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FLEXIBILITY OF AFFINE CONES OVER DEL PEZZO SURFACES OF

DEGREE 4 AND 5

ALEXANDER PEREPECHKO

Abstract. We prove that the action of the special automorphism group on affine cones over
del Pezzo surfaces of degree 4 and 5 is infinitely transitive.

1. Introduction

An affine algebraic variety X defined over an algebraically closed field K of characteristic
zero is called flexible if the tangent space of X at any smooth point is spanned by the tangent
vectors to the orbits of one-parameter unipotent group actions [1]. In this paper we establish
flexibility of affine cones over del Pezzo surfaces of degree 4 and 5.

It is well known that every effective action of one-dimensional unipotent group Ga = Ga(K)
on X defines a locally nilpotent derivation δ ∈ LND(K[X]) of the algebra of regular functions on
X. All such actions generate a subgroup of special automorphisms SAutX in the automorphism
group AutX.

A group G is said to act on a set S infinitely transitively if it acts transitively on the set of
m-tuples of pairwise distinct points in S for any m ∈ N.

The following theorem explains the significance of the flexibility concept.

Theorem 1.1 ([1, Theorem 0.1]). Let X be an affine algebraic variety of dimension ≥ 2. Then

the following conditions are equivalent.

(1) The variety X is flexible;

(2) the group SAutX acts transitively on the smooth locus Xreg of X;

(3) the group SAutX acts infinitely transitively on Xreg.

Three classes of flexible affine varieties are described in [2], namely affine cones over flag
varieties, non-degenerate toric varieties of dimension ≥ 2, and suspensions over flexible varieties.
Note that affine cones over del Pezzo varieties of degree ≥ 6 are toric, thereby they are flexible.

As for del Pezzo surfaces of degree ≤ 3, the existence of at least one Ga-action on an affine
cone is still unknown, see [4], [6, Proposition 4.21]. In this paper we consider remaining cases
of degree 4 and 5. In case of degree 5 we prove flexibility of affine cones corresponding to
polarizations defined by arbitrary very ample divisors, whereas for degree 4 we prove flexibility
only for certain very ample divisors, the anticanonical one included.

In the proof we use a construction from [6], which allows to associate a regular Ga-action on
an affine cone over a projective variety Y to every open cylindrical subset of Y of some special
form. In Theorem 2.5 we provide a criterion of flexibility of an affine cone over a projective
variety in terms of a transversal cover by such cylinders. We apply it to del Pezzo surfaces.

The author is grateful to M.G. Zaidenberg for posing the problem and numerous discussions
and to I.V. Arzhantsev for useful remarks.

2. Flexibility of affine cones

Let Y be a projective variety and H be a very ample divisor on Y . A polarization of Y
by H provides an embedding Y →֒ P

n. Consider an affine cone X = AffConeH Y ⊂ A
n+1

corresponding to this embedding. There is a natural homothety action of the multiplicative
group Gm = Gm(K) on X. It defines a grading on the algebra K[X]. A derivation on K[X] is
called homogeneous if it sends homogeneous elements into homogeneous ones. A subset of all
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homogeneous locally nilpotent derivations is denoted by HLND(K[X]). The subfield of rational
functions annihilated by all (resp. homogeneous) locally nilpotent derivations,

(1) FML(X) =
⋂

δ∈LND(X)

Quot(ker δ), resp. FMLh(X) =
⋂

δ∈HLND(X)

Quot(ker δ) ⊂ K(X)

is called a field Makar–Limanov invariant (a homogeneous field Makar–Limanov invariant re-
spectively). There is an obvious inclusion FML(X) ⊂ FMLh(X). The invariant is said to be
trivial if it equals K.

Proposition 2.1 ([1, Proposition 5.1]). The field Makar–Limanov invariant FML(X) is trivial
if and only if the group SAutX acts on X with an open orbit.

Definition 2.2 ([6, Definitions 3.5, 3.7]). Let H be a divisor on a variety Y . We say that an
open subset U ⊂ Y is a cylinder if U ∼= Z × A

1, where Z is a smooth variety with PicZ = 0.
We say that a cylinder U is H-polar if U = Y \ suppD for some effective divisor D ∈ |dH|,
where d > 0.

Definition 2.3. We call a subset W ⊂ Y invariant with respect to a cylinder U = Z × A
1 if

W ∩ U = π−1
1 (π1(W )), where π1 : U → Z is the first projection of the direct product. In other

words, every A
1-fiber of the cylinder is either contained in W or does not meet W .

Definition 2.4. We say that a variety Y is transversally covered by cylinders Ui, i = 1, . . . , s,
if Y =

⋃
Ui and there is no proper subset W ⊂ Y invariant with respect to all Ui.

