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CONTINUUM PERCOLATION IN HIGH DIMENSIONS

JEAN-BAPTISTE GOUÉRÉ AND RÉGINE MARCHAND

Abstract. Consider a Boolean model Σ in R
d. The centers are given by a homogeneous

Poisson point process with intensity λ and the radii of distinct balls are i.i.d. with
common distribution ν. The critical covered volume is the proportion of space covered
by Σ when the intensity λ is critical for percolation. Previous numerical simulations and
heuristic arguments suggest that the critical covered volume may be minimal when ν is
a Dirac measure.

In this paper, we prove that it is not the case at least in high dimension. To establish
this result we study the asymptotic behaviour, as d tends to infinity, of the critical
covered volume. It appears that, in contrast to what happens in the constant radii case
studied by Penrose, geometrical dependencies do not always vanish in high dimension.

1. Introduction and statement of the main results

Introduction. Consider a homogeneous Poisson point process on R
d. At each point of

this process, we center a ball with random radius, the radii of distinct balls being i.i.d.
and independent of the point process. The union Σ of these random balls is called a
Boolean model. This Boolean model only depends on three parameters : the intensity λ
of the point process of centers, the common distribution ν of the radii of the balls and
the dimension d.

Denote by λc
d(ν) the critical intensity for percolation in Σ. We then consider ccd(ν),

the volumic proportion of space which is covered by Σ when λ = λc
d(ν). This quantity is

called the critical covered volume. This quantity is scale invariant (see (3)). For example
ccd(δ1) = ccd(δr) for any r > 0, where δr denotes the Dirac measure on r. Numerical
simulations in low dimension and heuristic arguments in any dimension suggested that
the critical covered volume may be minimal when ν is a Dirac measure, that is when
all the balls have the same radius. We show that this is not true in high dimensions.
This result is proved through the study of the following kind of asymptotics. Let µ be
a probability measure on ]0,+∞[ such that r−dµ(dr) is a finite measure for any d ≥ 1.
For any d, we then consider the probability measure µ̃d = Z−1

d r−dµ(dr) where Zd is a
normalization constant. The r−d normalization will be discussed and motivated below
(7). We prove that, as soon as µ is non degenerate, one has :

(1) ccd(µ̃d) ≪ ccd(δ1) as d → ∞.

This proves that, when d is large enough, the critical covered volume is not minimal in
the constant radii case.

The constant radii case has been studied by Penrose [14]. He proved that the asymptotic
behavior of ccd(δ1) is given by the critical parameter of the associated Galton-Watson
process. This is due to the fact that geometrical dependencies vanish in high dimension
in that case. We first focus in this paper on the case where the radii take only two
distinct values. We prove that, in that case, the asymptotic behavior of ccd(µ̃d) is given
by a competition between genealogy effects (given by the associated two-type Galton-
Watson process) and geometrical dependencies effects. This yields (1) in that case. The
general non degenerate distribution of radii case follows.
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The Boolean model. Let us give here a different – but equivalent – construction of the
Boolean model. Let ν be a finite 1 measure on (0,+∞). We assume that the mass of ν
is positive. Let d ≥ 2 be an integer, λ > 0 be a real number and ξ be a Poisson point
process on R

d × (0,+∞) whose intensity measure is the Lebesgue measure on R
d times

λν. We define a random subset of Rd as follows:

Σ(λν) =
⋃

(c,r)∈ξ

B(c, r),

where B(c, r) is the open Euclidean ball centered at c ∈ R
d and with radius r ∈ (0,+∞).

The random subset Σ(λν) is a Boolean model driven by λν.
We say that Σ(λν) percolates if the connected component of Σ(λν) that contains

the origin is unbounded with positive probability. This is equivalent to the almost-sure
existence of an unbounded connected component of Σ(λν). We refer to the book by
Meester and Roy [11] for background on continuum percolation. The critical intensity is
defined by:

λc
d(ν) = inf{λ > 0 : Σ(λν) percolates}.

One easily checks that λc
d(ν) is finite. In [6] it is proven that λc

d(ν) is positive if and only if

(2)

∫
rdν(dr) < +∞.

We assume that this assumption is fulfilled.
By ergodicity, the Boolean model Σ(λν) has a deterministic natural density. This is

also the probability that a given point belongs to the Boolean model and it is given by :

P (0 ∈ Σ(λν)) = 1− exp

(
−λ

∫
vdr

dν(dr)

)
,

where vd denotes the volume of the unit ball in R
d. The critical covered volume ccd(ν) is

the density of the Boolean model when the intensity is critical :

ccd(ν) = 1− exp

(
−λc

d(ν)

∫
vdr

dν(dr)

)
.

It is thus more convenient to study the critical covered volume through the normalized
critical intensity:

λ̃c
d(ν) = λc

d(ν)

∫
vd(2r)

dν(dr).

We then have ccd(ν) = 1 − exp
(
− λ̃c

d
(ν)

2d

)
. The factor 2d may seem arbitrary here. Its

interest will appear in the statement of the next theorems.

We will now give two scaling relations which partly justify our preference for ccd or λ̃c
d

over λc
d. For all a > 0, define Haν as the image of ν under the map defined by x 7→ ax.

By scaling, we get:

(3) λ̃c
d(H

aν) = λ̃c
d(ν).

This is a consequence of Proposition 2.11 in [11], and it may become more obvious when
considering the two following facts : a critical Boolean model remains critical when
rescaling and the density is invariant by rescaling ; therefore the critical covered volume

1. There is no greater generality in considering finite measures instead of probability measures ; this
is simply more convenient.
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and then the normalized threshold are invariant. One also easily checks the following
invariance:

(4) λ̃c
d(aν) = λ̃c

d(ν).

Critical intensity as a function of ν. It has been conjectured by Kertész and Vicsek [9]
that the critical covered volume – or equivalently the normalized critical intensity – should
be independent of ν, as soon as the support of ν is bounded. Phani and Dhar [4] gave a
heuristic argument suggesting that the conjecture were false. A rigorous proof was then
given by Meester, Roy and Sarkar in [12]. More precisely, they gave examples of measures
ν with two atoms such that:

(5) λ̃c
d(ν) > λ̃c

d(δ1).

As a consequence of Theorem 1.1 in the paper by Menshikov, Popov and Vachkovskaia [13],

we even get that λ̃c
d(ν) can be arbitrarily large. More precisely, if

(6) if ν(n, a) =

n−1∑

k=0

adkδa−k , then λ̃c
d(ν(n, a)) → nλ̃c

d(δ1) as a → ∞.

Actually the result of [13] is the following much stronger statement: λc
d(ν(+∞, a)) →

λc
d(δ1) when a → ∞. The convergence (6) is implicit in the work of Meester, Roy and

Sarkar in [12], at least when n = 2. There were also heuristics for such a result in [4].
By Theorem 2.1 in [6], we get the existence of a positive constant Cd, that depends

only on the dimension d, such that:

λ̃c
d(ν) ≥ Cd.

To sum up, λ̃c
d(·) is not bounded from above but is bounded from below by a positive

constant. In other words, the critical covered volume ccd(·) ∈ (0, 1) can be arbitrarily close
to 1 but is bounded from below by a positive constant. It is thus natural to seek the
optimal distribution, that is the one which minimizes the critical covered volume.

In the physical literature, it is strongly believed that, at least when d = 2 and d = 3,
the critical covered volume is minimum in the case of a deterministic radius, when the
distribution of radius is a Dirac measure. This conjecture is supported by numerical
evidence (to the best of our knowledge, the most accurate estimations are given in a
paper by Quintanilla and Ziff [15] when d = 2 and in a paper by Consiglio, Baker,
Paul and Stanley [2] when d = 3). On Figure 1, we plot the critical covered volume in
dimension 2 as a function of α and for different values of ρ when ν = (1−α)δ1 +αρ−2δρ.
The data for finite values of ρ come from numerical estimations in [15], while the data
for infinite ρ come from the study of the multi-scale Boolean model. See Section 1.4 in
[8] for further references. The conjecture is also supported by some heuristic arguments
in any dimension (see for example Dhar [3]). See also [1]. In the above cited paper [12],
it is noted that the rigorous proof of (5) suggests that the deterministic case might be
optimal for any d ≥ 2.

In this paper we show on the contrary that for all d large enough the critical covered
volume is not minimized by the case of deterministic radii.

Critical intensity in high dimension : the case of a deterministic radius. As-
sume here that the measure ν is a Dirac mass at 1, that is that the radii of the balls are
all equal to 1. Penrose proved the following result in [14] :

Theorem 1.1 (Penrose). lim
d→∞

λ̃c
d(δ1) = 1.
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Figure 1. Critical covered volume as a function of α for different values
of ρ. From bottom to top: ρ = 2, ρ = 5, ρ = 10 and the limit as ρ → ∞.

