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CONTINUUM PERCOLATION IN HIGH DIMENSIONS

JEAN-BAPTISTE GOUÉRÉ AND RÉGINE MARCHAND

Abstract. Consider a Boolean model Σ in R
d, where the centers are given by a homo-

geneous Poisson point process with intensity λ and the radii of distinct balls are i.i.d.
with common distribution ν. Some numerical simulations and some heuristic arguments
suggest that the critical covered volume c

c

d
(ν), which is the proportion of space covered

by Σ at critical intensity, may be minimal when ν is a Dirac measure.

1. Introduction and statement of the main results

Introduction. Consider a homogeneous Poisson point process on R
d. At each point of

this process, we center a ball with random radius, the radii of distinct balls being i.i.d.
and independent of the point process. The union Σ of these random balls is called a
Boolean model. This Boolean model only depends on two parameters : the intensity λ
of the point process of centers, and the common distribution ν of the radii of the balls.

Denote by λc
d(ν) the critical intensity for percolation in Σ. We then consider ccd(ν), the

proportion of space which is covered by Σ when λ = λc
d(ν). This quantity is called the

critical covered volume. Some numerical simulations in low dimension and some heuristic
arguments in any dimension suggest that the critical covering fraction may be minimal
when ν is a Dirac measure, that is when all the balls have the same radius.

We show that this is not true in high dimensions. We prove this by studying the critical
covered volume ccd(r

−dµ(dr)) of a given measure µ as d tends to infinity. See the definition
(8) below for some remarks about this normalization. When µ is a Dirac measure, this has
been studied by Penrose in [14]. Our results yield that whenever µ is not a Dirac measure,
for all d large enough, ccd(r

−dµ(dr)) is strictly smaller than ccd(r
−dδ1(dr)) = ccd(δ1).

When µ is a Dirac measure, the asymptotic behavior of ccd(r
−dδ1(dr)) = ccd(δ1) is

given by the associated Galton-Watson process. This is due to the fact that geometrical
dependencies vanish in high dimensions. This is not true anymore in the general case and
geometry still plays a role.

The Boolean model. Let us give here a different – but equivalent – construction of the
Boolean model. Let ν be a finite 1 measure on (0,+∞). We assume that the mass of ν
is positive. Let d ≥ 2 be an integer, λ > 0 be a real number and ξ be a Poisson point
process on R

d × (0,+∞) whose intensity measure is the Lebesgue measure on R
d times

λν. We define a random subset of Rd as follows:

Σ(λν) =
⋃

(c,r)∈ξ

B(c, r),

where B(c, r) is the open Euclidean ball centered at c ∈ R
d and with radius r ∈ (0,+∞).

The random subset Σ(λν) is a Boolean model driven by λν.

1. There is no greater generality in considering finite measures instead of probability measures ; this
is simply more convenient.
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Critical intensity. We say that Σ(λν) percolates if the connected component of Σ(λν)
that contains the origin is unbounded with positive probability. This is equivalent de the
existence of an unbounded connected component of Σ(λν) with probability one. We refer
to the book by Meester and Roy [11] for background on continuum percolation. Set:

λc
d(ν) = inf{λ > 0 : Σ(λν) percolates}.

One easily checks that λc
d(ν) is finite. In [6] it is proven that λc

d(ν) is positive if and only if

(1)

∫
rdν(dr) < +∞.

We assume that this assumption is fulfilled.

Critical intensity as a function of ν, critical covered volume. By ergodicity, the
Boolean model Σ(λν) has a deterministic natural density. This is also the probability
that a given point belongs to the Boolean model and this is given by :

P (0 ∈ Σ(λν)) = 1− exp

(
−λ

∫
vdr

dν(dr)

)
,

where vd denotes the volume of the unit ball in R
d. The critical covered volume ccd(ν) is

the density of the Boolean model when the intensity is critical :

ccd(ν) = 1− exp

(
−λc

d(ν)

∫
vdr

dν(dr)

)
.

It is more convenient to study the critical covered volume through the normalised thresh-
old defined by :

λ̃c
d(ν) = λc

d(ν)

∫
vd(2r)

dν(dr).

Note :

ccd(ν) = 1− exp

(
− λ̃c

d(ν)

2d

)
.

The factor 2d may seem arbitrary here. Its interest will appear in the statement of the
next theorems.

We will now give two scaling relations. For all a > 0, define Haν as the image of ν
under the map defined by x 7→ ax. By scaling, we get:

(2) λ̃c
d(H

aν) = λ̃c
d(ν).

This is a consequence of Proposition 2.11 in [11], and it may become more obvious when
considering the two following facts : a critical Boolean model remains critical when
rescaling and the density is invariant by rescaling ; therefore the critical covered volume
and then the normalised threshold are invariant. One also easily checks the following
invariance:

(3) λ̃c
d(aν) = λ̃c

d(ν).

That is because of these two invariance relations that we prefer to study the normalized

critical intensity λ̃c
d(ν) instead of the critical intensity λc

d(ν)
It has been conjectured by Kertész and Vicsek [9] that the critical covered volume – or

equivalently the normalized critical intensity – should be independent of ν, as soon as the
support of ν is bounded. Phani and Dhar [4] gave a heuristic argument suggesting that
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the conjecture were false. A rigorous proof was then given by Meester, Roy and Sarkar
in [12]. More precisely, they gave examples of measures ν with two atoms such that:

(4) λ̃c
d(ν) > λ̃c

d(δ1).

As a consequence of Theorem 1.1 in the paper by Menshikov, Popov and Vachkovskaia

[13], we even get that λ̃c
d(ν) can be arbitrarily large. More precisely, if

(5) ν(n, a) =

n−1∑

k=0

adkδa−k .

then

(6) λ̃c
d(ν(n, a)) → nλ̃c

d(δ1) as a → ∞.

Actually the result of [13] is the following much stronger statement: λc
d(ν(+∞, a)) →

λc(δ1) when a → ∞. The convergence (6) is implicit in the work of Meester, Roy and
Sarkar in [12], at least when n = 2. There were also heuristics for such a result in [4].

By Theorem 2.1 in [6], we get the existence of a positive constant Cd, that depends
only on the dimension d, such that:

λ̃c
d(ν) ≥ Cd.

To sum up, λ̃d
c(·) is not bounded from above but is bounded from below by a positive

constant. In other words, the critical covering volume ccd(·) ∈ (0, 1) can be arbitrarily
close to 1 but is bounded from below by a positive constant. Our investigations were
motivated by the following question:

(7) Is the critical covered volume ccd(ν) minimized when ν = δ1 ?

In the physical literature, it is strongly believed that the answer is positive at least
when d = 2 and d = 3. This conjecture is supported by numerical evidence (to the best
of our knowledge, the most accurate estimations are given in a paper by Quintanilla and
Ziff [15] when d = 2 and in a paper by Consiglio, Baker, Paul and Stanley [2] when
d = 3). On Figure 1, we plot the critical covered volume in dimension 2 as a function of
α and for different values of ρ when ν = (1 − α)δ1 + αρ−2δρ. The data for finite values
of ρ come from numerical estimations in [15], while the data for infinite ρ come from the
study on the multi-scale Boolean model. See section 1.4 in [8] for further references. It
is also supported by some heuristic arguments in any dimension (see for example Dhar
[3]). See also [1]. In the above cited paper [12], it is noted that the rigorous proof of (4)
suggests that the answer might be positive for any d ≥ 2.

In this paper, we show that the answer is actually negative for all d large enough.

Critical intensity in high dimensions : the case of a deterministic radius.

Assume here that the measure ν is a Dirac mass at 1, that is that the radii of the balls
are all equal to 1. Penrose proved the following result in [14] :

Theorem 1.1 (Penrose). lim
d→∞

λ̃c
d(δ1) = 1.

With the invariance properties of λ̃c
d, this limit can readily be generalized to any con-

stant radius : for any α, a > 0,

lim
d→∞

λ̃c
d(αδa) = lim

d→∞
λ̃c
d(δ1) = 1.
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Figure 1. Critical covered volume as a function of α for different values
of ρ. From bottom to top: ρ = 2, ρ = 5, ρ = 10 and the limit as ρ → ∞.

Theorem 1.1 is the continuum analogue of a result of Kesten [10] for Bernoulli bond
percolation on the nearest-neighbor integer lattice Zd, which says that the critical perco-
lation parameter is asymptotically equivalent to 1/(2d).