The following theorem gives a criterion of flexibility for the affine cone over a projective
embedding Y →֒ Pn corresponding to the polarization by H.

Theorem 2.5. If for some very ample divisor H on a normal projective variety Y there exists

a transversal covering by H-polar cylinders, then the affine cone X = AffConeH Y is flexible.

Proof. By [6, Theorem 3.9] to every covering cylinder there corresponds a Ga-action on X.
As follows from the explicit construction [6, Proposition 3.5], the orbits of this action map
onto fibers of the cylinder under the cone projectivization, whereas the set of fixed points is a
preimage of the cylinder complement.

Let us check similarly as in the proof of [6, Theorem 3.21] that the homogeneous field Makar–

Limanov invariant FML(h)(X) is trivial. Indeed, let h = f
g
be a non-constant homogeneous

rational function annihilated by all homogeneous locally nilpotent derivations on K[X], where
f, g ∈ K[X] \ {0} are homogeneous regular functions of degrees d1 and d2 respectively. Then
the divisor V0(h)+V∞(h) on X is invariant under the Ga-actions corresponding to all covering
cylinders. Thereby, P(V0(h)) ∈ |d1H| and P(V∞(h)) ∈ |d2H| are effective Cartier divisors on
Y , and the union of their supports is invariant with respect to all covering cylinders, which is
a contradiction.

Thus FML(h)(X) = K. Hence also FML(X) = K and by Proposition 2.1 the group SAut(X)
acts on X with an open orbit. It remains to verify that the orbit complement is the only
singular point of X, namely the origin. Since X is a cone, the open orbit is invariant under a
Gm-action by homotheties. This yields that the projectivization of the complement to the open
orbit and the origin is a closed subset W ⊂ Y which is invariant with respect to all cylinders of
the transversal cover. This contradiction completes the proof. �

3. Del Pezzo surface of degree 5

Let Y be a del Pezzo surface of degree 5. It is obtained by blowing up the projective plane
P
2 in four points P1, . . . , P4, no three of which are collinear [7, Theorem IV.2.5]. Since the

automorphism group of the projective plane acts transitively on such 4-tuples of points, such a
surface is unique up to isomorphism.

Theorem 3.1. Let H be an arbitrary very ample divisor on the del Pezzo surface Y of degree 5.

Then the corresponding affine cone AffConeH Y is flexible.
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The proof proceeds in several steps, see Sections 3.1 and 3.2. We let Ei denote the exceptional
divisor (i.e. the (−1)-curve), which is the preimage of the blown up point Pi. Let e0 be the
divisor class of a line, which contains none of the points Pi, and let ei (i = 1, . . . , 4) be a divisor
class of Ei. These classes generate a Picard group PicY = 〈e0, . . . , e4〉Z ∼= Z

5. The intersection
index defines a symmetric bilinear form on the Picard group such that the basis {e0, . . . , e4} is
orthogonal, e20 = 1 and e2i = −1. Exceptional divisor classes are ei and e0 − ei − ej for distinct
i, j 6= 0.

By the Nakai–Moishezon criterion [5, Theorem V.1.10] the closure of the ample cone AmpleY
is dual to the cone of effective divisors Eff Y . In case of a del Pezzo surface the cone Eff Y is
generated by exceptional divisors [3, Theorem 8.2.19]. Therefore, the ample cone is defined by
inequalities

xi >0, i = 0, . . . , 4,(2)

x0 + xi + xj >0, 0 6= i 6= j 6= 0,(3)

where (x0, . . . , x4) ∈ PicY . It has the following ten extremal rays

(4) e0, e0 − ej , 2e0 −
∑

i 6=0

ei, 2e0 −
∑

i 6=0,j

ei j = 1, . . . , 4.

3.1. Cylinders. We have fixed above a blowing down ϕ : Y → P
2 of four pairwise disjoint

(−1)-curves E1, . . . , E4. Let lij ⊂ P
2 be the line passing through the points Pi and Pj . Consider

the open subset U1 = ϕ−1(P2 \ (l12 ∪ l34)) ⊂ Y . This is a cylinder defined by a pencil of
lines passing through the base point Bs(U1) = l12 ∩ l34. We have U1

∼= A
1
∗ × A

1. Similarly let
U2 = ϕ−1(P2 \ (l13 ∪ l24)) and U3 = ϕ−1(P2 \ (l14 ∪ l23)), see fig. 1. Furthermore, consider the
blowings down of other 4-tuples of non-intersecting (−1)-curves on Y . There are five of them
as shown on fig. 2. For every blowing down we define three cylinders in a similar way.
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E3
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l12

l34

l24

l14
l23

U1

E1

E2

E3

E4

l13
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l13
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l34

l24

l14
l23

U3

Figure 1. Cylinders on the incidence graph of (−1)-curves on the del Pezzo
surface of degree 5. The gray and the black vertices correspond to (−1)-curves
forming the complement to a cylinder. The dashed edges correspond to (−1)-
curve intersections contained in the cylinder. The double edge corresponds to
the base point of the cylinder.

