

Cs
p−1

v
0

0

v
0

p×m−1

v
1

0

v
1

p×m−1

v
s−1

0

v
s−1

p×m−1

x0
xj
xm−1
xm
xm+j

x2m−1

xi×m

xi×m+j

x(i+1)×m−1

x(p−1)×m

x(p−1)×m+j

xp×m−1

r0
rj
rm−1
rm
rm+j

r2m−1

ri×m

ri×m+j

r(i+1)×m−1

r(p−1)×m

r(p−1)×m+j
rp×m−1

Π0 Π1 Πs−1

Fig. 1: Cortex encoder made up of s interleaving stages and (s + 1)×m component encoders.

II. CORTEX CODES

A. Design principles

Cortex codes were originally designed as systematic codes of rate one half [4]. As shown in Fig. 1, the

systematic symbols are grouped in frames of k symbols denoted by xi. Any frame x is sliced into p parts

of same length m. Each sub-frame, or slice, is independently encoded using a component encoder C0
j

of rate one half. The resulting redundant symbols are grouped into a frame of length k denoted by v
0.

Then, this frame is interleaved over its full-length k. This slicing-encoding-grouping-interleaving scheme

is iterated s times. Finally, the resulting frame vs is again sliced and encoded to yield the redundant frame

r of length k. If the same self-dual code is used for any component code, then, depending on constraints

on the interleavers [21], the resulting Cortex code is also self-dual. Thus, codes with Hamming distances

multiple of two or four are built. Using this Cortex construction, many known and new extremal short

codes can be built, as shown in [7].

B. C4 codes

Whereas the Cortex codes generally used the extended (8,4,4) Hamming code as component code,

other codes can be used. For instance, in [9] the basic (4,2,2) Hadamard code, the smallest self-dual

code, was proposed as component code with a simplified Tanner graph as illustrated in Fig. 2.

The resulting Cortex codes are referred to as C4 codes. Moreover, instead of constraining the design of

Cortex codes with a reduced number of interleaving stages (one or two) as advised by [6], Perez-Chamorro

showed in [22] that Cortex codes with more stages (up to six) have good decoding performance.

January 20, 2011 DRAFT

4

x0

x1

r0

r1

Fig. 2: Simplified bipartite graph of the (4,2,2)
Hadamard code.

1e−07

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

B
it

 E
rr

o
r

R
at

e

Eb/No (dB)

ML decoding
Floating−point SPA H8 decoding with 20 iterations
Analog SPA C4 decoding

Fig. 3: BER performance of the (32,16,8) Cortex
code provided in [7] and in [22].

III. DIGITAL DECODER DESIGN

A. Choice of a case study

(32,16,8) Cortex codes have been built using different component codes and interleaving stages. First,

three stages of (8,4,4) Hamming codes were proposed and digitally decoded with a floating-point SPA in

[7]. Second, six stages of (4,2,2) Hadamard codes were introduced and decoded by means of an analog

SPA decoder in [22]. Obtained from behavioral simulations, the Bit-Error Rate (BER) performance of

both solutions is given in Fig. 3. Note that Perez-Chamorro’s solution outperforms Otmani’s one by 1.7dB

at BER=10−5, because of the girth of the decoding graph equal to 6 in the former case and equal to 4 in

the latter case. Therefore, this code is chosen as case study for the proposed stochastic decoding method.

B. Cost of solving the latching problem

A C4 code can be decoded with the SPA by means of a stochastic architecture made up of random

number generators (RNGs) and elementary logic gates as described in [17]. One major problem in

stochastic decoding which deeply degrades the performance is known as the latching problem [16]. It is

related to the sensitivity to the level of random switching activity [23], which is especially critical at high

Signal-to-Noise Ratios (SNRs). Different solutions have been suggested to solve the latching problem,

and thus, to improve the BER performance of stochastic decoding, such as: using supernodes [16],

scaling the received Log-Likelihood Ratios (LLRs) up to a maximum value [23], Edge Memories (EMs)

January 20, 2011 DRAFT

5

A

B

C32−bit EM

5

ADR[4:0]

I1
I2

O

s0

s1
s2
s3

s4

s5

s6

s7

s8

s9

Fig. 4: EM-based architecture with probabilities represented by single stochastic streams and processed
by logic units connected through Edge Memories.

insertion and Noise-Dependent Scaling (NDS) [17]. Basically, these solutions aim at re-randomizing and

decorrelating stochastic streams.