Let us say a word about the ideas of the proof of Theorem 1.1.

The inequality λ̃c
d(δ1) > 1 holds for any d ≥ 2. The proof is simple, and here is the

idea. We consider the following natural genealogy. The deterministic ball B(0, 1) is said
to be the ball of generation 0. The random balls of Σ(λδ1) that touches B(0, 1) are then
the balls of generation 1. The random balls that touches one ball of generation 1 without
being one of them are then the balls of generation 2 and so on. Let us denote by Nd the
number of all balls that are descendants of B(0, 1). There is no percolation if and only if
Nd is almost surely finite.

Now denote by m the Poisson distribution with mean λvd2
d : this is the law of the

number of balls of Σ(λδ1) that a touch a given ball of radius 1. Therefore, if there were
no interference between children of different balls, Nd would be equal to Z, the total
population in a Galton-Watson process with offspring distribution m. Because of the
interferences due to the fact that the Boolean model lives in R

d, this is not true : in fact,
Nd is only stochastically dominated by Z. Therefore, if λvd2

d < 1, then Z is finite almost
surely, then Nd is finite almost surely and therefore there is no percolation. This implies

λ̃c
d(δ1) = vd2

dλc
d(δ1) > 1.
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The difficult part of Theorem 1.1 is to prove that if d is large, then the interferences

are small, then Nd is close to Z and therefore there is percolation as soon as λ̃c
d(δ1) =

vd2
dλc

d(δ) > 1.
To sum up, at first order, the asymptotic behavior of the critical intensity of the Boolean

model with constant radius is given by the threshold of the associated Galton-Watson
process, as in the case of Bernoulli percolation on Z

d : roughly speaking, as the dimension
increases, the geometrical constraints of the finite dimension space decrease and at the
limit, we recover the non-geometrical case of the corresponding Galton-Watson process.

Critical intensity in high dimensions : the case of true random radii. If µ is a
finite measure on (0,+∞) and if d ≥ 2 is an integer, we define a measure µd on (0,+∞)
by setting :

(8) µd(dr) = r−dµ(dr).

Note that, for any d, the assumption (1) is fulfilled by µd, and that (δ1)d = δ1. Note also
that µd is not necessarily a finite measure. However the definitions made above still make
sense in this case and we still have λd

c(µd) ∈ (0,+∞) thanks to Theorem 1.1 in [7].

We will study the behavior of λ̃c
d(µd) as d tends to infinity. Let us motivate the definition

of µd with the following two related properties :

(1) Consider the Boolean model Σ(λµd) on R
d driven by λµd where λ > 0. For any

0 < s < t < ∞, the number of balls of Σ(λµd) with radius in [s, t] that contains
a given point is a Poisson random variable with intensity:

∫

[s,t]

vdr
dλµd(dr) = vdλµ([s, t]).

Loosely speaking, this means that contrary to what happens in the Boolean model
driven by λµ, the relative importance of radii of different sizes does not depend
on the dimension d in the Boolean model driven by λµd.

(2) A closely related property is the following one. Consider for example the case
µ = αδa + βδb. Then, a way to build Σ(λµd) is to proceed as follows. Consider
two independent Boolean model: ΣA, driven by λαδ1, and ΣB, driven by λβδ1.
Then set Σ(λµd) = aΣA + bΣB .

We prove the following result :

Theorem 1.2. Let µ be a finite measure on (0,+∞). We assume that the mass of µ is

positive and that µ is not concentrated on a singleton. Then :

lim sup
d→+∞

1

d
ln
(
λ̃c
d(µd)

)
< 0.

Note that (δ1)d = δ1. A straightforward consequence of Theorem 1.2 and Theorem

1.1 – or, actually, of the much weaker and easier convergence of ln(λ̃c
d(δ1)) to 0 – is the

following result:

Corollary 1.3. Let µ be a finite mesure on (0,+∞). We assume that the mass of µ is

positive and that µ is not concentrated on a singleton. Then, for any d large enough, we

have:

λ̃c
d(µd) < λ̃c

d(δ1), or equivalently ccd(µd) < ccd(δ1).

In fact, Theorem 1.2 follows from the particular case of radii taking only two different
values, for which we have more precise results.
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Critical intensity in high dimensions : the case when the radii can take two

values. To state the result, we need some further notations. Fix ρ > 1. Fix k ≥ 1.
Set r1 = rk+1 = 1 + ρ, and for i ∈ {2, . . . , k}, ri = 2. For (ai)2≤i≤k+1 ∈ [0, 1)k, we
build an increasing sequence of distances (di)1≤i≤k+1 by setting d1 = 1+ ρ and, for every
i ∈ {2, . . . , k + 1}:

d2i = d2i−1 + 2riaidi−1 + r2i .

Note that the sequence (di)1≤i≤k+1 depends on ρ, k, and the ai’s.
We denote by D(a2, . . . , ak+1) = dk+1. Now set, for every k ≥ 1,

(9) κc
ρ(k) = inf

0≤a2,...,ak+1<1
max





 4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1− a2i )




1
k+1

,
2ρ

D(a2, . . . , ak+1)


 .

Finally, let:

(10) κc
ρ = inf

k≥1
κc
ρ(k).

We give some intuition on κc
ρ in Section 2.1, make a few further comments and simulations

for κc
ρ(1), κ

c
ρ(2) and κc

ρ(3) in Section 2.2. We will see that κc
ρ ∈ (0, 1) for all ρ > 1. This

κc
ρ gives the asymptotic behavior of λ̃c

d(µd) when µ charges two distinct points :

Theorem 1.4. Let b > a > 0, α > 0 and β > 0. Set µ = αδa + βδb and ρ = b/a > 1.
Then

(11) lim
d→+∞

1

d
ln
(
λ̃c
d(µd)

)
= ln

(
κc
ρ

)
< 0.

Remember that in the case of a deterministic radius (assumptions of Theorem 1.1), the
first order of the asymptotic behavior of the critical intensity in high dimensions is given
by the threshold of the associated Galton-Watson process.

In the case of two distinct radii (assumptions of Theorem 1.4), the associated Galton-
Watson process is two-type, one for each radius. At first order and on a logarthmic scale,
the asymptotic behavior of the critical intensity in high dimensions is given by κc

ρ, and
we could expect that, as in the deterministic case, κc

ρ would be given by the threshold of
this two-type Galton-Watson process. We will see in Lemma 2.1 that it is actually the
case, but only when ρ is not too far from 1. When ρ is large, this is no longer the case
and geometry still plays a role. See the discussion in Section 2.2.

The proof of Theorem 1.4 is given in Section 2. The main ideas of the proofs are give
in Section 2.1. Theorem 1.2 is an easy consequence of Theorem 1.4. The proof is given in
Section 3. Corollary 1.3 is a straightforward consequence of Theorems 1.1 and 1.2. We
give some intuition and results about κc

ρ is Section 2.1 and 2.2.

2. The case when the radii take two values

2.1. Notations and ideas of the proof. In the whole proof, we fix ρ > 1 and κ > 0.
Once the dimension d ≥ 1 is given, we consider two independent stationary Poisson

point processes on R
d: χ1 and χρ, with respective intensities

λ1 =
κd

vd2d
and λρ =

κd

vd2dρd
.

With χ1 and χρ, we respectively associate the two Boolean models

Σ1 =
⋃

x∈χ1

B(x, 1) and Σρ =
⋃

x∈χρ

B(x, ρ).
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Note that Σρ is an independent copy of ρΣ1. Note also that the expected number of balls
of Σ1 that touches a given ball of radius 1 is κd. Thus the expected number of balls of
Σρ that touches a given ball of radius ρ is also κd.

We focus on the percolation properties of the following two-type Boolean model

Σ = Σ1 ∪ Σρ.

We begin by studying the existence of infinite k-alternating paths. For k ≥ 1, an infinite
k-alternating path is an infinite path made of balls such that the radius of the first ball
is ρ, the radius of the next k balls is 1, the radius of the next ball is ρ and so on. For
a fixed k ≥ 1, we wonder whether infinite k-alternating paths exist and seek the critical
threshold κc

ρ(k) for their existence. A natural first step is to study the following quantities
:

N0 = #{x1 ∈ χρ : ‖x1‖ < 2ρ},(12)

and for k ≥ 1, Nk = #





xk+1 ∈ χρ : ∃(xi)1≤i≤k ∈ χ1 distinct such that
‖x1‖ < 1 + ρ, ∀i ∈ {1, . . . , k − 1} ‖xi+1 − xi‖ < 2,
‖xk+1 − xk‖ < 1 + ρ



 .