With the scale invariance (3) of λ̃c
d, this limit can readily be generalized to any constant

radius : for any a > 0,

lim
d→∞

λ̃c
d(δa) = lim

d→∞
λ̃c
d(δ1) = 1.

Theorem 1.1 is the continuum analogue of a result of Kesten [10] for Bernoulli bond per-
colation on the nearest-neighbor integer lattice Zd, which says that the critical percolation
parameter is asymptotically equivalent to 1/(2d).

Let us say a word about the ideas of the proof of Theorem 1.1.

The inequality λ̃c
d(δ1) > 1 holds for any d ≥ 2. The proof is simple, and here is the

idea. We consider the following natural genealogy. The deterministic ball B(0, 1) is said
to be the ball of generation 0. The random balls of Σ(λδ1) that touch B(0, 1) are then
the balls of generation 1. The random balls that touch one ball of generation 1 without
being one of them are then the balls of generation 2 and so on. Let us denote by Nd the
number of all balls that are descendants of B(0, 1). There is no percolation if and only if
Nd is almost surely finite.

Now denote by m the Poisson distribution with mean λvd2
d : this is the law of the

number of balls of Σ(λδ1) that touch a given ball of radius 1. Therefore, if there were
no interference between children of different balls, Nd would be equal to Z, the total
population in a Galton-Watson process with offspring distribution m. Because of the
interferences due to the fact that the Boolean model lives in R

d, this is not true : in fact,
Nd is only stochastically dominated by Z. Therefore, if λvd2

d ≤ 1, then Z is finite almost
4



surely, then Nd is finite almost surely and therefore there is no percolation. This implies

λ̃c
d(δ1) = vd2

dλc
d(δ1) > 1.

The difficult part of Theorem 1.1 is to prove that if d is large, then the interferences are
small, then Nd is close to Z and therefore there is percolation for large d as soon as vd2

dλ
is a constant striclty larger than one.

To sum up, at first order, the asymptotic behavior of the critical intensity of the Boolean
model with constant radius is given by the threshold of the associated Galton-Watson
process, as in the case of Bernoulli percolation on Z

d : roughly speaking, as the dimension
increases, the geometrical constraints of the finite dimension space decrease and at the
limit, we recover the non-geometrical case of the corresponding Galton-Watson process.

Critical intensity in high dimension : the case of random radii. If µ is a finite
measure on (0,+∞) and if d ≥ 2 is an integer, we define a measure µd on (0,+∞) by
setting :

(7) µd(dr) = r−dµ(dr).

Note that, for any d, the assumption (2) is fulfilled by µd, and that (δ1)d = δ1. Note also
that µd is not necessarily a finite measure. However the definitions made above still make
sense in this case and we still have λc

d(µd) ∈ (0,+∞) thanks to Theorem 1.1 in [7].

We will study the behavior of λ̃c
d(µd) as d tends to infinity. Let us motivate the definition

of µd with the following two related properties :

(1) Consider the Boolean model Σ(λµd) on R
d driven by λµd where λ > 0. For any

0 < s < t < ∞, the number of balls of Σ(λµd) with radius in [s, t] that contains
a given point is a Poisson random variable with intensity:

∫

[s,t]

vdr
dλµd(dr) = vdλµ([s, t]).

Loosely speaking, this means that contrary to what happens in the Boolean model
driven by λµ, the relative importance of radii of different sizes does not depend
on the dimension d in the Boolean model driven by λµd.

(2) A closely related property is the following one. Consider for example the case
µ = αδa + βδb. Then, a way to build Σ(λµd) is to proceed as follows. Consider
two independent Boolean model: ΣA, driven by λαδ1, and ΣB, driven by λβδ1.
Then set Σ(λµd) = aΣA + bΣB .

We prove the following result :

Theorem 1.2. Let µ be a finite measure on (0,+∞). We assume that the mass of µ is

positive and that µ is not concentrated on a singleton. Then :

lim sup
d→+∞

1

d
ln
(
λ̃c
d(µd)

)
< 0.

As (δ1)d = δ1, a straightforward consequence of Theorem 1.2 and Theorem 1.1 – or,

actually, of the much weaker and easier convergence of ln(λ̃c
d(δ1)) to 0 – is the following

result:

Corollary 1.3. Let µ be a finite mesure on (0,+∞). We assume that the mass of µ is

positive and that µ is not concentrated on a singleton. Then, for any d large enough, we

have:

λ̃c
d(µd) < λ̃c

d(δ1), or equivalently ccd(µd) < ccd(δ1).
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In fact, Theorem 1.2 follows from the particular case of radii taking only two different
values, for which we have more precise results.

Critical intensity in high dimension : the case of radii taking two values.

To state the result, we need some further notations. Fix ρ > 1. Fix k ≥ 1. Set
r1 = rk+1 = 1 + ρ, and for i ∈ {2, . . . , k}, ri = 2. For (ai)2≤i≤k+1 ∈ [0, 1)k, we build
an increasing sequence of distances (di)1≤i≤k+1 by setting d1 = 1 + ρ and, for every
i ∈ {2, . . . , k + 1}:

d2i = d2i−1 + 2riaidi−1 + r2i .

Note that the sequence (di)1≤i≤k+1 depends on ρ, k, and the ai’s.
We set D(a2, . . . , ak+1) = dk+1. Now set, for every k ≥ 1,

(8) κc
ρ(k) = inf

0≤a2,...,ak+1<1
max






 4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1− a2i )





1
k+1

,
2ρ

D(a2, . . . , ak+1)


 .

Finally, let:

(9) κc
ρ = inf

k≥1
κc
ρ(k).

We give some intuition on κc
ρ in Section 2.2. On Figure 2, we plot κc

ρ(i), for i ∈ {1, 2, 3}.
The data come from the formulas in Lemma 1.5 for i = 1 and from numerical estimations
for i ≥ 2.

Figure 2. κc
ρ(i), i ∈ {1, 2, 3}, from left to right.

This κc
ρ gives the asymptotic behaviour of λ̃c

d(µd) when µ charges two distinct points :

Theorem 1.4. Let b > a > 0, α > 0 and β > 0. Set µ = αδa + βδb and ρ = b/a > 1.
Then

(10) lim
d→+∞

1

d
ln
(
λ̃c
d(µd)

)
= ln

(
κc
ρ

)
< 0.
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If one does not normalize the distribution one has 2 λ̃c
d(αδa+βδb) → 1 and thus λ̃c

d(αδa+

βδb) ∼ λ̃c
d(δ1). This behaviour is due to the fact that, without normalization, the influence

of the small balls vanishes in high dimension.

In the next lemma we collect some properties of the κc
ρ(k)’s and κc

ρ. The only result
needed for the proof of our main results is 0 < κc

ρ < 1.

Lemma 1.5. Let ρ > 1.
• 0 < κc

ρ(1) < 1. More precisely :

If 1 < ρ ≤ 2 then κc
ρ(1) =

2
√
ρ

1 + ρ
, while if ρ ≥ 2 then κc

ρ(1) =

√
4 + ρ2

1 + ρ
.

• 0 < κc
ρ < 1.

• There exists ρ0 > 2 such that if ρ ≤ ρ0, then κc
ρ = κc

ρ(1). This implies

If 1 < ρ ≤ 2 then κc
ρ =

2
√
ρ

1 + ρ
, while if 2 ≤ ρ ≤ ρ0 then κc

ρ =

√
4 + ρ2

1 + ρ
.

• As ρ goes to +∞, κc
ρ(k) = 1 − k

ρ
+ o(1/ρ). Thus one can not restrict the infimum

in (9) to a finite number of k.

Remember that in the case of a deterministic radius (assumptions of Theorem 1.1), the
first order of the asymptotic behavior of the critical intensity in high dimension is given
by the threshold of the associated Galton-Watson process.

In the case of two distinct radii (assumptions of Theorem 1.4), it is thus natural to
compare κc

ρ with the critical parameter of the associated Galton-Watson process, which
is now two-type, one for each radius.

Consider for example µ = λ(δ1 + δρ); then µd = λδ1 +
λ
ρd
δρ. Take λ = κd

vd2d
. Now

consider the offspring distribution of type ρ of an individual of type 1. We define it to
be the number of balls of a Boolean model directed by λ

ρd
δρ that intersects a given ball

of radius 1. Therefore, this is a Poisson random variable with mean λ
ρd
vd(1 + ρ)d. The

other offspring distribution are defined similarly. We moreover assume that the offspring
of type 1 and ρ of a given individual are independent. The matrix of means of offspring
distributions is thus given by:

Md =

(
λvd(1 + 1)d λ

ρd
vd(1 + ρ)d

λvd(1 + ρ)d λ
ρd
vd(ρ+ ρ)d

)
= κd


 1

(
1+ρ
2ρ

)d
(
1+ρ
2

)d
1


 .