Thus we have cylinders U1, U2, . . . , U15 as shown on Figures 1 and 2. It is easy to check that
every intersection of (−1)-curves is contained in some cylinder, hence

⋃
Ui = Y . We claim that

there is no proper subset W ⊂ Y , which is invariant with respect to all 15 cylinders. Assume
on the contrary that there exists such a subset W . Let us fix an arbitrary point of W . It is
covered by a fiber S of some cylinder, hence W contains S. Without loss of generality S is
a fiber of U1. Then a line l = ϕ(S) ⊂ P

2 passes through the base point Bs(U1). Since the
points Bs(U1),Bs(U2), and Bs(U3) do not lie on the same line, one of them does not belong to l.
Suppose Bs(U2) /∈ l. Then the fiber S intersects almost every fiber of the cylinder U2, and W
contains them. So, W is dense in Y . The complement Y \W is also invariant with respect to
all cylinders, and by the same reason it is dense in Y , a contradiction.
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U1, U2, U3 U4, U5, U6 U7, U8, U9 U10, U11, U12 U13, U14, U15

Figure 2. Black vertices correspond to 4-tuples of (−1)-curves. Every blowing
down defines three cylinders similarly as on fig. 1.

3.2. Flexible polarizations. In this subsection we show that for any ample divisor H on
Y all the 15 cylinders Ui are H-polar. Consider the set of effective divisors {αiEi + β1l12 +
β3l34 | αi, βi > 0} whose support is the complement to U1. The image of this set in the Picard
group is an open cone C, whose extremal rays are e1, e2, e3, e4, e0 − e1 − e2, and e0 − e3 − e4.
It is easy to check that the primitive vectors of the ample cone (4) can be expressed as linear
combinations with non-negative rational coefficients of the primitive vectors of the cone C.
Therefore the cylinder U1 is H-polar for any ample divisor H. Similarly, the cylinders Ui are
H-polar for any ample divisor H. Using Theorem 2.5 we obtain the assertion. Now Theorem
3.1 is proved.

4. Del Pezzo surfaces of degree 4

Every del Pezzo surface of degree 4 is isomorphic to a blowing up of a projective plane P
2 in

five points, where no three are collinear. Such surfaces form a two-parameter family.
By Ei we denote the (−1)-curve which is the preimages of the blown up point Pi. As before, let

e0 be the divisor class of a line which does not contain the blown up points, and ei (i = 1, . . . , 5)
be the divisor class of Ei. The tuple {e0, . . . , e5} forms an orthogonal basis of the Picard group
PicY ∼= Z6, and e20 = 1, e2i = −1. The classes of (−1)-curves are ei, e0− ei− ej , 2e0 −

∑
k 6=0 ek

for any pair of distinct indices i, j 6= 0. The ample cone is defined by inequalities

xi >0, i = 0, . . . , 5,(5)

x0 + xi + xj >0, 0 6= i 6= j 6= 0,(6)

2x0 + x1 + . . .+ x5 >0,(7)

where (x0, . . . , x5) ∈ PicY . Its extremal rays are

(8) e0, e0 − ej , 2e0 −
∑

k 6=0,i

ek, 2e0 −
∑

k 6=0,i,j

ek, and 3e0 −
∑

k 6=0

ek − ei

for any pair of distinct indices i, j ∈ {1, . . . , 5}.

4.1. Cylinders. Let us fix some (−1)-curve C1 and consider the blowing down σ : Y → P
2 of

the five (−1)-curves F1, . . . , F5 that meet C1, see fig. 3. This blowing down is well defined since
the contracted divisors do not intersect. The image σ(C1) is a smooth conic c passing through
the blown down points Q1, . . . , Q5. Take an arbitrary line l ⊂ P

2 which is tangent to c at a
point different from Q1, . . . , Q5. A conic pencil in P

2 generated by divisors c and 2l determines a
cylinder U ∼= A

1
∗×A

1 whose complement is the complete preimage of the support of the divisor
c+ 2l on P

2. Denote by UC1
the family of all such cylinders in Y for all such tangents l. Note

that Y \
⋃

U∈UC1

U is a union of C1 and the exceptional divisors Fi (i = 1, . . . , 5). Applying this

construction to the (−1)-curves C2, . . . , C5 as shown on fig. 3, overall we obtain five cylinder
families UC1

, . . . ,UC5
. It is easy to see that their union covers Y .