Fix k ≥ 1. Remember that κc
ρ(k) is defined in (9).

A lower bound for κc
ρ(k). In Subsection 2.3, we obtain lower bounds for κc

ρ(k) by looking
for upper bounds for E(Nk). On one side, a natural genealogy is associated to the
definition of Nk (see also the comments below Theorem 1.1 and in Section 2.2). We start
with an ancestor x0 located at the origin. We then seek his children in χ1 ∩B(x0, 1 + ρ)
: they constitute the first generation. If x1 is one of those children, we then seek the
children of x1 in χ1 ∩ B(x1, 2) to build the second generation and so on. On the other
side, the process lives in R

d and the geometry induces dependences: if x1 and x′
1 are

two individuals of the first generation, their children are a priori dependent. If we forget
geometry and only consider genealogy, we get the following upper bound:

E(Nk) ≤ λ1|B(·, 1 + ρ)|
(

k∏

i=2

λ1|B(·, 2)|
)
λρ|B(·, 1 + ρ)|.

But the points of the last generation are in B(0, 2ρ+ 2k). So if we forget genealogy and
only consider geometry we get the following upper bound:

E(Nk) ≤ λρ|B(0, 2ρ+ 2k)|.
Expliciting the two previous bounds and combining them together, we get:

E(Nk) ≤ max

(
κk+1(1 + ρ)2

4ρ
,
κ(ρ+ k)

ρ

)d

.

In this upper bound, the first argument of the maximum is due to genealogy while the
second one is due to geometry. To get the geometrical term, we considered the worst case:
the one in which, at each generation i, xi is as far from the origin as possible This gives a
very poor bound. To get a better bound, we proceed as follows. Fix a2, . . . , ak+1 ∈ [0, 1).
As before, we set r1 = rk+1 = 1 + ρ, and for i ∈ {2, . . . , k}, ri = 2 and we build
the increasing sequence of distances (di)1≤i≤k+1 by setting d1 = 1 + ρ and, for every
i ∈ {2, . . . , k + 1}:

d2i = d2i−1 + 2riaidi−1 + r2i .

See Figure 2 for a better understanding of these distances di.
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Figure 2. Definition of the distances di. Circles in plain line are of radius
1 + ρ and 2.

Denote by Ñk(a2, . . . , ak+1) the number of points xk+1 ∈ χρ for which there exists a
path x1, . . . , xk fulfilling the same requirement as for Nk and such that ‖xi‖ ≈ di for all
i. Proceeding as before, we obtain the following upper bound:

E(Ñk(a2, . . . , ak+1)) . min


κk+1 (1 + ρ)2

4ρ

√ ∏

2≤i≤k+1

(1− ai)2,
κD(a2, . . . , ak+1)

2ρ




d

.

Here again, the first argument of the maximum is due to genealogy while the second one
is due to geometry. Optimizing then on the ai’s, we get:

E(Nk) . sup
a2,...,ak+1

min


κk+1 (1 + ρ)2

4ρ

√ ∏

2≤i≤k+1

(1− ai)2,
κD(a2, . . . , ak+1)

2ρ




d

.

A precise statement is given in Lemma 2.5. The precise value of the threshold κc
ρ(k) given

in (9) is then the value such that the above upper bound converges to 0 when κ < κc
ρ(k).

This heuristic will be precised in Subsection 2.3: we will prove there that when κ < κc
ρ(k),

E(Nk) converges to 0 as d tends to infinity, and this will imply that there exists no infinite
k-alternating path.
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An upper bound for κc
ρ(k). If, on the contrary, κ > κc

ρ(k), then we will prove that E(Nk)
does not converge to 0. Actually, to prove that when κ > κc

ρ(k), there exist infinite k-
alternating path, we will show, in Subsection 2.4, the following stronger property : With
a probability that converges to 1 as d tends to infinity, we can find a path which fulfills

the requirements of the definition of Nk – or more precisely of Ñk(a2, . . . , ak+1) for some
a2, . . . , ak+1 nearly optimal – and which fulfills some extra conditions on the positions of
the balls. This is Proposition 2.9 and this is the main technical part of this paper. Those
extra conditions provide independence properties between the existence of different paths
of the same kind. We can then show the existence of many such paths and concatenate
some of them to build an infinite k-alternating path. Technically, the last step is achieved
by comparing our model with a supercritical oriented percolation process on Z

2. In this
comparison, an open bond in the oriented percolation process corresponds to one of the
above paths in our model. This comparison with oriented percolation was already the
last step in the paper of Penrose [14].

From infinite k-alternating paths to infinite paths. Recall κc
ρ = infk≥1 κ

c
ρ(k). With the

previous results, it rather easy to show that there is no percolation for d large enough as
soon as κ < κc

ρ. When κ > κc
ρ then κ > κc

ρ(k) for a k ≥ 1. Therefore there is k-alternating
percolation and therefore there is percolation.

2.2. The threshold κc
ρ and the associated Galton-Watson process. We begin with

a couple of results about κc
ρ(1) and κc

ρ.

Lemma 2.1. Let ρ > 1. Then

• 0 < κc
ρ(1) < 1. More precisely :

If 1 < ρ ≤ 2 then κc
ρ(1) =

2
√
ρ

1 + ρ
, while if ρ ≥ 2 then κc

ρ(1) =

√
4 + ρ2

1 + ρ
.

• 0 < κc
ρ < 1.

• There exists ρ0 > 2 such that if ρ ≤ ρ0, then κc
ρ = κc

ρ(1). This implies

If 1 < ρ ≤ 2 then κc
ρ =

2
√
ρ

1 + ρ
, while if 2 ≤ ρ ≤ ρ0 then κc

ρ =

√
4 + ρ2

1 + ρ
.

On Figure 3, we plot κc
ρ(i), for i ∈ {1, 2, 3}. The data come from numerical estimations.

Proof. • By definition, κc
ρ(1) = inf

0≤a<1
max(φ1(a), φ2(a)), where φ1, φ2 : [0, 1) → R are

defined by:

φ1(a) =
2
√
ρ

(1 + ρ)(1− a2)1/4
and φ2(a) =

ρ
√
2

(1 + ρ)
√
1 + a

.

If ρ ≤ 2 then φ1(0) ≥ φ2(0). As φ1 is increasing and φ2 is decreasing, we get:

κc
ρ(1) = inf

0≤a<1
φ1(a) = φ1(0) =

√
2ρ

1 + ρ
.

Assume, on the contrary, ρ ≥ 2. Set

a =
ρ2 − 4

ρ2 + 4
∈ [0, 1).
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Figure 3. Simulations for κc
ρ(i), i ∈ {1, 2, 3}, from left to right.

Then φ1(a) = φ2(a). As φ1 is increasing and φ2 is decreasing, we get:

κc
ρ(1) = φ1(a) = φ2(a) =

√
4 + ρ2

1 + ρ
.

• Clearly we have, for every k ≥ 1 :

κc
ρ(k) ≥ inf

0≤a2,...,ak+1<1


 4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1− a2i ))




1/(k+1)

=

(
4ρ

(1 + ρ)2

)1/(k+1)

.

Therefore, as κc
ρ = infk≥1 κ

c
ρ(k),

0 <

(
4ρ

(1 + ρ)2

)1/2

≤ κc
ρ ≤ κc

ρ(1) < 1.

• The last inequalities imply that κc
ρ = κc

ρ(1) if 1 < ρ ≤ 2. In fact, as soon as

(13) κc
ρ(1) ≤

(
4ρ

(1 + ρ)2

)1/3

,

it is true that κc
ρ(1) ≤ κc

ρ(k) for all k ≥ 2 and therefore that κc
ρ = κc

ρ(1). As the inequality
in (13) is strict for ρ = 2, we obtain by continuity the existence of ρ0 > 2 such that for
every ρ ∈ (1, ρ0),κ

c
ρ = κc

ρ(1). �

The associated Galton-Watson process. The associated Galton-Watson process is a two
type Galton-Watson process, one type for each radius. Consider for example the offspring
distribution of type ρ of an individual of type 1. We define it to be the number of balls of
a Boolean model directed by λρδρ that intersects a given ball of radius 1. Therefore, this
is a Poisson random variable with mean λρvd(1 + ρ)d. The other offspring distribution
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are defined similarly. We moreover assume the the offspring of type 1 and ρ of a given
individual are independent.