Let rd denotes the largest eigenvalue of Md. The extinction probability of the two-type
Galton-Watson process is 1 if and only if rd ≤ 1. We have:

rd ∼
(
κ(1 + ρ)

2
√
ρ

)d

, and thus κ =
2
√
ρ

1 + ρ
is the critical parameter.

With Theorem 1.4 and Lemma 1.5 we thus see that the comparison with the two-type
Galton-Watson is asymptotically sharp on a logarithmic scale when 1 < ρ ≤ 2, but is not
valid for ρ > 2. This contrasts with the case of a deterministic radius.

The proof of Theorem 1.1 (the constant radii case studied by Penrose) relies on the
comparaison with a one-type Galton process which does not depend on d. In the two-
values radii case, when κ is above or even slighlty below its critical parameter for the

2. The upper bound can be proven using λc

d
(αδa + βδb) ≤ λc

d
(βδb). The lower bound can be proven

using the easy part of the comparison with a two-type Galton-Watson process.
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Galton-Watson process, the mean number of children of type 1 of an individual of type ρ
tends to infinity. This partly explains why geometrical dependencies can not be handled
in the same way as in the constant radii case. This also partly explains why the critical
value for percolation in not always given by the critical value for the Galton-Watson
process.

The proofs of Theorem 1.4 and of Lemma 1.5 are given in Section 2. The main ideas
of the proofs are given in Section 2.2. Theorem 1.2 is an easy consequence of Theorem
1.4. The proof is given in Section 3.

2. The case when the radii take two values

Before proving Theorem 1.4, we begin with the proof of Lemma 1.5:

2.1. Proof of Lemma 1.5.

• By definition, κc
ρ(1) = inf

0≤a<1
max(φ1(a), φ2(a)), where φ1, φ2 : [0, 1) → R are defined by:

φ1(a) =
2
√
ρ

(1 + ρ)(1− a2)1/4
and φ2(a) =

ρ
√
2

(1 + ρ)
√
1 + a

.

If ρ ≤ 2 then φ1(0) ≥ φ2(0). As φ1 is increasing and φ2 is decreasing, we get:

κc
ρ(1) = inf

0≤a<1
φ1(a) = φ1(0) =

2
√
ρ

1 + ρ
.

Assume, on the contrary, ρ ≥ 2. Set

a =
ρ2 − 4

ρ2 + 4
∈ [0, 1).

Then φ1(a) = φ2(a). As φ1 is increasing and φ2 is decreasing, we get:

κc
ρ(1) = φ1(a) = φ2(a) =

√
4 + ρ2

1 + ρ
.

• Clearly we have, for every k ≥ 1 :

κc
ρ(k) ≥ inf

0≤a2,...,ak+1<1


 4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1− a2i ))




1/(k+1)

=

(
4ρ

(1 + ρ)2

)1/(k+1)

.

Therefore, as κc
ρ = infk≥1 κ

c
ρ(k),

0 <

(
4ρ

(1 + ρ)2

)1/2

≤ κc
ρ ≤ κc

ρ(1) < 1.

• The last inequalities imply that κc
ρ = κc

ρ(1) if 1 < ρ ≤ 2. In fact, as soon as

(11) κc
ρ(1) ≤

(
4ρ

(1 + ρ)2

)1/3

,

it is true that κc
ρ(1) ≤ κc

ρ(k) for all k ≥ 2 and therefore that κc
ρ = κc

ρ(1). As the inequality
in (11) is strict for ρ = 2, we obtain by continuity the existence of ρ0 > 2 such that for
every ρ ∈ (1, ρ0), κ

c
ρ = κc

ρ(1).
• The minoration follows easily from the following observation: by construction, we have
D(a2, . . . , ak+1) ≤ 2(ρ+ k). This implies

κc
ρ(k) ≥ inf

a2,...ak+1

2ρ

D(a2, . . . , ak+1)
≥ ρ

ρ+ k
= 1− k

ρ
+ o(1/ρ).
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To obtain the majoration, fix k ≥ 1. Take µ > 1/2 and ε > 0 such that µ+ (k− 1)ε < 1.
Take, for 2 ≤ i ≤ k, the specific values ai = cos(ρ−ε) = 1 + o(ρ−ε) and ak+1 = cos(ρ−µ).
Hence,

4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1− a2i )
∼ 4ρ−1+(k−1)ε+µ.

For i ≤ k − 1, we have 0 ≤ di+1 − di ≤ di+1 − aidi ≤
d2i+1 − (aidi)

2

di+1 + aidi
≤ 2

ρ+ 1
.

By summation, we get dk = (1 + ρ)(1 + 2(k−1)
1+ρ

+ o(ρ−1)). Now,

d2k+1 = d2k + 2(1 + ρ)dk cos(ρ
−µ) + (1 + ρ)2, and thus

2ρ

dk+1
= 1− k − 1

ρ
+ o(ρ−1).

Finally, κc
ρ(k) ≤ max





 4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1− a2i )




1
k+1

,
2ρ

dk+1


 ≤ 1− k − 1

ρ
+o(ρ−1).

This ends the proof. �

2.2. Notations and ideas of the proof of Theorem 1.4. In the whole proof, we fix
ρ > 1 and κ > 0.

Once the dimension d ≥ 1 is given, we consider two independent stationary Poisson
point processes on R

d: χ1 and χρ, with respective intensities

λ1 =
κd

vd2d
and λρ =

κd

vd2dρd
.

With χ1 and χρ, we respectively associate the two Boolean models

Σ1 =
⋃

x∈χ1

B(x, 1) and Σρ =
⋃

x∈χρ

B(x, ρ).

Note that Σρ is an independent copy of ρΣ1. Note also that the expected number of balls
of Σ1 that touches a given ball of radius 1 is κd. Thus the expected number of balls of Σρ

that touches a given ball of radius ρ is also κd.
We focus on the percolation properties of the following two-type Boolean model

Σ = Σ1 ∪ Σρ.

We begin by studying the existence of infinite k-alternating paths. For k ≥ 1, an infinite
k-alternating path is an infinite path made of balls such that the radius of the first ball is
ρ, the radius of the next k balls is 1, the radius of the next ball is ρ and so on. For a fixed
k ≥ 1, we wonder whether infinite k-alternating paths exist and seek the critical threshold
κc
ρ(k) for their existence. A natural first step is to study the following quantities:

N0 = #{x1 ∈ χρ : ‖x1‖ < 2ρ},(12)

and for k ≥ 1, Nk = #






xk+1 ∈ χρ : ∃(xi)1≤i≤k ∈ χ1 distinct such that
‖x1‖ < 1 + ρ, ∀i ∈ {1, . . . , k − 1} ‖xi+1 − xi‖ < 2,
‖xk+1 − xk‖ < 1 + ρ




 .

Fix k ≥ 1. Remember that κc
ρ(k) is defined in (8).

9



A lower bound for κc
ρ(k). In Subsection 2.3, we obtain lower bounds for κc

ρ(k) by looking
for upper bounds for E(Nk). On one side, a natural genealogy is associated to the
definition of Nk (see also the comments below Theorem 1.1 and below Lemma 1.5). We
start with an ancestor x0 located at the origin. We then seek his children in χ1∩B(x0, 1+
ρ): they constitute the first generation. If x1 is one of those children, we then seek the
children of x1 in χ1 ∩ B(x1, 2) to build the second generation and so on. On the other
side, the process lives in R

d and the geometry induces dependences: if x1 and x′
1 are

two individuals of the first generation, their children are a priori dependent. If we forget
geometry and only consider genealogy, we get the following upper bound:

E(Nk) ≤ λ1|B(·, 1 + ρ)|
(

k∏

i=2

λ1|B(·, 2)|
)
λρ|B(·, 1 + ρ)|.

But the points of the last generation are in B(0, 2ρ+ 2k). So if we forget genealogy and
only consider geometry we get the following upper bound:

E(Nk) ≤ λρ|B(0, 2ρ+ 2k)|.
Expliciting the two previous bounds and combining them together, we get:

E(Nk) ≤ min

(
κk+1(1 + ρ)2

4ρ
,
κ(ρ+ k)

ρ

)d

.

In this upper bound, the first argument of the minimum is due to genealogy while the
second one is due to geometry. To get the geometrical term, we considered the worst case:
the one in which, at each generation i, xi is as far from the origin as possible. This gives a
very poor bound. To get a better bound, we proceed as follows. Fix a2, . . . , ak+1 ∈ [0, 1).
As before, we set r1 = rk+1 = 1 + ρ, and for i ∈ {2, . . . , k}, ri = 2 and we build
the increasing sequence of distances (di)1≤i≤k+1 by setting d1 = 1 + ρ and, for every
i ∈ {2, . . . , k + 1}:

d2i = d2i−1 + 2riaidi−1 + r2i .

