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On the Representation of Stream Functions in Denotational Domains

We investigate the representation of functions on streams in some denotational domains. As expected, a total continuous stream function can always be represented by a Scott-continuous function, and moreover by a strongly stable map in the corresponding Hypercoherence.

It seems however difficult to represent an arbitrary stream function by a monotone map on Scott domains such that the stream function is continuous if and only if its representant is Scott-continuous. The difficulty is that the set of Scott-approximants of an open subset of a not (topologically) compact set of streams may not be Scott-open. We show that this problem does not occur in the compact case.

Introduction

We investigate the representation of functions on streams in Scott domains for the corresponding PCF types [START_REF] Plotkin | LCF Considered as a Programming Language[END_REF].

As expected, it is easy to define from an arbitrary f : A ω → B ω , a map f * on the corresponding domains which is always Scott-continuous. Such an f * always underapproximates f , and represents f if and only if f is continuous. As also expected, it is not difficult to adapt the definition scheme of f * in order to get a Strongly Stable map in the corresponding Hypercoherences [START_REF] Ehrhard | Hypercoherences: A strongly stable model of linear logic[END_REF][START_REF] Ehrhard | Projecting sequential algorithms on strongly stable functions[END_REF].

The main question discussed in this paper is: how to "uniformly" define a (monotone) representant f * for an arbitrary f , such that f * is Scott-continuous if f is continuous. This question is motivated by the use of stream functions to model infinite computations in frameworks related to software verification such as Büchi automata (see e.g. [START_REF] Thomas | Automata on Infinite Objects[END_REF][START_REF] Grädel | Automata, Logics, and Infinite Games: A Guide to Current Research[END_REF]), or in game based frameworks related to descriptive set theory [START_REF] Semmes | A Game for the Borel Functions[END_REF]. These frameworks consider more than continuous functions or open sets of streams. It seems interesting to understand how Curry-Howard based interpretations can give an account of these phenomena. Since Scott-topology on type 1 maps is not far from the usual product topology on streams, we do not expect to give an account of these behaviours in usual Scott domains. However, as a first step it seems important to understand how a stream function f can, first, be represented by a monotone map f * on the corresponding domain independently from the continuity of f , and then, to relate the continuity of f with the Scott-continuity of f * .

The main results of this paper suggest that this is not as easy as it seems. The difficulty is that in general, the set of Scott-approximants (in the cpo A ω of Scott-continuous maps from the flat cpo ω ⊥ to the flat cpo A ⊥ ) of an open subset of A ω form a Scott-open subset of A ω only when A ω is compact. This contrasts with the converse situation, where the set of streams α ∈ A ω whose lift α ⊥ belong to a Scott-open subset of A ω is always an open subset of A ω .

Technically, we relax the straightforward definition of f * from a monotone map of Scott-finite elements (that we call finitary in this paper), and do not require that the result on a arbitrary element of a cpo is uniquely determined by the finitary elements below it. Such a relaxation seems necessary in order to prevent f * from being automatically Scott-continuous.

Our result on Scott-topology makes this difficult (if not impossible) to work in the general case. We show that this works well when A ω is topologically compact (i.e. when the alphabet A is finite). This corresponds to the kind of streams dealt-with in automata theory [START_REF] Thomas | Automata on Infinite Objects[END_REF][START_REF] Grädel | Automata, Logics, and Infinite Games: A Guide to Current Research[END_REF].

Section 2 gives technical preliminaries and formulates the main question discussed in the paper. In Sect. 3, we gather (more or less well-known) material on the representation of continuous stream functions by Scott-continuous maps. Our main contributions are in Sect.4. Finally, we give in Sect. 5 an account in Hypercoherences of some of the material of Sect. 3. We conclude in Sect. 6, where we also briefly discuss other possible choices for the representation of streams in denotational domains.

Preliminaries

Sequences

Let ω be the set of natural numbers. An infinite sequence (or stream) over a set A is map α : ω → A. Streams are the carrier of the final coalgebra for the functor (-) × A in Set [START_REF] Jacobs | A Tutorial on (Co)Algebras and (Co)Induction[END_REF]. We write A ω for the set of streams over A and let α, β, γ, . . . range over streams. A finite sequence (or word) of length n over A is a map p : {0, . . . , n -1} → A. We write A <ω for the set of words over A and let p, q, . . . range over words. Given a stream α and n ∈ ω, the word α↾n is the restriction of α of domain {0, . . . , n -1}.

Seen as relations, streams and words over A are subsets of ω × A. Hence p ⊆ α means that p ∈ A <ω is a finite prefix (and can be though of as a finite approximation) of α ∈ A ω . More generally, given a partial map s : ω ⇀ A (i.e. a subset of ω × A satisfying the following coherence property1 : if (n, a)(n, a ′ ) ∈ s then a = a ′ ), we let [s] be the set of streams approximated by s:

[s] := {α ∈ A ω | s ⊆ α} .