An EM is a complex unit based on a register in which only valuable bits referred to as regenerative

bits, i.e. avoiding signals stuck at ’0’ or ’1’, are written and randomly read. Such a unit is efficient to

solve the latching problem when the register depth is sufficient (typically between 32 and 64) and when

it is duplicated for any vertex of the decoding graph, as detailed in [18]. Thus, EMs are costly in terms

of silicon area. To improve that, some alternatives have been proposed such as the Tracking Forecast

Memory (TFM) [18] and the Majority-based TFM (MTFM) [12]. A TFM-based decoder was shown to

require 40% of the ASIC area of an EM-based decoder with no performance loss. The resulting circuits

were shown in [12], [17], [18] to be competitive fully parallel decoders in terms of architecture efficiency

(data throughput over circuit area). Nevertheless, this optimized solution still requires 8-bit registers,

random address generators, adders and comparators.

Re-randomizing and decorrelating stochastic streams can be done without these complex units if all

the probabilities are represented by multiple stochastic streams that can be shuffled, as explained in the

next section.

C. Multiple stream architecture

An EM-based architecture is illustrated in Fig.4. Each probability Pi is carried by a stochastic stream

si and is processed with other probabilities by a logic unit – A, B or C – or an EM to avoid latching.

This EM picks up a regenerative bit from a pool when correlation occurs. It is also possible to pick up a

regenerative bit from another independent stochastic stream representing the same probability. To reduce

the correlation between the concurrent streams, more than two are required. Moreover, the regenerative bit

has to be randomly selected among them. Thus, the EM-based architecture in Fig. 4 can be replaced by

the multiple stream architecture shown in Fig. 5b where all the streams and the logic gates are duplicated

p times (p>2) and the random bit selection is done by a simple shuffler illustrated in Fig. 5b. The shuffler

January 20, 2011 DRAFT

6

B

A

C
S
H
U
F
F
L
E
R

replacements

I1

I2

O

s0[3 : 0]

s1[3 : 0]

s2[3 : 0]
s3[3 : 0]

s4[3 : 0]

s5[3 : 0]

s6[3 : 0]

s7[3 : 0]

s8[3 : 0]

s9[3 : 0]

(a) Multiple stream architecture.

J KJ KJ K

J K

S

J K

S J K

J K

S

1

0

1

0

J K

S

Barrel−Shifter

I2[0 : 3]

I1[0 : 3]
I1[0]

I1[0]

I2[0]

X[0]

X[0]

O[0]T [0]

I1[3]

I1[3]

I2[3]

X[3]

X[3]

O[3]T [3]

CLK

V [0 : 3]

T [0 : 3]

O[0 : 3]

(b) Shuffler handling p = 4 streams representing the same
probability.

Fig. 5: Novel architecture with probabilities represented by four stochastic streams and processed by
parallel logic units connected through shufflers.

is made of a register of p JK flip-flops – providing the stochastic normalization –, a p-bit barrel-shifter

and p multiplexers. The barrel-shifter is purely combinatorial. Its shifting value V is updated at each

decoding cycle (DC) – which corresponds to the output of a new bit from any Fixed-Point-to-Stochastic-

Stream (FX2SS) module – and is the same for any barrel-shifter. FX2SS modules are made up of Random

Number Generators (RNGs) and comparators as detailed in [11]. To simplify further the architecture, the

shuffling rule can be deterministic to avoid additional RNGs, for instance circularly shifting bits of one

position to the left at each DC.

In addition, representing a probability by p stochastic streams instead of one divides the number of

DCs by p to insure the same precision. Thus, this novel architecture has a throughput similar to any

other stochastic architecture parallelized at degree p as suggested in [11]. Therefore, the multiple stream

architecture has to be compared to state-of-the-art solutions in terms of architecture efficiency, i.e. ratio

between throughput and hardware complexity, as done in the next sections.