See Figure 3 for a better understanding of these distances di.
Denote by Ñk(a2, . . . , ak+1) the number of points xk+1 ∈ χρ for which there exists a

path x1, . . . , xk fulfilling the same requirement as for Nk and such that ‖xi‖ ≈ di for all i.
Proceeding as before, we obtain the following upper bound:

E(Ñk(a2, . . . , ak+1)) . min


κk+1 (1 + ρ)2

4ρ

√ ∏

2≤i≤k+1

(1− ai)2,
κD(a2, . . . , ak+1)

2ρ




d

.

Here again, the first argument of the minimum is due to genealogy while the second one
is due to geometry 3. Optimizing then on the ai’s, we get:

E(Nk) . sup
a2,...,ak+1

min



κk+1 (1 + ρ)2

4ρ

√ ∏

2≤i≤k+1

(1− ai)2,
κD(a2, . . . , ak+1)

2ρ




d

.

A precise statement is given in Lemma 2.4. The precise value of the threshold κc
ρ(k) given

in (8) is then the value such that the above upper bound converges to 0 when κ < κc
ρ(k).

This heuristic will be precised in Subsection 2.3: we will prove there that when κ < κc
ρ(k),

3. There is essentially no geometrical constraint in generations 1 to k. Very roughly, this is due to
the fact that, when i increases from 2 to k : there is more and more space (the di are increasing) ; the
intensity of the relevant Poisson point process is the same ; the expected number of individuals in the
ith generation of the Galton-Watson process decreases.

10



2a3

d3

0 2a2

d1

d2

Figure 3. Definition of the distances di. Circles in plain line are of radius
1 + ρ and 2.

E(Nk) converges to 0 as d tends to infinity, and this will imply that there exists no infinite
k-alternating path.

An upper bound for κc
ρ(k). If, on the contrary, κ > κc

ρ(k) then we will prove that E(Nk)
does not converge to 0. Actually, to prove that when κ > κc

ρ(k) there exist infinite k-
alternating path, we will show, in Subsection 2.4, the following stronger property : with
a probability that converges to 1 as d tends to infinity, we can find a path which fulfills

the requirements of the definition of Nk – or more precisely of Ñk(a2, . . . , ak+1) for some
a2, . . . , ak+1 nearly optimal – and which fulfills some extra conditions on the positions of
the balls. This is Proposition 2.8 and this is the main technical part of this paper. Those
extra conditions provide independence properties between the existence of different paths
of the same kind. We can then show the existence of many such paths and concatenate
some of them to build an infinite k-alternating path. Technically, the last step is achieved
by comparing our model with a supercritical oriented percolation process on Z

2. In this
comparison, an open bond in the oriented percolation process corresponds to one of the
above paths in our model. This comparison with oriented percolation was already the
last step in the paper of Penrose [14].

From infinite k-alternating paths to infinite paths. Recall κc
ρ = infk≥1 κ

c
ρ(k). With the

previous results, it is rather easy to show that there is no percolation for d large enough as
11



soon as κ < κc
ρ. When κ > κc

ρ then κ > κc
ρ(k) for a k ≥ 1. Therefore there is k-alternating

percolation and therefore there is percolation.

2.3. Subcritical phase. Let ρ > 1 be fixed. We consider, in R
d, the two-type Boolean

model Σ introduced in Subsection 2.2, with radii 1 and ρ and respective intensities

λ1 =
κd

vd2d
and λρ =

κd

vd2dρd

depending on some κ ∈ (0, 1). The aim of this subsection is to prove the following
proposition:

Proposition 2.1. Let ρ > 1 be fixed. If κ < κc
ρ, then, as soon as the dimension d is large

enough, percolation does not occur in the two-type Boolean model Σ.

In the following of this subsection, we fix ρ > 1 and 0 < κ < κc
ρ.

We start with an elementary upper bound, in which we do not take into account the
geometrical constraints. We recall that the Nk have been introduced in (12).

Lemma 2.2. E(N0) = κd and, for k ≥ 1, E(Nk) ≤
(
κk+1(1 + ρ)2

4ρ

)d

.

Proof. The result for N0 follows directly from the equality E(N0) = λρ|B(0, 2ρ)|.
Take now k ≥ 1. We have :

(13) E(Nk) ≤ λ1|B(·, 1 + ρ)|
(

k∏

i=2

λ1|B(·, 2)|
)
λρ|B(·, 1 + ρ)|

where B(·, r) stands for a ball with radius r and center unspecified. This can for instance
be seen as follows :

E(Nk) ≤ E




∑

x1,...,xk∈χ1 distinct, xk+1∈χρ

1x1∈B(0,1+ρ) . . . 1xk+1∈B(xk,1+ρ)





= λk
1λρ

∫

Rd(k+1)

dx1 . . . dxk+11x1∈B(0,1+ρ) . . . 1xk+1∈B(xk ,1+ρ),

which gives (13). The lemma follows. �

To give a more accurate upper bound for the Nk’s, we are going to cut the balls
into slices and to estimate which slices give the main contribution. For x ∈ R

d \ {0},
0 ≤ a < b ≤ 1 and r > 0, we now define :

If a > 0 : B(x, r, a, b) =

{
y ∈ R

d : ‖y − x‖ ≤ r and ar <

〈
y − x,

x

‖x‖

〉
≤ br

}
,

If a = 0 : B(x, r, a, b) =

{
y ∈ R

d : ‖y − x‖ ≤ r and

〈
y − x,

x

‖x‖

〉
≤ br

}
.

The next lemma gives asymptotics for the volume of these sets:

Lemma 2.3. For x ∈ R
d \ {0}, 0 ≤ a < b ≤ 1 and r > 0,

lim
d→+∞

1

d
ln

( |B(x, r, a, b)|
vd

)
= ln

(
r
√
1− a2

)
.

12



Actually we will only use :

lim sup
d→+∞

1

d
ln

( |B(x, r, a, b)|
vd

)
≤ ln

(
r
√
1− a2

)
.

Proof of Lemma 2.3. Note that it is sufficient to prove the lemma for x = e1, first

vector of the canonical basis, and r = 1.
First, if a = 0, the result follows directly from the inequality vd/2 ≤ |B(e1, 1, 0, b)| ≤ vd.
Assume next that a > 0. On the one hand, B(e1, 1, a, b) is included in the cylinder

{x = (x1, . . . , xd) : x1 ∈ [a, 1] and ‖(0, x2, . . . , xd)‖ ≤
√
1− a2},

which implies

(14) |B(e1, 1, a, b)| ≤ vd−1

√
1− a2

d−1
(1− a).

On the other end, by convexity, B(e1, 1, a, b) contains the following difference between
two homothetical cones:{

x = (x1, . . . , xd) : x1 ∈ [a, b] and ‖(0, x2, . . . , xd)‖ ≤
√
1− a2

1− x1

1− a

}
,

which implies

(15)
vd−1

√
1− a2

d−1

d

(
(1− a)− (1− b)

)
≤ |B(e1, 1, a, b)|.

The lemma follows from (14) and (15). �

We can now improve the control given in Lemma 2.2:

Lemma 2.4. For every k ≥ 1,

lim sup
d→∞

1

d
ln(E(Nk))

≤ ln



 sup
0≤a2,...,ak+1<1

min



κk+1 (1 + ρ)2

4ρ

√ ∏

2≤i≤k+1

(1− a2i ),
κD(a2, . . . , ak+1)

2ρ









Proof. • Fix N ≥ 1. Note that the ball B(x, r) is the disjoint union of the slices
B(x, r, n/N, (n + 1)/N) for n ∈ {0, . . . , N − 1}. For any n2, . . . , nk+1 ∈ {0, . . . , N − 1},
we set

ai =
ni

N
and a+i =

ni + 1

N
.

We focus on the contribution of a specific product of slices :

Nk(n2, . . . , nk+1) = #





xk+1 ∈ χρ : ∃(xi)1≤i≤k ∈ χ1 distinct with
‖x1‖ < 1 + ρ, ∀i ∈ {1, . . . , k − 1} xi+1 ∈ B(xi, 2, ai+1, a

+
i+1),

xk+1 ∈ B(xk, 1 + ρ, ak+1, a
+
k+1)



 .

Then we have :

(16) Nk ≤
∑

Nk(n2, . . . , nk+1),

where the sum is over (n2, . . . , nk+1) ∈ {0, . . . , N − 1}k.
•As we can check that the points contributing toNk(n2, . . . , nk+1) are inB(0,D(a+2 , . . . , a

+
k+1)),

we get :
E(Nk(n2, . . . , nk+1)) ≤ λρvdD(a+2 , . . . , a

+
k+1)

d,
13



this leads to :

(17) lim sup
d→+∞

1

d
ln (E(Nk(n2, . . . , nk+1))) ≤ ln

(
κD(a+2 , . . . , a

+
k+1)

2ρ

)
.