Consider the matrix of means of offspring distributions:

Md =

(
λ1vd(1 + 1)d λρvd(1 + ρ)d

λ1vd(1 + ρ)d λρvd(ρ+ ρ)d

)
.

For example, the top-right term is the mean offspring of type ρ of an individual of type
1. We have:

Md = κd



 1
(

1+ρ
2ρ

)d
(
1+ρ
2

)d
1



 .

Let rd denotes the largest eigenvalue of Md. The extinction probability of the Galton-
Watson process is 1 if and only if rd ≤ 1. We have:

rd ∼
(
κ(1 + ρ)

2
√
ρ

)d

.

If we fix κ and let d tends to infinity, the critical κ for the Galton-Watson process is thus
:

κ =
2
√
ρ

1 + ρ
.

With Theorem 1.4 and Lemma 2.1 we thus see that the comparison with the Galton-
Watson is asymptotically sharp on a logarithmic scale only when 1 < ρ ≤ 2.

2.3. Subcritical phase. Let ρ > 1 be fixed. We consider, in R
d, the two-type Boolean

model Σ introduced in Subsection 2.1, with radii 1 and ρ and respective intensities

λ1 =
κd

vd2d
and λρ =

κd

vd2dρd

depending on some κ ∈ (0, 1). The aim of this subsection is to prove the following
proposition:

Proposition 2.2. Let ρ > 1 be fixed. If κ < κc
ρ, then, as soon as the dimension d is large

enough, percolation does not occur in the two-type Boolean model Σ.

In the following of this subsection, we fix ρ > 1 and 0 < κ < κc
ρ.

We start with an elementary upper bound, in which we do not take into account the
geometrical constraints. We recall that the N ′

ks have been introduced in (12).

Lemma 2.3. E(N0) = κd and, for k ≥ 1, E(Nk) ≤
(
κk+1(1 + ρ)2

4ρ

)d

.

Proof. The result for N0 follows directly from the equality E(N0) = λρ|B(0, 2ρ)|.
Take now k ≥ 1. We have :

(14) E(Nk) ≤ λ1|B(·, 1 + ρ)|
(

k∏

i=2

λ1|B(·, 2)|
)
λρ|B(·, 1 + ρ)|

11



where B(·, r) stands for a ball with radius r and center unspecified. This can for instance
be seen as follows :

E(Nk) ≤ E




∑

x1,...,xk∈χ1 distinct, xk+1∈χρ

1x1∈B(0,1+ρ) . . . 1xk+1∈B(xk,1+ρ)





= λk
1λρ

∫

Rd(k+1)

dx1 . . . dxk+11x1∈B(0,1+ρ) . . . 1xk+1∈B(xk ,1+ρ),

which gives (14). The lemma follows. �

To give a more accurate upper bound for the Nk’s, we are going to cut the balls
into slices and to estimate which slices give the main contribution. For x ∈ R

d \ {0},
0 ≤ a < b ≤ 1 and r > 0, we now define :

If a > 0 : B(x, r, a, b) =

{
y ∈ R

d : ‖y − x‖ ≤ r and ar <

〈
y − x,

x

‖x‖

〉
≤ br

}
,

If a = 0 : B(x, r, a, b) =

{
y ∈ R

d : ‖y − x‖ ≤ r and

〈
y − x,

x

‖x‖

〉
≤ br

}
.

The next lemma gives asymptotics for the volume of these sets:

Lemma 2.4. For x ∈ R
d \ {0}, 0 ≤ a < b ≤ 1 and r > 0,

lim
d→+∞

1

d
ln

( |B(x, r, a, b)|
vd

)
= ln

(
r
√
1− a2

)
.

Actually we will only use :

lim sup
d→+∞

1

d
ln

( |B(x, r, a, b)|
vd

)
≤ ln

(
r
√
1− a2

)
.

Proof of Lemma 2.4. Note that it is sufficient to prove the lemma for x = e1, first

vector of the canonical basis, and r = 1.
First, if a = 0, the result follows directly from the inequality vd/2 ≤ |B(e1, 1, 0, b)| ≤ vd.
Assume next that a > 0. On the one hand, B(e1, 1, a, b) is included in the cylinder

{x = (x1, . . . , xd) : x1 ∈ [a, 1] and ‖(0, x2, . . . , xd)‖ ≤
√
1− a2},

which implies

(15) |B(e1, 1, a, b)| ≤ vd−1

√
1− a2

d−1
(1− a).

On the other end, by convexity, B(e1, 1, a, b) contains the following difference between
two homothetical cones:

{x = (x1, . . . , xd) : x1 ∈ [a, b] and ‖(0, x2, . . . , xd)‖ ≤
√
1− a2

1− x1

1− a
},

which implies

(16)
vd−1

√
1− a2

d−1

d

(
(1− a)− (1− b)

)
≤ |B(e1, 1, a, b)|.

The lemma follows from (15) and (16). �

We can now improve the control given in Lemma 2.3:
12



Lemma 2.5. For every k ≥ 1,

lim sup
d→∞

1

d
ln(E(Nk))

≤ ln


 sup

0≤a2,...,ak+1<1
min


κk+1 (1 + ρ)2

4ρ

√ ∏

2≤i≤k+1

(1− a2i ),
κD(a2, . . . , ak+1)

2ρ






Proof. • Fix N ≥ 1. Note that the ball B(x, r) is the disjoint union of the slices
B(x, r, n/N, (n + 1)/N) for n ∈ {0, . . . , N − 1}. For any n2, . . . , nk+1 ∈ {0, . . . , N − 1},
we set

ai =
ni

N
and a+i =

ni + 1

N
.

We focus on the contribution from a specific product of slices :

Nk(n2, . . . , nk+1) = #






xk+1 ∈ χρ : ∃(xi)1≤i≤k ∈ χ1 distinct with
‖x1‖ < 1 + ρ, ∀i ∈ {1, . . . , k − 1} xi+1 ∈ B(xi, 2, ai+1, a

+
i+1),

xk+1 ∈ B(xk, 1 + ρ, ak+1, a
+
k+1)




 .

Then we have :

(17) Nk ≤
∑

Nk(n2, . . . , nk+1),

where the sum is over (n2, . . . , nk+1) ∈ {0, . . . , N − 1}k.
•As we can check that the points contributing toNk(n2, . . . , nk+1) are inB(0,D(a+2 , . . . , a

+
k+1)),

we get :
E(Nk(n2, . . . , nk+1)) ≤ λρvdD(a+2 , . . . , a

+
k+1)

d,

this leads to :

(18) lim sup
d→+∞

1

d
ln (E(Nk(n2, . . . , nk+1))) ≤ ln

(
κD(a+2 , . . . , a

+
k+1)

2ρ

)
.

• Besides, proceeding as in the proof of Lemma 2.3, we obtain :

E(Nk(n2, . . . , nk+1)) ≤ λ1|B(0, 1 + ρ)|
(

k∏

i=2

λ1|B(·, 2, ai, a+i )|
)
λρ|B(·, 1 + ρ, ak+1, a

+
k+1)|.

With Lemma 2.4, we deduce :

(19) lim sup
d→∞

1

d
lnE(Nk(n2, . . . , nk+1)) ≤ ln


κk+1 (1 + ρ)2

4ρ

√ ∏

2≤i≤k+1

(1− a2i )


 .

• From (17), (18) and (19) we finally get :

lim sup
d→+∞

ln(E(Nk))

d

≤ ln



 max
a2,...,ak+1∈{0,...,

N−1
N

}
min



κk+1 (1 + ρ)2

4ρ

√ ∏

2≤i≤k+1

(1− a2i ),
κD(a+2 , . . . , a

+
k+1)

2ρ







 .

As D is uniformly continuous on [0, 1]k, we end the proof by taking the limit when N
goes to +∞. �

The next step consists in taking into account all k ≥ 0 simultaneously; we thus intro-
duce
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(20)

N = #









y ∈ χρ : ∃k ≥ 1, ∃(xi)1≤i≤k ∈ χ1 distinct with
‖x1‖ < 1 + ρ, ∀i ∈ {1, . . . , k − 1} ‖xi+1 − xi‖ < 2,
‖y − xk‖ < 1 + ρ



 ∪ {y ∈ χρ : ‖y‖ < 2ρ}



 .