D. Stochastic multiple stream Sum-Product decoder

The proposed stochastic processing mimics that of the analog decoder in [9], i.e. the decoding is based

on the encoding graph. Input data feed the decoding graph in which all the vertices are, as conventionnaly,

bidirectionnal. Messages are exchanged along these vertices until the decoder converges and stops. Given

the encoding graph of a Cortex code (Fig.1), Fig. 6 illustrates the architecture of a Cortex decoder using the

January 20, 2011 DRAFT

7

conversion
to−stochastic
Fixed−point−

conversion
to−stochastic
Fixed−point−

Stochastic decoding core

Serial−to−parallel memory

C4FBC4Dec

C4Dec

C4Dec C4FB

C4FB

FX2MS

FX2MS

FX2MS

FX2MS

FX2MS

FX2MS

FX2MS

FX2MS

FX2MS

FX2MS

FX2MS

FX2MS

C4B

C4B

C4B

xi
8

ROM
8

n× 8k × 8 k × 8

1

k

8

8

8

8

8

8

8

8

8

8

8

8 p
pp

p
p

p

p
p

p
p
p

p
pp

p
p
pp

p
p

x̂0..k−1

Π ΠΠ−1Π−1

Fig. 6: Stochastic cortex decoder made up of a ROM, a serial-to-parallel memory and a fully parallel
multiple stream stochastic core.

proposed multiple stream processing. The channel outputs are converted into symbol probabilities thanks

to a ROM and parallelized to feed a stochastic computation core. This fully parallel core is composed

of three types of units: converters from fixed-point probabilities into multiple stochastic streams (FX2MS

units), bidirectional stochastic decoders of (4,2,2) Hadamard codes (C4Dec, C4FB and C4B units) and

interleavers (Π and Π−1). The C4B modules compute the messages sent to the C4FB modules on their

left-hand side using the redundant information. The C4Dec modules compute the messages needed by

the C4FB modules on their right-hand side using the systematic information. In addition, these modules

take the decision on the decoded bits. The C4FB modules computes the messages needed by their left

and right-hand side neighbors. This last module is detailed in Fig. 7a. All the interconnections are p-bit

buses processed in parallel by the logic gates. For instance each p-bit XOR has two p-bit inputs and

one p-bit output and is made up of p conventional XORs (each one has two 1-bit inputs and one 1-bit

output).

A C4B module is half a C4FB one. The C4Dec and the C4B modules are similar except the former

requires two 3-bit counters to provide decisions on the received codeword as illustrated in Fig. 7b. Figures

7a and 7b present the components required by the exact computing. Some flip-flops may be added to

reduce the critical path, without any performance loss.

IV. SIMULATION RESULTS

Three digital decoder behavioral models were written in C language to assess the decoding perfor-

mance of the three decoding methods, namely the proposed 16-stream stochastic decoder, a conventional

January 20, 2011 DRAFT

8

C4FB

SHUFFLER SHUFFLER

SHUFFLERSHUFFLER

I1 I2 I1 I2

O O

I1 I2 I1 I2

O O

p

p

p

p

p

p

p

p

f s
2×i

f s
2×i+1

f s+1
Π−1(2×i)

f s+1
Π−1(2×i+1)

bs2×i

bs2×i+1

bs+1
Π(2×i)

bs+1
Π(2×i+1)

(a) C4FB module.

+ −

D

+ −

D

C4Dec

COUNTER COUNTER

SHUFFLER SHUFFLER

I1 I2

O

I1 I2

O

p

p

p

p

p

p

1

1

f s
2×i

f s
2×i+1

f s+1
Π−1(2×i)

f s+1
Π−1(2×i+1)

bs+1
Π(2×i)

bs+1
Π(2×i+1)

x̂2×i

x̂2×i+1

(b) C4Dec module.

Fig. 7: Stochastic multiple stream processing modules computing forward/backward messages and
decisions. All the shuffler inputs V , which give the shifting value and are driven by the same signal, are
not mentioned.

stochastic decoder with 32-bit EMs and a Min-Sum decoder using the flooding schedule and fixed-point

8-bit messages. Note that an iteration consists of updating all the edges of the decoding graph once.