• Besides, proceeding as in the proof of Lemma 2.2, we obtain :

E(Nk(n2, . . . , nk+1)) ≤ λ1|B(0, 1 + ρ)|
(

k∏

i=2

λ1|B(·, 2, ai, a+i )|
)
λρ|B(·, 1 + ρ, ak+1, a

+
k+1)|.

With Lemma 2.3, we deduce :

(18) lim sup
d→∞

1

d
lnE(Nk(n2, . . . , nk+1)) ≤ ln



κk+1 (1 + ρ)2

4ρ

√ ∏

2≤i≤k+1

(1− a2i )



 .

• From (16), (17) and (18) we finally get :

lim sup
d→+∞

ln(E(Nk))

d

≤ ln


 max

a2,...,ak+1∈{0,...,
N−1
N

}
min


κk+1 (1 + ρ)2

4ρ

√ ∏

2≤i≤k+1

(1− a2i ),
κD(a+2 , . . . , a

+
k+1)

2ρ




 .

As D is uniformly continuous on [0, 1]k, we end the proof by taking the limit when N
goes to +∞. �

The next step consists in taking into account all k ≥ 0 simultaneously; we thus intro-
duce

(19)

N = #








y ∈ χρ : ∃k ≥ 1, ∃(xi)1≤i≤k ∈ χ1 distinct with
‖x1‖ < 1 + ρ, ∀i ∈ {1, . . . , k − 1} ‖xi+1 − xi‖ < 2,
‖y − xk‖ < 1 + ρ



 ∪ {y ∈ χρ : ‖y‖ < 2ρ}


 .

Lemma 2.5. If κ < κc
ρ, then lim sup

d→+∞

1

d
ln(E(N)) < 0.

Proof. We have :

(20) E(N) ≤
∑

k≥0

E(Nk).

As κ < κc
ρ, Lemma 2.4 ensures that for every k ≥ 1 :

(21) lim sup
d→+∞

1

d
ln(E(Nk)) < 0.

Moreover, the assumption κ < κc
ρ also implies, thanks to Lemma 1.5, that κ < 1. We can

then choose k0 large enough to have :

κk0+1(1 + ρ)2

4ρ
≤ exp(−1).

With Lemma 2.2, we thus get :

E(N0) +
∑

k≥k0

E(Nk) ≤ κd + exp(−d)
∑

k≥0

κkd = κd + exp(−d)
1

1− κd
.

14



With (20) and (21), this ends the proof. �

The next lemma is elementary

Lemma 2.6. Assume κ < 1.
Then the connected components of

⋃

x∈χ1

B(x, 1) are bounded with probability 1.

Proof. For any integer k ≥ 0, denote by Mk the number of balls with radius 1 linked to
B(0, 1) by a chain of k distinct balls with radius 1. Proceeding as in the proof of Lemma
2.2, we get :

E(Mk) ≤ κd(k+1).

Now denote by M the number of balls with radius 1 linked to B(0, 1) by a chain of
(perhaps no) balls with radius 1. Then :

E(M) ≤ E

(
∑

k≥0

Mk

)
=

κd

1− κd
< +∞.

Therefore, M is finite with probability 1. So the connected components that touch B(0, 1)
are bounded with probability 1. So with probability 1, every connected component is
bounded. �

Proof of Proposition 2.1. Remember that we proved in Lemma 1.5 that κc
ρ < 1.

Take κ such that 0 < κ < κc
ρ < 1.

Let ξ1 be the set of random balls with radius ρ that can be connected to B(0, ρ) through
a chain of random balls with radius 1 (we consider the condition as fulfilled if the ball
touches B(0, ρ) directly). Let ξ2 be the set of random balls with radius ρ that are not
in ξ1, but that can be connected to B(0, ρ) through a path of random balls in which there
is only one ball with radius ρ. We define similarly ξ3, ξ4 and so on and denote by ξ the
disjoint union of all these sets.

We have #ξ1 = N . (Remember that N has been defined in (19).) By Lemma 2.5, we
have :

lim sup
d→+∞

1

d
ln(E(ξ1)) < 0.

Take some µ > 0 and assume from now on that d is large enough to have

1

d
ln(E(#ξ1)) ≤ −µ.

For every k ≥ 1, we have then: E(#ξk) ≤ (E(#ξ1))
k ≤ exp(−dkµ).

As ξ = ∪k≥1ξk, we deduce from the previous inequalities that ξ is finite with probability
1. So if an unbounded connected component of Σ1 ∪ Σρ touches B(0, ρ) then there is
an unbounded component in Σ1. As κ < 1, Lemma 2.6 rules out the possibility of an
unbounded connected component in Σ1. So with probability 1, the connected components
of Σ1 ∪ Σρ that touch B(0, ρ) are bounded, which ends the proof. �

2.4. Supercritical phase. We fix here ρ > 1. We consider once again the two-type
Boolean model Σ introduced in Subsection 2.2 and we fix an integer k ≥ 1.

For every n ≥ 0, we set Rn = ρ if k + 1 divides n and Rn = 1 otherwise. We say that
percolation by k-alternation occurs if there exists an infinite sequence of distinct points
(xn)n∈N in R

d such that, for every n ≥ 0:
– xn ∈ χRn

.
– B(xn, Rn) ∩ B(xn+1, Rn+1) 6= ∅.

15



In other words, percolation by k-alternation occurs if there exists an infinite path along
which k balls of radius 1 alternate with one ball of radius ρ, ie if there exists an infinite
k-alternating path. The aim of this subsection is to prove the following proposition:

Proposition 2.7. Let ρ > 1 and k ≥ 1 be fixed. Assume that κ ∈ (κc
ρ(k), 1). If the

dimension d is large enough, then percolation by k-alternation occurs with probability

one.

As announced in Subsection 2.2, percolation by k-alternation of the two-type Boolean
model in the supercritical case will be proved by embedding in the model a supercritical
2-dimensional oriented percolation process.

We thus specify the two first coordinates, and introduce the following notations. When
d ≥ 3, for any x ∈ R

d, we write

x = (x′, x′′) ∈ R
2 × R

d−2.

We write B′(c, r) for the open Euclidean balls of R2 with center c ∈ R
2 and radius r > 0.

In the same way we denote by B′′(c, r) the open Euclidean balls of Rd−2 with center
c ∈ R

d−2 and radius r > 0.

2.4.1. One step in the 2-dimensional oriented percolation model. The point here is to
define the event that will govern the opening of the edges in the 2-dimensional oriented
percolation process : it is naturally linked to the existence of a finite path composed of k
balls of radius 1 and a ball of radius ρ, whose positions of centers are specified.

We define, for a given dimension d, the two following subsets of Rd :

W = d−1/2
(
(−1, 1)× (−1, 0)× R

d−2
)
,

W+ = d−1/2
(
(0, 1)× (0, 1)× R

d−2
)
.

For x0 ∈ W we set :

(22) G+(x0) =

{
There exist distinct x1, . . . , xk ∈ χ1 ∩W+ and xk+1 ∈ χρ ∩W+

such that x0, x1, . . . , xk+1 is a path

}
.

Our goal here is to prove that the probability of occurrence of this event is asymptotically
large :

Proposition 2.8. Let ρ > 1 and k ≥ 1 be fixed. Assume that κ ∈ (κc
ρ(k), 1) and choose

p ∈ (0, 1). If the dimension d is large enough, then for every x ∈ W ,

P (G+(x)) ≥ p.

Note already that by translation invariance, P (G+(x)) does not depend on x′′, so we
can assume without loss of generality that x′′ = 0. In the sequel of this subsection, ρ > 1
and k ≥ 1 are fixed.

We first recall the definitions of the (di)1≤i≤k+1 and of κc
ρ(k) we give in the introduction.

We set r1 = rk+1 = 1 + ρ and for i ∈ {2, . . . , k}, ri = 2. Then, for a given sequence
(ai)2≤i≤k+1 ∈ [0, 1)k, we build an increasing sequence (di)1≤i≤k+1 by setting d1 = 1 + ρ
and, for every i ∈ {2, . . . , k + 1} :

d2i = d2i−1 + 2riaidi−1 + r2i .

Finally, we note D(a2, . . . , ak+1) = dk+1 and we set

κc
ρ(k) = inf

0≤a2,...,ak+1<1
max





 4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1− a2i )




1/(k+1)

,
2ρ

D(a2, . . . , ak+1)


 .
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The first step consists in choosing a nearly optimal sequence (ai)2≤i≤k+1 ∈ [0, 1)k satisfying
some extra inequalities :

Lemma 2.9. We can choose (ai)2≤i≤k+1 ∈ [0, 1)k such that :

(23) 1 < κk+1 (1 + ρ)2

4ρ

√ ∏

2≤j≤k+1

(1− a2j ) < κ
dk+1

2ρ
.