Type 2 Continuity

Let A and B be at most countable. It is generally accepted that a "computable" total map f from A ω to B ω must only need to read a finite part of α ∈ A ω in order to produce a finite part of its answer in B ω . This can be formalized by stating that for any input stream α ∈ A ω and any output index m ∈ ω, there is an input index n ∈ ω such that for any β ∈ A ω approximated by α↾n, we have f (β)(m) = f (α)(m). This precisely means that f is a continuous map from A ω to B ω , where A, B are discrete and A ω , B ω are equipped with the corresponding product topology. It is convenient to reformulate the continuity of f as: for all (m, b) ∈ ω × B and all

α ∈ f -1 [{(m, b)}], there is some p ∈ A <ω such that α ∈ [p] ⊆ f -1 [{(m, b)}] , (1) 
where f -1 is the inverse image of f :

f -1 S := {α | f (α) ∈ S} (S ⊆ B ω ) .

Topology

Basic Definitions.

A topological space is a set X together with a collection Ω(X) of subsets of X such that Ω(X) contains both X and the empty set ∅, and is moreover preserved by finite intersections and arbitrary unions. A subset of X is closed if its complement w.r.t. X is open.

As advocated (and made precise in the relevant context) in [START_REF] Smyth | Topology[END_REF] (see also [START_REF] Escardó | Synthetic topology: of data types and classical spaces[END_REF]), the closure under arbitrary unions and finite intersections of opens suggests that "belonging to a given open set" may be through of as a kind of finite observation. Any set X can be endowed with the discrete topology Ω(X) = P(X), meaning that any point of X is observable. In other words, the discrete topology is the finer possible topology on X since it distinguishes all its elements. At the other extreme, the coarsest topology on X contains only ∅ and X. More generally, given two topologies Ω(X) and Ω ′ (X) on X, we say that Ω(X) is coarser than Ω ′ (X) if Ω(X) ⊆ Ω ′ (X).

Given topological spaces (X, Ω(X)) and (Y, Ω(Y )), a map f :

X → Y is continuous if the inverse image by f of any open subset of (Y, Ω(Y )) is open in (X, Ω(X)). If (X i ) i∈I is a family of topological spaces, the set Π i∈I X i of maps f : i ∈ I → f (i) ∈ X i
can be equipped with the product topology, which is the coarsest topology such that all projections

π i : f ∈ Π i∈I X i → f (i) ∈ X i are continuous.
A basis of a topological space (X, Ω(X)) is a collection of sets B such that every open set of X is the union of elements of B (by convention ∅ ∈ Ω(X) is the empty union).

A pre-basis of (X, Ω(X)) is a collection of sets whose finite intersections form a basis of (X, Ω(X)). Note that every basis is a pre-basis. Since inverse images preserve unions and intersections, in order to show that f : (X, Ω(X)) → (Y, Ω(Y )) is continuous, it suffices to check that the inverse images by f of pre-basic opens of (Y, Ω(Y )) are open in (X, Ω(X)).

A Topology on Streams.

As usual (see e.g. [START_REF] Kechris | Classical Descriptive Set Theory[END_REF][START_REF] Thomas | Automata on Infinite Objects[END_REF]), we equip A ω (= Π ω A) with the product topology issued from the discrete topology on A. With this topology, a subset U of A ω is open if and only if for any α ∈ U , there is n ∈ ω such that [α↾n] ⊆ U (see e.g. [START_REF] Kechris | Classical Descriptive Set Theory[END_REF]). This means that only a finite part of α must have been read in order to observe that α belongs to U .

We consider two basis for A ω :

• the set of all sets of the form [p] with p ∈ A <ω ,

• the set of all sets of the form [s] with s a finite partial map from ω to A.

The set of all sets of the form [{(n, a)}] with (n, a) ∈ ω × A is a pre-basis of these two basis.

The two above basis provide two equivalent formulations of the continuity of a stream function f :

A ω → B ω : besides (1) one can equivalently state that for any (m, b) ∈ ω × B and any α ∈ f -1 [{(m, b)}] there is some finite s : ω ⇀ A such that α ∈ [s] ⊆ f -1 [{(m, b)}] . (2) 

Domains

We refer to [START_REF] Amadio | Domains and Lambda-Calculi[END_REF] for a more comprehensive treatment. Most of the material we use can also be found in [START_REF] Plotkin | LCF Considered as a Programming Language[END_REF].

Basic Definitions.

We write D → po E for the set of monotone functions from the partial order (D, ⊑ D ) to the partial order (E, ⊑ E ). A subset ∆ of a partial order (D, ⊑) is directed if it is non empty and for all d, d ′ ∈ ∆, there is some e ∈ ∆ such that d, d ′ ⊑ e.

A complete partial order (cpo) is a partial order (D, ⊑) which has a least element ⊥ and such that all directed ∆ ⊆ D have a least upper bound ∆.