A. Decoding performance

As shown in Fig. 8a, the 16-stream decoder with shufflers outperforms by 0.1dB the conventional

stochastic decoder with 32-bit EMs and requires twenty times fewer DCs. Moreover, the 16-stream

decoder achieves the BER performance of the 50-iteration Min-Sum decoder.

To achieve high throughput with adapted buffering, the decoding terminates when the decoded frame

is a codeword or when a maximum number of DCs is reached. As shown in Fig. 8b, the amount of DCs

needed to achieve this criterion depends on the signal-to-noise ratio and on the stochastic decoder used.

Actually, while the 32-bit EM-based decoder requires many dozens of DCs to decode up to 90% of the

frames, the 16-stream solution decodes 90% of the frames in less than ten DCs . This is correlated with

the high ratio (90%) of regenerative bits feeding the shufflers within a few DCs while the EM-based

decoder produces 90% of regenerative bits after many dozens of DCs, as illustrated in Fig. 8c.

These results confirm stochastic computation as a practical approach for decoding Cortex codes and

multiple stream decoding a promising innovation. However, reducing the number of DCs by a factor of

January 20, 2011 DRAFT

9

1e−07

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

B
it

 E
rr

o
r

R
at

e

Eb/No (dB)

ML decoding
Digital Min−sum C4 decoding (20 iterations, 8−bit inputs)
Digital Min−sum C4 decoding (50 iterations, 8−bit inputs)
Stochastic C4 decoding (32−bit EMs, 2000 DCs, 8−bit inputs)
Stochastic C4 decoding (16 streams, 100 DCs, 8−bit inputs)

(a) BER performance.

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
at

io
 o

f
fr

am
es

 d
ec

o
d

ed
 w

it
h

in
 x

 D
C

s
(%

)

 x Decoding Cycles (DCs)

32b EM 5dB
32b EM 6dB
32b EM 7dB
16 streams 5dB
16 streams 6dB
16 streams 7dB

(b) Ratio of frames decoded within a given number of DCs by
stochastic decoders using a stopping criterion.

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
at

io
 o

f
re

g
en

er
at

iv
e

b
it

s
at

 e
ac

h
 D

C
 (

%
)

 x Decoding Cycles (DCs)

32b EM 5dB
32b EM 6dB
32b EM 7dB
16 streams 5dB
16 streams 6dB
16 streams 7dB

(c) Ratio of regenerative bits at the inputs of the EMs or of
the shufflers.

Fig. 8: Performance comparison of 32-bit EM-based and 16-stream decoders for a (32,16,8) Cortex code.

twenty with a BER improvement is not a sufficient metric to fully assess the efficiency of the proposed

decoding solution, the circuit complexity and the achievable data throughput must also be compared.

B. Architecture efficiency

The 16-stream decoder with shufflers is compared with a stochastic decoder with 32-bit EMs. First,

the efficiencies of the input fixed-point-to-stochastic-stream modules – FX2MS in the multiple stream

architectures – has to be assessed. For any FX2MS of the 16-stream decoder, sixteen random bits are

generated over one DC. This is sixteen times as complex as generating one random bit over one DC

as done by any equivalent FX2SS module of a conventional stochastic decoder. However, since any

January 20, 2011 DRAFT

10

TABLE I: Comparison of stochastic Cortex decoders in terms of (a) hardware resources for codewords of
length 2×k and s interleaving stages and of (b) mean number of DCs required at different Eb/N0s before
stopping. These numbers of DCs include the initializing phase of one DC. The processing is stopped
when the decoded frame is a codeword or the maximum number of DCs is reached.

(a)

32-bit EM-based 16-stream

Random bits
k×

(26+10×(s−1))
k × 256

Logic
gates
(normalized
count)

k×

(1.2 + (s− 1))
k×

(3.5+0.9×(s−1))

(b)

Eb/N0

DCmean

for a 32-bit
EM-based
(up to

2000DCs)

DCmean

for a
16-stream
(up to

100DCs)
5dB 62.5 6.2
6dB 32.9 4.4
7dB 17.2 3.3

16-stream FX2MS run one twentieth of the clock cycles required by any conventional counterpart, the

16-stream architecture improves the efficiency by a ratio of 20/16.