Proof. As κc
ρ(k) < κ, we can choose (a0i )2≤i≤k+1 ∈ (0, 1)k such that the two following

conditions

κ >


 4ρ

(1 + ρ)2
√
1− a22 . . .

√
1− a2k+1)




1
k+1

,(24)

κ >
2ρ

dk+1

(25)

are fullfilled for (ai)i = (a0i )i. We fix (a3, · · · , ak+1) = (a03, · · · , a0k+1). Note that

f : a2 7→ κ
dk+1

2ρ
is continuous and increasing,

g : a2 7→ κk+1 (1 + ρ)2

4ρ

√ ∏

2≤j≤k+1

(1− a2j ) is continuous and decreasing,

and that lima2→1 g(a2) = 0. Moreover, Conditions (25) and (24) ensure that f(a02) > 1
and g(a02) > 1.

Thus if f(a02) > g(a02) the proof is over. If f(a02) ≤ g(a02), we can take a2 > a02 such
that 1 < g(a2) < f(a02) : then f(a2) ≥ f(a02) > g(a2) > 1 and the lemma is proved. �

Note that (23) implies (24) and (25).

As explained in Subsection 2.3, the main contribution to the number Nk of centers xk+1

of balls of radius ρ that are linked to a ball of radius ρ centered at the origin by a chain
(xi)1≤i≤k of k balls of radius 1 – see the precise definition (12) – is obtained for ‖xi‖ ∼ di,
where the d′is are build from a (nearly) optimal sequence (ai)2≤i≤k+1 ∈ [0, 1)k. So we fix a
nearly optimal family (ai)2≤i≤k+1 ∈ (0, 1)k satisfying (23), we build the associated family
of distances (di)1≤i≤k+1 ∈ (0, 1)k and we are going to look for a good sequence of centers
(xi)1≤i≤k+1 ∈ (0, 1)k with ‖xi‖ ∼ di.

We thus introduce the following subsets of R2 :

D′
0 =

(
− d−1/2, d−1/2

)
×
(
− d−1/2, 0

)
,

∀i ∈ {1, . . . , k + 1} D′
i =

(
0, d−1/2

)2
,

and the followining sets in R
d−2

C ′′
0 = {0},

∀i ∈ {1, . . . , k + 1} C ′′
i = B′′(0, di − 2d−1) \B′′(0, di − 3d−1).

Finally, for i ∈ {0, . . . , k + 1}, we set Ci = D′
i × C ′′

i . Note that for d large enough, these
sets are disjoint. The next lemma controls the asymptotics in the dimension d of the
volume of these sets
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Lemma 2.10. For every i ∈ {1, . . . , k + 1} :

lim
d→+∞

1

d
ln

|C ′′
i |

vd−2
= lim

d→+∞

1

d
ln

|Ci|
vd

= ln di.

Proof. This can be proven by elementary computations. �

Each xi will be taken in Ci, but we also have to ensure that the (xi)1≤i≤k+1 form a
path. Note that for i ∈ {2, . . . , k + 1}, we have 0 < di−1 + airi < di, which legitimates
the following definition. See also Figure 3. For i ∈ {2, . . . , k+ 1} and d large enough, we
denote by θi the unique real number in (0, π/2) such that

cos θi =
di−1 + airi

di
+ d−1/2.

We introduce next, for y ∈ Ci−1, the following subset of Rd−2 :

D′′
i (y

′′) = {z′′ ∈ C ′′
i : 〈z′′, y′′〉 ≥ ‖y′′‖.‖z′′‖. cos θi}

We also set D′′
0 = C ′′

0 and D′′
1(y

′′) = C ′′
1 for every y ∈ C0. Finally, we define for every

i ∈ {1, . . . , k + 1} and y ∈ Ci−1 :

Di(y) = D′
i ×D′′

i (y
′′) ⊂ Ci,

and D0 = D′
0 ×D′′

0 .

Lemma 2.11. • If the dimension d is large enough, for every i ∈ {1, . . . , k + 1} and

y ∈ Ci−1,

Di(y) ⊂ B(y, ri) ∩ Ci.

• Let x0 ∈ D0. If there exist X1, . . . , Xk ∈ χ1 and Xk+1 ∈ χρ such that X1 ∈ D1(x0), X2 ∈
D2(X1), . . . , Xk+1 ∈ Dk+1(Xk), then the event G+(x0) occurs.

Proof. • The inclusion Di(y) ⊂ Ci is clear for every i ∈ {1, . . . , k + 1}. Let i ∈
{2, . . . , k + 1}, y ∈ Ci−1 and z ∈ Di(y). Then, as soon as d is large enough,

‖z − y‖2 = ‖z′ − y′‖2 + ‖z′′ − y′′‖2

≤ 2

d
+ ‖y′′‖2 + ‖z′′‖2 − 2 < y′′, z′′ >

≤ 2

d
+ (di−1 − 2d−1)2 + (di − 2d−1)2 − 2(di−1 − 3d−1)(di − 3d−1) cos θi

≤ d2i + d2i−1 − 2di−1(di−1 + airi)− 2d−1/2didi−1 +Oi(d
−1)

≤ r2i − 2d−1/2didi−1 +Oi(d
−1) ≤ r2i .

Let now y ∈ C0 and z ∈ D1(y). As d1 = 1 + ρ = r1 > 2, we obtain, for d large enough :

‖z − y‖2 = ‖z′ − y′‖2 + ‖z′′ − y′′‖2 ≤ 8

d
+ (d1 − 2d−1)2 ≤ r21.

• The second point is a simple consequence of the first point, of the fact that the sets
Di(xi−1), as the sets Ci, are disjoint and of the definition of the event G+. �

Note that for i ∈ {1, . . . , k + 1}, |Di(y)| and |D′′
i (y

′′)| do not depend on the choice
of y ∈ Ci−1. We thus denote by |Di| and |D′′

i | these values. We now give asymptotic
estimates for these values :
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Lemma 2.12. For every i ∈ {2, . . . , k + 1},

lim
d→+∞

1

d
ln

|D′′
i |

vd−2
= lim

d→+∞

1

d
ln

|Di|
vd

= ln(ri

√
1− a2i ).

Proof. We have, by homogeneity and isotropy:

(26) |D′′
i | =

(
(di − 2d−1)d−2 − (di − 3d−1)d−2

)
|S|

where S = {x = (x1, . . . , xd−2) ∈ B′′(0, 1) : x1 ≥ ‖x‖ cos(θi)}.
But S is included in the cylinder

{(xi)1≤i≤d−2 ∈ R
d−2 : x1 ∈ [0, 1], ‖(x2, . . . , xd−2)‖ ≤ sin(θi)}

and S contains the cone

{(xi)1≤i≤d−2 ∈ R
d−2 : x1 ∈ [0, cos(θi)], ‖(x2, . . . , xd−2)‖ ≤ x1 sin(θi) cos(θi)

−1}.
Therefore :

(27) vd−3 cos(θi) sin(θi)
d−3(d− 2)−1 ≤ |S| ≤ vd−3 sin(θi)

d−3.

From (26), (27), and the limits cos(θi) → (di−1+airi)d
−1
i 6= 0 and di sin(θi) → ri

√
1− a2i ,

we get

lim
d→+∞

1

d
ln

( |D′′
i |

vd−2

)
= ln(ri

√
1− a2i ).

The lemma follows. Note that a direct calculus with spherical coordinates can also give
the announced estimates. �

Everything is now in place to prove Proposition 2.8.

Proof of Proposition 2.8. Choose p < 1 and x ∈ W such that x′′ = 0.
• We start with a single individual, encoded by its position ζ0 = {x} ⊂ C0, and we

build, generation by generation, its descendance : we set, for 1 ≤ i ≤ k,

ζi = χ1 ∩
⋃

y∈ζi−1

Di(y) ⊂ Ci,

and for the (k + 1)-th generation, we finally set

ζk+1 = χρ ∩
⋃

y∈ζk

Dk+1(y) ⊂ Ck+1.

By Lemma 2.11, if ζk+1 6= ∅ then the event G+(x) occurs. To bound from below the
probability that ζk+1 6= ∅, we now build a simpler process ξ, stochastically dominated
by ζ .

• We set αi = λ1|Di| for i ∈ {1, . . . , k} and αk+1 = λρ|Dk+1| : thus, αi is the mean
number of children of a point of the (i− 1)-th generation. Let X0 = x be the position of
the first individual.