Lemma 2.6. If κ < κc
ρ, then lim sup

d→+∞

1

d
ln(E(N)) < 0.

Proof. We have :

(21) E(N) ≤
∑

k≥0

E(Nk).

As κ < κc
ρ, Lemma 2.5 ensures that for every k ≥ 1 :

(22) lim sup
d→+∞

1

d
ln(E(Nk)) < 0.

Moreover, the assumption κ < κc
ρ also implies, thanks to Lemma 2.1, that κ < 1. We can

then choose k0 large enough to have :

κk0+1(1 + ρ)2

4ρ
≤ exp(−1).

With Lemma 2.3, we thus get :

E(N0) +
∑

k≥k0

E(Nk) ≤ κd + exp(−d)
∑

k≥0

κkd = κd + exp(−d)
1

1− κd
.

With (21) and (22), this ends the proof. �

The next lemma is elementary

Lemma 2.7. Assume κ < 1.
Then the connected components of

⋃

x∈χ1

B(x, 1) are bounded with probability 1.

Proof. For any integer k ≥ 0, denote by M(k) the number of balls with radius 1 linked
to B(0, 1) by a chain of k distinct balls with radius 1. Proceeding as in the proof of
Lemma 2.3, we get :

E(Mk) ≤ κd(k+1).

Now denote by M the number of balls with radius 1 linked to B(0, 1) by a chain of
(perhaps no) balls with radius 1. Then :

E(M) ≤ E

(
∑

k≥0

Mk

)
=

κd

1− κd
< +∞.

Therefore, M is finite with probability 1. So the connected components that touch B(0, 1)
are bounded with probability 1. So with probability 1, every connected component is
bounded. �

Proof of Proposition 2.2. Remember that we proved in Lemma 2.1 that κc
ρ < 1.

Take κ such that 0 < κ < κc
ρ < 1.

Let ξ1 be the set of random balls with radius ρ that can be connected to B(0, ρ) through
a chain of random balls with radius 1 (we consider the condition as fulfilled if the ball
touches B(0, ρ) directly). Let ξ2 be the set of random balls with radius ρ that are not in
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ξ1, but that can be connected to B(0, ρ) through a path of random balls in which there
is only one ball with radius ρ. We define similarly ξ3, ξ4 and so on and denote by ξ the
disjoint union of all these sets.

We have #ξ1 = N . (Remember that N has been defined in (20).) By Lemma 2.6, we
have :

lim sup
d→+∞

1

d
ln(E(ξ1)) < 0.

Take some µ > 0 and assume from now on that d is large enough to have

1

d
ln(E(#ξ1)) ≤ −µ.

Pour tout k ≥ 1, on a alors : E(#ξk) ≤ (E(#ξ1))
k ≤ exp(−dkµ).

As ξ = ∪k≥1ξk, we deduce from the previous inequalities that ξ is finite with probability
1. So any unbounded connected component of Σ1∪Σρ that touches B(0, ρ) is included in
Σ1. As κ < 1, Lemma 2.7 rules out the possibility of an unbounded connected component
in Σ1. So with probability 1, the connected components of Σ1 ∪ Σρ that touch B(0, ρ)
are bounded, which ends the proof. �

2.4. Supercritical phase. We fix here ρ > 1. We consider once again the two-type
Boolean model Σ introduced in Subsection 2.1 and we fix an integer k ≥ 1.

For every n ≥ 0, we set Rn = ρ if k + 1 divides n and Rn = 1 otherwise. We say that
percolation by k-alternation occurs if there exists an infinite sequence of distinct points
(xn)n∈N in R

d such that, for every n ≥ 0:
– xn ∈ χRn

.
– B(xn, Rn) ∩ B(xn+1, Rn+1) 6= ∅.

In other words, percolation by k-alternation occurs if there exists an infinite path along
which k balls of radius 1 alternate with one ball of radius ρ, ie if there exists an infinite
k-alternating path. The aim of this subsection is to prove the following proposition:

Proposition 2.8. Let ρ > 1 and k ≥ 1 be fixed. Assume that κ ∈ (κc
ρ(k), 1). If the

dimension d is large enough, then percolation by k-alternation occurs with probability

one.

As announced in subsection 2.1, percolation by k-alternation of the two-type Boolean
model in the supercritical case will be proved by embedding in the model a supercritical
2-dimensional oriented percolation process.

We thus specify the two first coordinates, and introduce the following notations. When
d ≥ 3, for any x ∈ R

d, we write

x = (x′, x′′) ∈ R
2 × R

d−2.

We write B′(c, r) for the open Euclidean balls of R2 with center c ∈ R
2 and radius r > 0.

In the same way we denote by B′′(c, r) the open Euclidean balls of Rd−2 with center
c ∈ R

d−2 and radius r > 0.

2.4.1. One step in the 2-dimensional oriented percolation model. The point here is to
define the event that will govern the opening of the edges in the 2-dimensional oriented
percolation process : it is naturally linked to the existence of a finite path composed of k
balls of radius 1 and a ball of radius ρ, whose positions of centers are specified.

We define, for a given dimension d, the two following subsets of Rd :

W = d−1/2
(
(−1, 1)× (−1, 0)× R

d−2
)
,

W+ = d−1/2
(
(0, 0)× (0, 1)× R

d−2
)
.
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For x ∈ W we set :

(23) G+(x) =

{
There exist distinct x1, . . . , xk ∈ χ1 ∩W+ and xk+1 ∈ χρ ∩W+

such that x0, x1, . . . , xk+1 is a path

}
.

Our goal here is to prove that the probability of occurrence of this event is asymptotically
large :

Proposition 2.9. Let ρ > 1 and k ≥ 1 be a fixed. Assume that κ ∈ (κc
ρ(k), 1) and choose

p ∈ (0, 1). If the dimension d is large enough, then for every x ∈ W ,

P (G+(x)) ≥ p.

Note already that by translation invariance, P (G+(x)) does not depend on x′′, so we
can assume without loss of generality that x′′ = 0. In the sequel of this subsection, ρ > 1
and k ≥ 1 are fixed.

We first recall the definitions of the (di)1≤i≤k+1 and of κc
ρ(k) we give in the introduction.

We set r1 = rk+1 = 1 + ρ and for i ∈ {2, . . . , k}, ri = 2. Then, for a given sequence
(ai)2≤i≤k+1 ∈ [0, 1)k, we build an increasing sequence (di)1≤i≤k+1 by setting d1 = 1 + ρ
and, for every i ∈ {2, . . . , k + 1} :

d2i = d2i−1 + 2riaidi−1 + r2i .

Finally, we note D(a2, . . . , ak+1) = dk+1 and we set

κc
ρ(k) = inf

0≤a2,...,ak+1<1
max





 4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1− a2i )




1/(k+1)

,
2ρ

D(a2, . . . , ak+1)


 .

The first step consists in choosing a nearly optimal sequence (ai)2≤i≤k+1 ∈ [0, 1)k satisfying
some extra inequalities :

Lemma 2.10. We can choose (ai)2≤i≤k+1 ∈ [0, 1)k such that :

(24) 1 < κk+1 (1 + ρ)2

4ρ

√ ∏

2≤j≤k+1

(1− a2j ) < κ
dk+1

2ρ
.

Proof. As κc
ρ(k) < κ, we can choose (a0i )2≤i≤k+1 ∈ (0, 1)k such that the two following

conditions

κ >



 4ρ

(1 + ρ)2
√
1− a22 . . .

√
1− a2k+1)





1
k+1

,(25)

κ >
2ρ

dk+1
(26)

are fullfilled for (ai)i = (a0i )i. We fix (a3, · · · , ak+1) = (a03, · · · , a0k+1). Note that

f : a2 7→ κ
dk+1

2ρ
is continuous and increasing,

g : a2 7→ κk+1 (1 + ρ)2

4ρ

√ ∏

2≤j≤k+1

(1− a2j ) is continuous and decreasing,

and that lima2→1 g(a2) = 0. Moreover, Conditions (26) and (25) ensure that f(a02) > 1
and g(a02) > 1. Thus we only require that f(a02) > g(a02) to prove the lemma.
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If f(a02) ≤ g(a02), we can take a2 > a02 such that 1 < g(a2) < f(a02) : then f(a2) ≥
f(a02) > g(a2) > 1 and the lemma is proved. �

Note that(24) implies (25) and (26).