Second, the stochastic core is made of C4FB, C4B and C4Dec modules with either parallel logic gates

and shufflers or simple logic gates and 32-bit EMs. The C4FB module of the former architecture requires

seven percent less of logic gates than the C4FB module of the latter and runs twenty times less DCs.

Moreover, many random bits have to be generated for the EMs whereas the shufflers do not require

any. Naturally, efficient architectures as a distributed one [17] have been proposed to generate random

bits. Nevertheless, the hardware resources cost for providing random numbers is still high. Thus, the

proposed multiple stream stochastic C4FB is about twenty and ten times as efficient as EM-based and

TFM-based cores, respectively. However, any C4Dec module has to accumulate one stream per output

bit in a single-stream scheme and 16 streams in a 16-stream scheme. The latter requires so many adders

that a 16-stream C4Dec is three times as complex as an EM-based single-stream C4Dec, and is finally

20/3 times as efficient. The total amount of random bits and logic gates required to decode C4 codewords

of length 2× k with s interleaving stages was assessed and is given in Tab. Ia. If no stopping criterion

is used for the (32,16,8) code with s = 5, the 16-stream architecture requires 3.9 times as many random

bits and 1.6 times as many logic gates and 1/20 times as many DCs as an EM-based architecture. If the

processing is stopped when the decoded frame is a codeword, then the mean DC number depends on

the signal-to-noise ratio and can be reduced down to a few DCs as shown in Tab. Ib. In any case, the

16-stream decoder is the most efficient solution. Indeed, the hardware usage is between five and twelve

times as efficient with a 16-stream decoder as with an EM-based decoder. Compared to a TFM-based

January 20, 2011 DRAFT

11

decoder, the proposed architecture is two to five times as efficient. Thus, the multiple stream architecture

offers the best efficiency for the implementation of stochastic Cortex decoders. A TFM-based ASIC LDPC

decoder [18] was designed for the ST Microelectronics 90nm process, and clocked at 400MHz. Assuming

a similar clock frequency, the 16-stream Cortex decoder can provide a data throughput of 64Mb/s if no

stopping criterion is used and up to 1.9Gb/s @ 7dB with a stopping criterion and adapted buffering. If

a Cortex Min-Sum decoder could be clocked at 300MHz, as a recent 65nm Min-Sum ASIC decoder is

[24], it would process data at 14Mb/s at fifty iterations, with no performance loss, and 34 Mb/s at twenty

iterations, with a loss larger than 0.3dB if no stopping criterion is used. Even with a single iteration, this

Min-Sum decoder could not operate at more than 680 Mbit/s. Based on these considerations and since

previous stochastic architectures were already serious challengers to conventional digital decoders [17],

it can be concluded that the multiple stream stochastic architecture is the most valuable solution for a

digital ASIC implementation of an iterative Cortex decoder based on the belief-propagation algorithm.

V. CONCLUSION

An innovative stochastic architecture using multiple streams and deterministic shufflers has been

proposed to digitally decode Cortex codes proposed by Perez-Chamorro in [22]. Compared to stochastic

decoders using single streams and Edge Memories or TFMs, the proposed stochastic architecture presents

the best architecture efficiency defined as the ratio between data throughput and circuit area. Thus, Cortex

codes are optimal short codes which can be built and digitally decoded with good BER performance with a

belief-propagation algorithm. In the case of a (32,16,8) C4 code, the architecture efficiency of a multiple

stream decoder is up to five times as large as the one achieved using state-of-the-art techniques, i.e.

with TFMs. Moreover, this multiple stream design could be applied to design LDPC decoders or turbo

decoders with some possible architecture-efficiency improvements.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting coding and decoding: turbo codes,” in

Proc. IEEE International Conference on Communications, Geneva, May 1993, pp. 1064–1070.

[2] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. IT-8, pp. 21–28, January

1962.

[3] D. MacKay and R. Neal, “Near shannon limit performance of low density parity check codes,” Electronics Letters, vol. 32,

no. 18, p. 1645, Aug. 1996.

[4] J. Carlach and C. Vervoux, “A new family of block turbo codes,” in Proceedings of 13th Applicable Algebra in Engineering

Communication and Computing (AAECC 13), Hawaï, USA, November 1999, p. 15.