Consider a random vector X = (X0, X1, . . . , Xk+1) of points in R
d defined as follows :

X0 is defined by X0 = x, X1 is taken uniformly in D1(X0), then X2 is taken uniformly in
D2(X1), and so on. We think of X as a pontential single branch of descendance of x. Let
then (Xj)j≥1 be independent copies of X . Let now N be an independent Poisson random
variable with parameter α1 : this random variable will be the number of children of X0.
We will use the N first Xj, one for each child of X0.

We now take into account the fact that some individuals may have no children. We
shall deal with geometric dependencies later. Note that in our new process each individual
of any generation i, i ≥ 1, has at most one child. We made that choice in order to handle
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more easily geometric dependencies. Let Y = (Y j
i )2≤i≤k+1,j≥1 be an independent family

of independent random variables, such that Y j
i follows the Bernoulli law with parameter

1− exp(−αi), which is the probability that a Poisson random variable with parameter αi

is different from 0. We set J1 = {1, . . . , N} and, for every i ∈ {2, . . . , k + 1} :

Ji = {1 ≤ j ≤ N : Y j
2 = · · · = Y j

i = 1}.
Thus the random set Ji gives the exponents of the branches that are, among the N
initial branches, still alive at the i-th generation in a process with no dependecies due to
geometry.

Until now, we did not take into account the geometrical constraints between individuals.
For every i ∈ {2, . . . , k + 1} and every j ≥ 1, we set

Zj
i = 1 if Xj

i 6∈
⋃

j′∈Ji−1\{j}

Di(X
j′

i−1) and Zj
i = 0 otherwise.

We will reject an individual Xj
i and its descendance as soon as Zj

i = 0. Recall that, when
building generation i from generation i−1, we explore the Poisson point processes in the
area

⋃
j∈Ji−1

Di(X
j
i−1). By construction of the Ci, these areas are distinct for different

generations. Therefore, one can check that, for every i ∈ {2, . . . , k + 1}, the set

ξi = {Xj
i : j ∈ Ji and Zj

2 = · · · = Zj
i = 1}

is stochastically dominated by ζi. Thus to prove Proposition 2.8, we now need to bound
from below the probability that ξk+1 is not empty.

• Let T be the smallest integer j such that Y j
2 = · · · = Y j

k+1 = 1 : in other words,
T is the smallest exponent of a branch that lives till generation k + 1. To ensure that
ξk+1 6= ∅, it is sufficient that T ≤ N and that ZT

2 = · · · = ZT
k+1 = 1. So :

1− P (G+(x)) ≤ P (ξk+1 = ∅)

≤ P (#Jk+1 = 0) + P

(
{T ≤ N} ∩

⋃

2≤i≤k+1

{ZT
i = 0}

)

≤ P (#Jk+1 = 0) +
∑

2≤i≤k+1

P (T ≤ N and ZT
i = 0).

For every 2 ≤ i ≤ k + 1, we have by construction :

P (T ≤ N and ZT
i = 0) = P

(
T ≤ N, ∃j ∈ Ji−1 \ {T} such that XT

i ∈ Di(X
j
i−1)
)

≤
∑

j≥1

P
(
T ≤ N and j ∈ Ji−1 \ {T} and XT

i ∈ Di(X
j
i−1)
)

=
∑

j≥1

E
(
1T≤N1j∈Ji−1\{T}P

(
XT

i ∈ Di(X
j
i−1) |Y,N

))

=
∑

j≥1

E
(
1T≤N1j∈Ji−1\{T}

)
P
(
X1

i ∈ Di(X
2
i−1)
)

≤ E(#Ji−1)P
(
X1

i ∈ Di(X
2
i−1)
)
.

Besides, as (X1
i )

′′ is uniformly distributed on C ′′
i and is independent of (X2

i−1)
′′,

(28) P
(
X1

i ∈ Di(X
2
i−1)
)
= P

(
(X1

i )
′′ ∈ D′′

i ((X
2
i−1)

′′)
)
=

|D′′
i |

|C ′′
i |
.
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This leads to

(29) 1− P (G+(x)) ≤ P (#Jk+1 = 0) +
k+1∑

i=2

E(#Ji−1)
|D′′

i |
|C ′′

i |
.

• For 1 ≤ i ≤ k + 1, the cardinality of Ji follows a Poisson law with parameter

ηi = α1

i∏

i′=2

(1− exp(−αi′)).

Remember that αi = λ1|Di| for i ∈ {1, . . . , k} and αk+1 = λρ|Dk+1|. By Lemma 2.12, we
have the following limits:

lim
d→+∞

1

d
lnα1 = ln

κ(1 + ρ)

2
> 0,

lim
d→+∞

1

d
lnαi = ln(κ

√
1− a2i ) < 0 for 2 ≤ i ≤ k,

lim
d→+∞

1

d
lnαk+1 = ln(κ

√
1− a2k+1

1 + ρ

2ρ
) < 0.

To see the signs of the limits, note that κ < 1, that 1+ρ
2ρ

< 1 and that (23) implies that

κ > κk+1 >
4ρ

(1 + ρ)2
√

1− a22 . . .
√
1− a2k+1

>
2

1 + ρ
.

Consequently, we first see that

lim
d→+∞

1

d
ln(ηk+1) = lim

d→+∞

1

d
ln(α1 . . . αk+1)

= ln


κk+1 (1 + ρ)2

4ρ

√ ∏

2≤j≤k+1

(1− a2j )


 > 0 with (23);

therefore, lim
d→+∞

P (#Jk+1 = 0) = 0.(30)

Similarly, for 2 ≤ i ≤ k + 1, we have

lim
d→+∞

1

d
ln(ηi−1) = ln


κi−11 + ρ

2

√ ∏

2≤i′≤i−1

(1− a2i′)


 .

Lemmas 2.10 and 2.12 ensure that :

lim
d→+∞

1

d
ln

( |D′′
i |

|C ′′
i |

)
= ln

(
ri
√
1− a2i
di

)
.

Thus, for 2 ≤ i ≤ k + 1, we have :

lim sup
d→+∞

1

d
ln

(
E(#Ji−1)

|D′′
i |

|C ′′
i |

)
≤ ln


ri(1 + ρ)κi−1

2di

√ ∏

2≤i′≤i

(1− a2i′)


 .
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Now,

for 2 ≤ i ≤ k, lim sup
d→+∞

1

d
ln

(
E(#Ji−1)

|D′′
i |

|C ′′
i |

)
≤ ln

(
1 + ρ

di

)
< 0,(31)

lim sup
d→+∞

1

d
ln

(
E(#Jk)

|D′′
k+1|

|C ′′
k+1|

)
≤ ln


(1 + ρ)2κk

2dk+1

√ ∏

2≤i′≤k+1

(1− a2i′)


 < 0(32)

with (23). To end the proof, we put estimates (30), (31) and (32) in (29). �

2.4.2. Several steps in the 2-dimensional oriented percolation model. We prove here Propo-
sition 2.7 by building the supercritical 2-dimensional oriented percolation process embed-
ded in the two-type Boolean Model.

Proof of Proposition 2.7. We first define an oriented graph in the following manner:
the set of sites is

S = {(a, n) ∈ Z× N : |a| ≤ n, a + n is even };
from any point (a, n) ∈ S, we put an oriented edge from (a, n) to (a + 1, n + 1), and
an oriented edge from (a, n) to (a − 1, n + 1). We denote by ~pc(2) ∈ (0, 1) the critical
parameter for Bernoulli percolation on this oriented graph – see Durrett [5] for results on
oriented percolation in dimension 2.

For any (a, n) ∈ S, we define the following subsets of Rd

Wa,n = d−1/2
(
]a− 1, a+ 1[×]n− 1, n[×R

d−2
)
,

W−
a,n = d−1/2

(
]a− 1, a[×]n, n + 1[×R

d−2
)
,

W+
a,n = d−1/2

(
]a, a + 1[×]n, n+ 1[×R

d−2
)
.

Note that the (Wa,n)(a,n)∈S are disjoint and that W+
a,n ∪W−

a+2,n ⊂ Wa+1,n+1.
We now fix k ≥ 1 and κ ∈ (κc

ρ(k), 1), and for x0 ∈ Wa,n, we introduce the events :

G+
a,n(x0) =

{
There exist distinct x1, . . . , xk ∈ χ1 ∩W+

a,n and xk+1 ∈ χρ ∩W+
a,n

such that x0, x1, . . . , xk+1 is a path

}
,

G−
a,n(x0) =

{
There exist distinct x1, . . . , xk ∈ χ1 ∩W−

a,n and xk+1 ∈ χρ ∩W−
a,n

such that x0, x1, . . . , xk+1 is a path

}
.