As explained in subsection 2.3, the main contribution to the number Nk of centers xk+1

of balls of radius ρ that are linked to a ball of radius ρ centered at the origin by a chain
(xi)1≤i≤k of k balls of radius 1 – see the precise definition (12) – is obtained for ‖xi‖ ∼ di,
where the d′is are build from a (nearly) optimal sequence (ai)2≤i≤k+1 ∈ [0, 1)k. So we fix a
nearly optimal family (ai)2≤i≤k+1 ∈ (0, 1)k satisfying (24), we build the associated family
of distances (di)1≤i≤k+1 ∈ (0, 1)k and we are going to look for a good sequence of centers
(xi)1≤i≤k+1 ∈ (0, 1)k with ‖xi‖ ∼ di.

We thus introduce the following subsets of R2 :

D′
0 =

(
− d−1/2, d−1/2

)
×
(
− d−1/2, 0

)
,

∀i ∈ {1, . . . , k + 1} D′
i =

(
0, d−1/2

)2
,

and the followining sets in R
d−2

C ′′
0 = {0},

∀i ∈ {1, . . . , k + 1} C ′′
i = B′′(0, di − 2d−1) \B′′(0, di − 3d−1).

Finally, for i ∈ {0, . . . , k + 1}, we set Ci = D′
i × C ′′

i . Note that for d large enough, these
sets are disjoint. The next lemma controls the asymptotics in the dimension d of the
volume of these sets

Lemma 2.11. For every i ∈ {1, . . . , k + 1} :

lim
d→+∞

1

d
ln

|C ′′
i |

vd−2
= lim

d→+∞

1

d
ln

|Ci|
vd

= ln di.

Proof. This can be proven by elementary computations. �

Each xi will be taken in Ci, but we also have to ensure that the (xi)1≤i≤k+1 form a
path. Note that for i ∈ {2, . . . , k + 1}, we have 0 < di−1 + airi < di, which legitimates
the following definition. See also Figure 2. For i ∈ {2, . . . , k+ 1} and d large enough, we
denote by θi the unique real number in (0, π/2) such that

cos θi =
di−1 + airi

di
+ d−1/2.

We introduce next, for y ∈ Ci−1, the following subset of Rd−2 :

D′′
i (y

′′) = {z′′ ∈ C ′′
i : 〈z′′, y′′〉 ≥ ‖y′′‖.‖z′′‖. cos θi}

We also set D′′
0 = C ′′

0 and D′′
1(y

′′) = C ′′
1 for every y ∈ C0. Finally, we define for every

i ∈ {1, . . . , k + 1} and y ∈ Ci−1 :

Di(y) = D′
i ×D′′

i (y
′′) ⊂ Ci,

and D0 = D′
0 ×D′′

0 .

Lemma 2.12. • If the dimension d is large enough, for every i ∈ {1, . . . , k + 1} and

y ∈ Ci−1,

Di(y) ⊂ B(y, ri) ∩ Ci.

• Let x0 ∈ D0. If there exist X1, . . . , Xk ∈ χ1 and Xk+1 ∈ χρ such that X1 ∈ D1(x0), X2 ∈
D2(X1), . . . , Xk+1 ∈ Dk+1(Xk), then the event G+(x0) occurs.
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Proof. • The inclusion Di(y) ⊂ Ci is clear for every i ∈ {1, . . . , k + 1}. Let i ∈
{2, . . . , k + 1}, y ∈ Ci−1 and z ∈ Di(y). Then, as soon as d is large enough,

‖z − y‖2 = ‖z′ − y′‖2 + ‖z′′ − y′′‖2

≤ 2

d
+ ‖y′′‖2 + ‖z′′‖2 − 2 < y′′, z′′ >

≤ 2

d
+ (di−1 − 2d−1)2 + (di − 2d−1)2 − 2(di−1 − 3d−1)(di − 3d−1) cos θi

≤ d2i + d2i−1 − 2di−1(di−1 + airi)− 2d−1/2didi−1 +Oi(d
−1)

≤ r2i − 2d−1/2didi−1 +Oi(d
−1) ≤ r2i .

Let now y ∈ C0 and z ∈ D1(y). As d1 = 1 + ρ = r1 > 2, we obtain, for d large enough :

‖z − y‖2 = ‖z′ − y′‖2 + ‖z′′ − y′′‖2 ≤ 8

d
+ (d1 − 2d−1)2 ≤ r21.

• The second point is a simple consequence of the first point, of the fact that the sets
Di(xi−1), as the sets Ci, are disjoint and of the definition of the event G+. �

Note that for i ∈ {1, . . . , k + 1}, |Di(y)| and |D′′
i (y

′′)| do not depend on the choice
of y ∈ Ci−1. We thus denote by |Di| and |D′′

i | these values. We now give asymptotic
estimates for these values :

Lemma 2.13. For every i ∈ {2, . . . , k + 1},

lim
d→+∞

1

d
ln

|D′′
i |

vd−2
= lim

d→+∞

1

d
ln

|Di|
vd

= ln(ri

√
1− a2i ).

Proof. We have, by homogeneity and isotropy:

(27) |D′′
i | =

(
(di − 2d−1)d−2 − (di − 3d−1)d−2

)
|S|

where S = {x = (x1, . . . , xd−2) ∈ B′′(0, 1) : x1 ≥ ‖x‖ cos(θi)}.
But S is included in the cylinder

{(xi)1≤i≤d−2 ∈ R
d−2 : x1 ∈ [0, 1], ‖(x2, . . . , xd−2)‖ ≤ sin(θi)}

and S contains the cone

{(xi)1≤i≤d−2 ∈ R
d−2 : x1 ∈ [0, cos(θi)], ‖(x2, . . . , xd−2)‖ ≤ x1 sin(θi) cos(θi)

−1}.
Therefore :

(28) vd−3 cos(θi) sin(θi)
d−3(d− 2)−1 ≤ |S| ≤ vd−3 sin(θi)

d−3.

From (27), (28), and the limits cos(θi) → (di−1+airi)d
−1
i 6= 0 and di sin(θi) → ri

√
1− a2i ,

we get

lim
1

d
ln

( |D′′
i |

vd−2

)
= ln(ri

√
1− a2i ).

The lemma follows. Note that a direct calculus with spherical coordinates can also give
the announced estimates. �

Everything is now in place to prove Proposition 2.9.

Proof of Proposition 2.9. Choose p < 1 and x ∈ W such that x′′ = 0.
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• We start with a single individual, encoded by its position ζ0 = {x} ⊂ C0, and we
build, generation by generation, its descendance : we set, for 1 ≤ i ≤ k,

ζi = χ1 ∩
⋃

y∈ζi−1

Di(y) ⊂ Ci,

and for the (k + 1)-th generation, we finally set

ζk+1 = χρ ∩
⋃

y∈ζk

Dk+1(y) ⊂ Ck+1.

By Lemma 2.12, if ζk+1 6= ∅ then the event G+(x) occurs. To bound from below the
probability that ζk+1 6= ∅, we now build a simpler process ξ, stochastically dominated by
η.

• We set αi = λ1|Di| for i ∈ {1, . . . , k} and αk+1 = λρ|Dk+1| : thus, αi is the mean
number of children of a point of the (i − 1)-th generation. Let X0 = x be the position
of the first individual. Let N be a Poisson random variable with parameter α1 : This
random variable gives the number of children of X0.

Then we complete X0 in a family X = (X0, X1, . . . , Xk+1) of points in R
d, independent

of N , in the following manner : X1 is taken uniformly in D1(X0), then X2 is taken
uniformly in D2(X1), and so on : The family X represents the positions of the possible
successive descendents of x in a single branch. Let then (Xj)j≥1 be independent copies
of X . We will use the N first copies, one for each child of X0.

Let Y = (Y j
i )2≤i≤k+1,j≥1 be an independent family of independent and identically

distributed random variables, such that Y j
i follows the Bernoulli law with parameter

1 − exp(−αi), which is the probability that a Poisson random variable with parameter
αi is different from 0. The random variable Y j

i encodes the fact that in the j-th branch,
the member of the (i − 1)-th generation has children or not in a process in which we
forget dependencies due to geometry : Y j

i = 1 if and only if the member of the (i− 1)-th

generation in the j-th branch has at least one child. In other words, with the Y j
i , we only

keep, for each individual from the first generation X1, at most one child, and its position
is given by Xj

i . We set J1 = {1, . . . , N} and, for every i ∈ {2, . . . , k + 1} :

Ji = {1 ≤ j ≤ N : Y j
2 = · · · = Y j

i = 1}.
Thus the random set Ji gives the exponents of the branches that are, among the N
initial branches, still alive at the i-th generation in a process with no dependecies due to
geometry.