January 20, 2011 DRAFT

12

[5] J. Carlach, A. Otmani, and C. Vervoux, “A new scheme for building good self-dual block codes,” in Information Theory,

2000. Proceedings. IEEE International Symposium on, 2000, pp. 476–.

[6] G. Olocco and J. Tillich, “A family of self-dual codes which behave in many respects like random linear codes of rate ,”

in Information Theory, 2001. Proceedings. 2001 IEEE International Symposium on, 2001, pp. 15–.

[7] A. Otmani, “Codes cortex et construction de codes auto-duaux optimaux,” Ph.D. dissertation, UNIVERSITÉ DE LIMOGES,

December 2002.

[8] E. Cadic, “Construction de turbo codes courts possédant de bonnes propriétés de distance minimale,” Ph.D. dissertation,

UNIVERSITÉ DE LIMOGES, October 2003.

[9] J. Perez-Chamorro, F. Seguin, C. Lahuec, M. Jezequel, and G. Le Mestre, “Decoding a family of dense codes using the

sum-product algorithm,” in Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, May 2009, pp.

2685–2688.

[10] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based

on belief propagation,” Communications, IEEE Transactions on, vol. 47, no. 5, pp. 673 –680, May 1999.

[11] V. Gaudet and A. Rapley, “Iterative decoding using stochastic computation,” Electronics Letters, vol. 39, no. 3, pp. 299–301,

Feb. 2003.

[12] S. Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and W. Gross, “Majority-based tracking forecast memories

for stochastic LDPC decoding,” Signal Processing, IEEE Transactions on, vol. 58, no. 9, pp. 4883 –4896, Sep. 2010.

[13] B. Gaines, “Stochastic computing,” in AFIPS SJCC, no. 30, 1967, pp. 149–156.

[14] W. Poppelbaum, C. Afuso, and J. Esch, “Stochastic computing elements and systems,” in AFIPS FJCC, no. 31, 1967, pp.

635–644.

[15] W. Gross, V. Gaudet, and A. Milner, “Stochastic implementation of LDPC decoders,” in Signals, Systems and Computers,

2005. Conference Record of the Thirty-Ninth Asilomar Conference on, 28 2005-Nov. 1 2005, pp. 713–717.

[16] C. Winstead, V. Gaudet, A. Rapley, and C. Schlegel, “Stochastic iterative decoders,” in Information Theory, 2005. ISIT

2005. Proceedings. International Symposium on, Sept. 2005, pp. 1116–1120.

[17] S. Sharifi Tehrani, S. Mannor, and W. Gross, “Fully parallel stochastic LDPC decoders,” Signal Processing, IEEE

Transactions on, vol. 56, no. 11, pp. 5692–5703, Nov. 2008.

[18] S. Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor, and W. Gross, “Tracking forecast memories in stochastic decoders,” in

Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, April 2009, pp. 561–564.

[19] V. C. Gaudet and W. J. Gross, “Switching activity in stochastic decoders,” in Proceedings of the 40th IEEE International

Symposium on Multiple-Valued Logic (ISMVL 2010), May 2010, pp. 167 –172.

[20] C. Winstead and S. Howard, “A probabilistic LDPC-coded fault compensation technique for reliable nanoscale computing,”

Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 56, no. 6, pp. 484 –488, June 2009.

[21] J.-C. Carlach and A. Otmani, “A systematic construction of self-dual codes,” Information Theory, IEEE Transactions on,

vol. 49, no. 11, pp. 3005–3009, Nov. 2003.

[22] J. Perez-Chamorro, “Analogue decoding of the cortex codes,” Ph.D. dissertation, TELECOM Bretagne, March 2009.

[23] C. Winstead, “Error-control decoders and probabilistic computation,” Tohoku Univ. 3rd SOIM-COE Conf., Sendai, Japan,

Oct. 2005.

[24] H. Zhong, W. Xu, N. Xie, and T. Zhang, “Area-efficient min-sum decoder design for high-rate quasi-cyclic low-density

parity-check codes in magnetic recording,” Magnetics, IEEE Transactions on, vol. 43, no. 12, pp. 4117 –4122, Dec. 2007.

January 20, 2011 DRAFT