Note that G+
0,0(x) is exactly the event G+(x) introduced in (22), and that the other events

are obtained from this one by symmetry and/or translation.
Next we choose p ∈ (~pc(2), 1). With Proposition 2.8, and by translation and symmetry

invariance, we know that for every large enough dimension d, for every (a, n) ∈ S, for
every x ∈ Wa,n:

(33) P (G±
a,n(x)) ≥ p.

We fix then a dimension d large enough to satisfy (33). We can now construct the random
states, open or closed, of the edges of our oriented graph. We denote by ∞ a virtual site.

Definition of the site on level 0. Almost surely, χρ ∩W0,0 6= ∅. We take then some
x(0, 0) ∈ χρ ∩W0,0.

Definition of the edges between levels n and n + 1. Fix n ≥ 0 and assume we
built a site x(a, n) ∈ Wa,n ∪ {∞} for every a such that (a, n) ∈ S. Consider (a, n) ∈ S :

– If x(a, n) = ∞ : we decide that each of the two edges starting from (a, n) is open
with probability p and closed with probability 1 − p, independently of everything
else; we set z−(a, n) = z+(a, n) = ∞.
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– Otherwise :
– Edge to the left-hand side :
– if the event G−

a,n(x(a, n)) occurs : we take for z−(a, n) some point xk+1 ∈
W−

a,n ⊂ Wa−1,n+1 given by the occurrence of the event, and we open the edge
from (a, n) to (a− 1, n+ 1) ;

– otherwise : we set z−(a, n) = ∞ and we close the edge from (a, n) to (a −
1, n+ 1).

– Edge to the right-hand side :
– if the event G+

a,n(x(a, n)) occurs : we take for z+(a, n) some point xk+1 ∈
W+

a,n ⊂ Wa+1,n+1 given by the occurrence of the event, and we open the edge
from (a, n) to (a+ 1, n+ 1) ;

– otherwise : we set z+(a, n) = ∞ and we close the edge from (a, n) to (a +
1, n+ 1).

For (a, n) outside S, we set z±(a, n) = ∞.

Definition of the sites at level n+1. Fix n ≥ 0 and assume we determined the state
of every edge between levels n and n+ 1. Consider (a, n+ 1) ∈ S :

– If z+(a− 1, n) 6= ∞ : set x(a, n + 1) = z+(a− 1, n) ∈ Wa,n+1.
– Otherwise :

– if z−(a+ 1, n) 6= ∞ : set x(a, n + 1) = z−(a+ 1, n) ∈ Wa,n+1,
– otherwise : set x(a, n+ 1) = ∞.

Assume that there exists an open path of length n starting from the origin in this
oriented percolation : we can check that the leftmost open path of length n starting
from the origin gives a path in the two-type Boolean model with n alternating sequences
of k balls with radius 1 and one ball with radius ρ. Thus, percolation in this oriented
percolation model implies percolation by k-alternation in the two-type Boolean model.
Let us check that percolation occurs indeed with positive probability.

For every n, denote by Fn the σ-field generated by the restrictions of the Poisson point
processes χ1 and χρ to the set

d−1/2
(
R× (−∞, n)× R

d−2
)
.

By definition of the events G – remember that the (Wa,n)(a,n)∈S are disjoint – and by (33),
the states of the different edges between levels n and n+1 are independent conditionally to
Fn. Moreover, conditionally to Fn, each edge between levels n and n+1 has a probability
at least p to be open. Therefore, the oriented percolation model we built stochastically
dominates Bernoulli oriented percolation with parameter p. As p > ~pc(Z

2), with positive
probability, there exists an infinite open path in the oriented percolation model we built;
this ends the proof of Proposition 2.7. �

2.5. Proof of Theorem 1.4. We first prove how Propositions 2.1 and 2.7 give (10) when
a = 1, b > 1 and α = β = 1, and then we see how we can deduce the general case by
scaling and coupling.

When a = 1, b > 1 and α = β = 1. Set ρ = b. In this case, ν = δ1+ δρ, so νd = δ1+
1

ρd
δρ.

Note then that the two-type Boolean model Σ introduced in Subsection 2.2 and whose
intensities depend on κ ∈ (0, 1) coincides with the Boolean model directed by the measure

κd

vd2d
νd
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as defined in the introduction.
If κ < κc

ρ then, by Proposition 2.1, there is no percolation for d large enough. Therefore,
for any such κ and for any large enough d we have:

λc
d(νd) ≥

κd

vd2d
and then λ̃c

d(νd) = λc
d(νd)vd2

d

∫
rdνd(dr) ≥ 2κd.

Letting d goes to +∞ and then κ goes to κc
ρ, we then obtain

(34) lim inf
d→+∞

1

d
ln (λc

d(νd)) ≥ ln
(
κc
ρ

)
.

As κc
ρ < 1 by Lemma 1.5, choose now κ such that κc

ρ < κ < 1. Then, there exists
k ≥ 1 such that κc

ρ(k) < κ. Therefore, by Proposition 2.7, there is percolation for d large
enough in Σ; by coupling, this remains true for larger κ. Therefore, for any κ > κc

ρ and
for any large enough d we have, as before:

λc
d(νd) ≤

κd

vd2d
and then λ̃c

d(νd) ≤ 2κd.

Letting d goes to +∞ and then κ goes to κc
ρ, we then obtain

(35) lim sup
d→+∞

1

d
ln (λc

d(νd)) ≤ ln
(
κc
ρ

)
.

Bringing (34) and (35) together, we get (10) when a = 1, b = ρ > 1 and α = β = 1.

When b > a > 0 and α = β = 1. Set ρ = b/a. Here, ν = δa + δb; set µ = δ1 + δρ. With
the notation of the introduction,

νd =
1

ad
(δa +

1

ρd
δb) =

1

ad
Ha.(δ1 +

1

ρd
δρ) =

1

ad
Haµd.

By the scaling relations (3) and (4), we obtain

λ̃c
d(νd) = λ̃c

d(µd).

The result when b > a > 0 and α = β = 1 follows then from the previous case.

When b > a > 0 and α, β > 0. Here ν = αδa + βδb. Set µ = δa + δb, m = min(α, β) and
M = max(α, β). Then mµd ≤ νd ≤ Mµd and so

m

∫
rddµd(r) ≤

∫
rddνd(r) ≤ M

∫
rddµd(r),

1

M
λc
d(µd) = λc

d(Mµd) ≤ λc
d(νd) ≤ λc

d(mµd) =
1

m
λc
d(µd).

The two previous inequalities give:

m

M
λ̃c
d(µd) ≤ λ̃c

d(νd) ≤
M

m
λ̃c
d(µd),

and the theorem follows from the previous case. �
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3. Proof of Theorem 1.2

Theorem 1.2 follows from Theorem 1.4 by coupling and scaling. By assumption, µ is a
measure on (0,+∞) whose support is not a singleton. We can therefore choose b′ > a′ > 0
in the support, set ρ = b′/a′ and then take a small enough ε > 0 such that

a′(1 + ε) < b′(1− ε), µ([a′(1− ε), a′(1 + ε)] > 0,

µ([b′(1− ε), b′(1 + ε)] > 0, (1 + ε)(1− ε)−1κc
ρ < 1.

Set a = a′(1− ε), b = b′(1− ε) and τ = (1 + ε)(1− ε)−1 > 1. We have

aτ < b, µ([a, aτ ]) > 0, µ([b, bτ ]) > 0 and τκc
ρ < 1.

Set ν = µ([a, aτ ])δa + µ([b, bτ ])δb and S = [a, aτ ] ∪ [b, bτ ]. For all d ≥ 1 we have

τ−dνd({a}) = µ([a, aτ ])(aτ)−d ≤
∫

[a,aτ ]

r−dµ(dr) = µd([a, aτ ])

and, similarly, τ−dνd({b}) ≤ µd([b, bτ ]). By coupling, this implies that λc
d(1Sµd) ≤

λc
d(τ

−dνd), and then that

λc
d(µd) ≤ λc

d(1Sµd) ≤ λc
d(τ

−dνd) = τdλc
d(νd).

But λ̃c
d(µd) = λc

d(µd)2
dvdµ((0,+∞)) and, similarly, λ̃c

d(νd) = λc
d(ν)2

dvdν((0,+∞)), which
leads to

λ̃c
d(µd) ≤ τd

µ((0,+∞))

ν((0,+∞))
λ̃c
d(νd).

But by Theorem 1.4 we have

lim
d→+∞

1

d
ln
(
λ̃c
d(νd)

)
= ln(κc

ρ), and then lim sup
d→+∞

1

d
ln
(
λ̃c
d(µd)

)
≤ ln(τκc

ρ) < 0,

which ends ce proof. �
Note that as a byproduct of the proof, we obtain the following upper bound :

lim sup
d→+∞

1

d
ln
(
λ̃c
d(µd)

)
≤ inf

0<a<b<+∞, a,b∈Supp(µ)
ln(κc

b/a).
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