Until now, we did not take into account the geometrical constraints between individuals.
For every i ∈ {2, . . . , k + 1} and every j ≥ 1, we set

Zj
i = 1 if Xj

i 6∈
⋃

j′∈Ji−1\{j}

Di(X
j′

i−1) and Zj
i = 0 otherwise.

When building generation i from generation i−1, we explore the Poisson point processes
in the area

⋃
j∈Ji−1

Di(X
j
i−1). By construction of the Ci, these areas are distinct for

different generations. When Zj
i = 1, we are sure that the member of the i-th generation

in the j-th branch does not live in an already explored zone. Thus, one can check that,
for every i ∈ {2, . . . , k + 1}, the set

ξi = {Xj
i : j ∈ Ji and Zj

2 = · · · = Zj
i = 1}

is stochastically dominated by ζi. Thus to prove Proposition 2.9, we now need to bound
from below the probability that ξk+1 is not empty.
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• Let T be the smallest integer j such that Y j
2 = · · · = Y j

k+1 = 1 : in other words,
T is the smallest exponent of a branch that lives till generation k + 1. To ensure that
ξk+1 6= ∅, it is sufficient that T ≤ N and that ZT

2 = · · · = ZT
k+1 = 1. So :

1− P (G+(x)) ≤ P (ξk+1 = ∅)

≤ P (#Jk+1 = 0) + P

(
{T ≤ N} ∩

⋃

2≤i≤k+1

{ZT
i = 0}

)

≤ P (#Jk+1 = 0) +
∑

2≤i≤k+1

P (T ≤ N and ZT
i = 0).

For every 2 ≤ i ≤ k + 1, we have by construction :

P (T ≤ N and ZT
i = 0) = P

(
T ≤ N, ∃j ∈ Ji−1 \ {T} such that XT

i ∈ Di(X
j
i−1)
)

≤
∑

j≥1

P
(
T ≤ N and j ∈ Ji−1 \ {T} and XT

i ∈ Di(X
j
i−1)
)

=
∑

j≥1

E
(
1T≤N1j∈Ji−1\{T}P

(
XT

i ∈ Di(X
j
i−1) |Y,N

))

=
∑

j≥1

E
(
1T≤N1j∈Ji−1\{T}

)
P
(
X1

i ∈ Di(X
2
i−1)
)

≤ E(#Ji−1)P
(
X1

i ∈ Di(X
2
i−1)
)
.

Besides, as (X1
i )

′′ is uniformly distributed on C ′′
i and is independent of (X2

i−1)
′′,

P
(
X1

i ∈ Di(X
2
i−1)
)

= P
(
(X1

i )
′′ ∈ D′′

i ((X
2
i−1)

′′)
)
=

|D′′
i |

|C ′′
i |
.(29)

This leads to

(30) 1− P (G+(x)) ≤ P (#Jk+1 = 0) +

k+1∑

i=2

E(#Ji−1)
|D′′

i |
|C ′′

i |
.

• For 1 ≤ i ≤ k + 1, the cardinality of Ji follows a Poisson law with parameter

ηi = α1

i∏

i′=2

(1− exp(−αi′)).

Remember that αi = λ1|Di| for i ∈ {1, . . . , k} and αk+1 = λρ|Dk+1|. By lemma 2.13, we
have the following limits:

lim
d→+∞

1

d
lnα1 = ln

κ(1 + ρ)

2
< 0,

lim
d→+∞

1

d
lnαi = ln(κ

√
1− a2i ) < 0 for 2 ≤ i ≤ k,

lim
d→+∞

1

d
lnαk+1 = ln(κ

√
1− a2k+1

1 + ρ

2ρ
) < 0.

To see the signs of the limits, note that κ < 1, that 1+ρ
2ρ

< 1 and that (24) implies that

κ > κk+1 >
4ρ

(1 + ρ)2
√

1− a22 . . .
√
1− a2k+1

>
2

1 + ρ
.
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Consequently, we first see that

lim
d→+∞

1

d
ln(ηk+1) = lim

d→+∞

1

d
ln(α1 . . . αk+1)

= ln


κk+1 (1 + ρ)2

4ρ

√ ∏

2≤j≤k+1

(1− a2j )


 > 0 with (24);

therefore, lim
d→+∞

P (#Jk+1 = 0) = 0.(31)

Similarly, for 2 ≤ i ≤ k + 1, we have

lim
d→+∞

1

d
ln(ηi−1) = ln


κi−11 + ρ

2

√ ∏

2≤i′≤i−1

(1− a2i′)


 .

Lemmas 2.11 and 2.13 ensure that :

lim
d→+∞

1

d
ln

( |D′′
i |

|C ′′
i |

)
= ln

(
ri
√
1− a2i
di

)
.

Thus, for 2 ≤ i ≤ k + 1, we have :

lim sup
d→+∞

1

d
ln

(
E(#Ji−1)

|D′′
i |

|C ′′
i |

)
≤ ln


ri(1 + ρ)κi−1

2di

√ ∏

2≤i′≤i

(1− a2i′)


 .

Now,

for 2 ≤ i ≤ k, lim sup
d→+∞

1

d
ln

(
E(#Ji−1)

|D′′
i |

|C ′′
i |

)
≤ ln

(
1 + ρ

di

)
< 0,(32)

lim sup
d→+∞

1

d
ln

(
E(#Jk)

|D′′
k+1|

|C ′′
k+1|

)
≤ ln


(1 + ρ)2κk

2dk+1

√ ∏

2≤i′≤k+1

(1− a2i′)


 < 0(33)

with (24). To end the proof, we put estimates (31), (32) and (33) in (30). �

2.4.2. Several steps in the 2-dimensional oriented percolation model. We prove here Propo-
sition 2.8 by building the supercritical 2-dimensional oriented percolation process embed-
ded in the two-type Boolean Model.

Proof of Proposition 2.8. We first define an oriented graph in the following manner:
the set of sites is

S = {(a, n) ∈ Z× N : |a| ≤ n, a + n is even };
from any point (a, n) ∈ S, we put an oriented edge from (a, n) to (a + 1, n + 1), and
an oriented edge from (a, n) to (a − 1, n + 1). We denote by ~pc(2) ∈ (0, 1) the critical
parameter for Bernoulli percolation on this oriented graph – see Durrett 84 [5].

For any (a, n) ∈ S, we define the following subsets of Rd

Wa,n = d−1/2
(
]a− 1, a+ 1[×]n− 1, n[×R

d−2
)
,

W−
a,n = d−1/2

(
]a− 1, a[×]n, n + 1[×R

d−2
)
,

W+
a,n = d−1/2

(
]a, a + 1[×]n, n+ 1[×R

d−2
)
.

Note that the (Wa,n)(a,n)∈S are disjoint and that W+
a,n ∪W−

a+2,n ⊂ Wa+1,n+1.
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We now fix k ≥ 1 and κ ∈ (κc
ρ(k), 1), and for x0 ∈ Wa,n, we introduce the events :

G+
a,n(x0) =

{
There exist distinct x1, . . . , xk ∈ χ1 ∩W+

a,n and xk+1 ∈ χρ ∩W+
a,n

such that x0, x1, . . . , xk+1 is a path

}
,

G−
a,n(x0) =

{
There exist distinct x1, . . . , xk ∈ χ1 ∩W−

a,n and xk+1 ∈ χρ ∩W−
a,n

such that x0, x1, . . . , xk+1 is a path

}
.

Note that G+
0,0(x) is exactly the event G+(x) introduced in (23), and that the other events

are obtained from this one by symmetry and/or translation.
Next we choose p ∈ (~pc(2), 1). With Proposition 2.9, and by translation and symmetry

invariance, we know that for every large enough dimension d, for every (a, n) ∈ S, for
every x ∈ Wa,n:

(34) P (G±
a,n(x)) ≥ p.

We fix then a dimension d large enough to satisfy (34). We can now construct the random
states, open or closed, of the edges of our oriented graph. We denote by ∞ a virtual site.

Definition of the site on level 0. Almost surely, χρ ∩W0,0 6= ∅. We take then some
x(0, 0) ∈ χρ ∩W0,0.