Let W be a proper subset of Y which is invariant with respect to the cylinders of all families,
and let w ∈ W be an arbitrary point. We may suppose that w belongs to a cylinder of
the family UC1

. Then the image σ(W ) ⊂ P
2 is invariant with respect to the cylinder family

{σ(U) | U ∈ UC1
}. Note that every cylinder of this family is a complement to the conic c and

its tangent line. It is well known that given a conic and two points outside it we can find a
4



conic passing through these two points and tangent to the given conic. Therefore, for almost
every point x ∈ P

2 \ c there exists a fiber of some cylinder which contains x and σ(w). Namely,
x must not lie on the tangent line to c passing through σ(w) as well as on the conics which are
tangent to c at blown down points and contain σ(w). Thus W is dense in Y . Similarly, Y \W
is dense in Y , a contradiction. Finally, the families UC1

, . . . ,UC5
form a transversal cover of Y .

C1

F1

F2

F3 F4

F5

E1

E2

E3

E4

E5

C1

C2

C3 C4

C5

Figure 3. The incidence graph of (−1)-curves on a del Pezzo surface of degree
4. On the left the gray vertex corresponds to the conic preimage C1 and black
vertices correspond to the contracted (−1)-curves. The dashed edges correspond
to (−1)-curve intersections contained in the cylinders of a family. Four other
families corresponding to C2, . . . , C5 are obtained symmetrically by the graph
rotations.

4.2. Flexible polarizations. Ample divisors H such that cylinders of the family UC are H-
polar, form the image of the set {α1F1 + . . . + α5F5 + α6C + α7l | αi > 0} in PicY . This set
is an open cone which we denote by Ample(C, Y ). It does not depend on a choice of a tangent
line l since it does not contain blown up points by definition. Then the set of such divisors H
that cylinders in

⋃
i UCi

are H-polar is an open cone
⋂

iAmple(Ci, Y ). A computation shows
that it has exactly 72 extremal rays, which can be expressed as

e0, 9e0 − 5ei1 − ei2 − 2ei3 − 4ei4 − 3ei5 ,

4e0 − 2ei1 − 2ei2 − ei3 − ei4 − ei5 , 9e0 − 4ei1 − 4ei2 − 4ei3 − 2ei4 − 2ei5 ,

5e0 − 2ei1 − 2ei2 − ei3 − 3ei4 − ei5 , 11e0 − 6ei1 − 2ei2 − 2ei3 − 4ei4 − 4ei5 ,

5e0 − 2ei1 − 2ei2 − 2ei3 − 2ei4 , 11e0 − 6ei1 − 4ei2 − 4ei3 − 2ei4 − 2ei5 ,

5e0 − 2ei1 − 2ei2 − 2ei3 − 2ei4 − 2ei5 , 11e0 − 6ei1 − 2ei2 − 4ei3 − 4ei4 − 4ei5 ,

6e0 − 2ei1 − 2ei2 − 3ei3 − ei4 − 3ei5 , 11e0 − 6ei1 − 4ei2 − 4ei3 − 4ei4 − 2ei5 ,

7e0 − 4ei1 − 2ei2 − 2ei3 − 2ei4 − 2ei5 , 15e0 − 8ei1 − 2ei2 − 4ei3 − 6ei4 − 6ei5 ,

9e0 − 5ei1 − 3ei2 − 4ei3 − 2ei4 − 1ei5 , 15e0 − 8ei1 − 6ei2 − 6ei3 − 4ei4 − 2ei5 ,

where the tuple (i1, . . . , i5) runs over all cyclic permutations of (1, 2, 3, 4, 5).
It is easy to see that the anticanonical divisor (−KY ) is contained in

⋂
iAmple(Ci, Y ). Sim-

ilarly to Theorem 3.1 we obtain the following result.

Theorem 4.1. Let Y be a del Pezzo surface of degree 4, and H be a very ample divisor in the

open cone
⋂5

i=1Ample(Ci, Y ). Then the affine cone AffConeH Y is flexible. In particular, this

holds for the anticanonical divisor H = −KY .

We have identified a subcone of the ample cone such that the very ample divisors contained
in this subcone define a flexible affine cone. However, this subcone is strictly contained in the
ample cone. For example, the ample divisor class 8e0 − 2e1 − 4e2 − e3 − e4 − 3e5 lies outside
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of that subcone. Thus the flexibility problem for the affine cone over the polarization of a del
Pezzo surface of degree 4 by any very ample divisor remains open.
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