Definition of the edges between levels n and n + 1. Fix n ≥ 0 and assume we
built a site x(a, n) ∈ Wa,n ∪ {∞} for every (a, n) ∈ S. Consider (a, n) ∈ S :

– If x(a, n) = ∞ : we decide that each of the two edges starting from (a, n) is open
with probability p and closed with probability 1 − p, independently of everything
else; we set z−(a, n) = z+(a, n) = ∞.

– Otherwise :
– Edge to the left-hand side :
– if the event G−

a,n(x(a, n)) occurs : we take for z−(a, n) some point xk+1 ∈
W−

a,n ⊂ Wa−1,n+1 given by the occurrence of the event, and we open the edge
from (a, n) to (a− 1, n+ 1) ;

– otherwise : we set z−(a, n) = ∞ and we close the edge from (a, n) to (a −
1, n+ 1).

– Edge to the right-hand side :
– if the event G+

a,n(x(a, n)) occurs : we take for z+(a, n) some point xk+1 ∈
W+

a,n ⊂ Wa+1,n+1 given by the occurrence of the event, and we open the edge
from (a, n) to (a+ 1, n+ 1) ;

– otherwise : we set z+(a, n) = ∞ and we close the edge from (a, n) to (a +
1, n+ 1).

For (a, n) outside S, we set z±(a, n) = ∞.

Definition of the sites at level n+1. Fix n ≥ 0 and assume we determined the state
of every edge between levels n and n+ 1. Consider (a, n+ 1) ∈ S :

– If z+(a− 1, n) 6= ∞ : set x(a, n + 1) = z+(a− 1, n) ∈ Wa,n+1.
– Otherwise :

– if z−(a+ 1, n) 6= ∞ : set x(a, n + 1) = z−(a+ 1, n) ∈ Wa,n+1,
– otherwise : set x(a, n+ 1) = ∞.

Assume that there exists an open path of length n starting from the origin in this
oriented percolation : we can check that the leftmost open path of length n starting
from the origin gives a path in the two-type Boolean model with n alternating sequences
of k balls with radius 1 and one ball with radius ρ. Thus, percolation in this oriented
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percolation model implies percolation by k-alternation in the two-type Boolean model.
Let us check that percolation occurs indeed with positive probability.

For every n, denote by Fn the σ-field generated by the restrictions of the Poisson point
processes χ1 and χρ to the set

d−1/2
(
R× (−∞, n)× R

d−2
)
.

By definition of the events G – remember that the (Wa,n)(a,n)∈S are disjoint – and by (34),
the states of the different edges between levels n and n+1 are independent conditionally to
Fn. Moreover, conditionally to Fn, each edge between levels n and n+1 has a probability
at least p to be open. Therefore, the oriented percolation model we built stochastically
dominates Bernoulli oriented percolation with parameter p. As p > ~pc(Z

2), with positive
probability, there exists an infinite open path in the oriented percolation model we built;
this ends the proof of Proposition 2.8. �

2.5. Proof of Theorem 1.4. We first prove how Propositions 2.2 and 2.8 give (11) when
a = 1, b > 1 and α = β = 1, and then we see how we can deduce the general case by
scaling and coupling.

When a = 1, b > 1 and α = β = 1. Set ρ = b. In this case, ν = δ1+ δρ, so νd = δ1+
1

ρd
δρ.

Note then that the two-type Boolean model Σ introduced in Subsection 2.1 and whose
intensities depend on κ ∈ (0, 1) coincides with the Boolean model directed by the measure

κd

vd2d
νd

as defined in the introduction.
If κ < κc

ρ then, by Proposition 2.2, there is no percolation for d large enough. Therefore,
for any such κ and for any large enough d we have:

λc
d(νd) ≥

κd

vd2d
and then λ̃c

d(νd) = λc
d(νd)vd2

d

∫
rdνd(dr) ≥ 2κd.

Letting d goes to +∞ and then κ goes to κc
ρ, we then obtain

(35) lim inf
d→+∞

1

d
ln (λc

d(νd)) ≥ ln
(
κc
ρ

)
.

As κc
ρ < 1 by Lemma 2.1, choose now κ such that κc

ρ < κ < 1. Then, there exists
k ≥ 1 such that κc

ρ(k) < κ. Therefore, by Proposition 2.8, there is percolation for d large
enough in Σ; by coupling, this remains true for any κ > κc

ρ. Therefore, for any κ > κc
ρ

and for any large enough d we have, as before:

λc
d(νd) ≤

κd

vd2d
and then λ̃c

d(νd) ≤ 2κd.

Letting d goes to +∞ and then κ goes to κc
ρ, we then obtain

(36) lim sup
d→+∞

1

d
ln (λc

d(νd)) ≤ ln
(
κc
ρ

)
.

Bringing (35) and (36) together, we get (11) when a = 1, b = ρ > 1 and α = β = 1.
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When b > a > 0 and α = β = 1. Set ρ = b/a. Here, ν = δa + δb; set µ = δ1 + δρ. With
the notation of the introduction,

νd =
1

ad
(δa +

1

ρd
δb) =

1

ad
H1/a.(δ1 +

1

ρd
δρ) =

1

ad
H1/aµd.

By the scaling relations (2) and (3), we obtain

λ̃c
d(νd) = λ̃c

d(µd).

The result when b > a > 0 and α = β = 1 follows then from the previous case.

When b > a > 0 and α, β > 0. Here ν = αδa + βδb. Set µ = δa + δb, m = min(α, β) and
M = max(α, β). Then mµd ≤ νd ≤ Mµd and so

m

∫
rddµd(r) ≤

∫
rddνd(r) ≤ M

∫
rddµd(r),

1

M
λc
d(µd) = λc

d(Mµd) ≤ λc
d(νd) ≤ λc

d(mµd) =
1

m
λc
d(µd).

The two previous inequalities give:

m

M
λ̃c
d(µd) ≤ λ̃c

d(νd) ≤
M

m
λ̃c
d(µd),

and the theorem follows from the previous case. �

3. Proof of Theorem 1.2

Theorem 1.2 follows from Theorem 1.4 by coupling and scaling. By assumption, µ is a
measure on (0,+∞) whose support is not a singleton. We can therefore choose b′ > a′ > 0
in the support, set ρ = b′/a′ and then take a small enough ε > 0 such that

a′(1 + ε) < b′(1− ε), µ([a′(1− ε), a′(1 + ε)] > 0,

µ([b′(1− ε), b′(1 + ε)] > 0, (1 + ε)(1− ε)−1κc
ρ < 1.

Set a = a′(1− ε), b = b′(1− ε) and τ = (1 + ε)(1− ε)−1 > 1. We have

aτ < b, µ([a, aτ ]) > 0, µ([b, bτ ]) > 0 and τκc
ρ < 1.

Set ν = µ([a, aτ ])δa + µ([b, bτ ])δb and S = [a, aτ ] ∪ [b, bτ ]. For all d ≥ 1 we have

τ−dνd({a}) = µ([a, aτ ])(aτ)−d ≤
∫

[a,aτ ]

r−dµ(dr) = µd([a, aτ ])

and, similarly, τ−dνd({b}) ≤ µd([b, bτ ]). By coupling, this implies that λc
d(1Sµd) ≤

λc
d(τ

−dνd), and then that

λc
d(µd) ≤ λc

d(1Sµd) ≤ λc
d(τ

−dνd) = τdλc
d(νd).

But λ̃c
d(µd) = λc

d(µd)2
dvdµ((0,+∞)) and, similarly, λ̃c

d(νd) = λc
d(ν)2

dvdν((0,+∞)), which
leads to

λ̃c
d(µd) ≤ τd

µ((0,+∞))

ν((0,+∞))
λ̃c
d(νd).

But by Theorem 1.4 we have

lim
d→+∞

1

d
ln
(
λ̃c
d(νd)

)
= ln(κc

ρ), and then lim sup
d→+∞

1

d
ln
(
λ̃c
d(µd)

)
≤ ln(τκc

ρ) < 0,

which ends ce proof. �
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Note that as a byproduct of the proof, we obtain the following upper bound :

lim sup
d→+∞

1

d
ln
(
λ̃c
d(µd)

)
≤ inf

0<a<b<+∞, a,b∈Supp(µ)
ln(κc

b/a).

An interesting but certainly tough result would be to obtain a real limit, and there is no
reason why this limit should coincide with this upper bound.
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