A monotone map of cpos g :

D → po E is Scott-continuous if g commutes with lubs of directed sets: {g(d) | d ∈ ∆} = g( ∆) for all directed ∆ ⊆ D. The set D → cpo E is itself a cpo w.r.t. the pointwise ordering: g ⊑ h if g(d) ⊑ E h(d) for all d ∈ D. The discrete (or flat) cpo (X ⊥ , ⊑ X ⊥ ) associated to a set X is defined as X ⊥ := X +{⊥} and d ⊑ X ⊥ e if d = ⊥ or d = e. Note that a directed set ∆ ⊆ X ⊥ is
either a singleton or of the form {⊥, x} with x ∈ X. It follows that any monotone map of flat cpos is Scott-continuous.

An element e of a cpo (D, ⊑) is finitary2 if for all directed ∆ ⊆ D such that e ⊑ ∆, there is some d ∈ ∆ such that e ⊑ d. A cpo (D, ⊑) is algebraic if for any d ∈ D, the set {e | e is finitary and ⊑ d} is directed and its limit is d.

A Domain for Streams.

We write A ω for ω ⊥ → po A ⊥ = ω ⊥ → cpo A ⊥ , where ω ⊥ and A ⊥ are discrete. If s is a partial map from ω to A, then we let s ⊥ be the corresponding element of A ω : 

s ⊥ : x ∈ ω ⊥ → s(x) if x ∈ dom(s), ⊥ otherwise. We say that d ∈ A ω is a Scott-approximant of α ∈ A ω if d ⊑ α ⊥ ,
(⊥) = ⊥) and also that d ⊑ d ′ implies [d ′ ] ↑ ⊆ [d] ↑ . Moreover, given s : ω ⇀ A, we have [s] = [s ⊥ ] ↑ . If g : D → E is a map of cpos, we let dom(g) := {d ∈ D | g(d) = ⊥ E }. Lemma 2.1 For any d ∈ A ω , (i) [d] ↑ is closed in A ω , (ii) and moreover open if dom(d) is finite. Proof. (i) If d(⊥) = ⊥, then d ⊑ α ⊥ for no α ∈ A ω . Hence [d] ↑ is empty and thus open. Assume that d(⊥) = ⊥ and let α ∈ A ω such that α / ∈ [d] ↑ . Hence d ⊑ α ⊥ . Since α ⊥ (⊥) = ⊥ = d(⊥), there is some n ∈ ω such that d(n) ∈ A and d(n) = α(n). It follows that d ⊑ β ⊥ for all β ∈ A ω such that β↾(n + 1) = α↾(n + 1). Hence A ω \ [d] ↑ is open and [d] ↑ is closed. (ii) Since dom(d) is finite let m = max(dom(d)) ∈ ω. If α ⊥ ∈ [d] ↑ , then for all β such that β↾(m + 1) = α↾(m + 1) we have d ⊑ β ⊥ , hence β ∈ [d] ↑ .
It is well-known (see e.g. [START_REF] Plotkin | LCF Considered as a Programming Language[END_REF]) that A ω is algebraic, and moreover that if s is a finite partial map from ω to A, then s ⊥ is finitary in A ω . Hence, the [d] ↑ with d ∈ A ω and dom(d) finite form a basis A ω . Since all elements of A ⊥ are finitary, the constant step function ⊥ ⇒ a of value a ∈ A is finitary (see e.g. [START_REF] Plotkin | LCF Considered as a Programming Language[END_REF]). These step functions ⊥ ⇒ a with a ∈ A are the only possible non strict elements of A ω .

Representation

Given f : A ω → B ω and f * : A ω → po B ω , we say that f * represents f if f * (α ⊥ ) = f (α) ⊥ for all α ∈ A ω .
The main question of this paper is: given f : A ω → B ω , is there some f * that represents f , and, if f * represents f , how do their respective continuity properties relate. Trying to be a bit more precise, we could say that we are looking for mappings

(-) * : (A ω → B ω ) → ( A ω → po B ω )
such that f * represents f and such that f * is Scott-continuous iff f is continuous. We are looking for schemes (-) * which are as much as possible independent from the continuity of f . We shall however not to try to axiomatize them.

Representation of Continuous Stream Functions

In this section, we review basic material for the representation of f : A ω → B ω by some Scott-continuous f * : A ω → cpo B ω . The main (and expected) points are that the set of streams approximated by a given Scott-open subset of A ω is open, and therefore that f is continuous if it is represented by a Scott-continuous f * .

3.0.1 Scott Topology. Given a cpo (D, ⊑), a subset U ⊆ D is Scott-open if it is upward closed ((d ∈ U ∧ d ⊑ e)
implies e ∈ U ), and if moreover for any directed ∆ ⊆ D such that ∆ ∈ U , there is some d ∈ ∆ such that d ∈ U . This means that if some limit ∆ belongs to U , then an approximant d ∈ ∆ of ∆ already belongs to U . It is well-known (see e.g. [START_REF] Amadio | Domains and Lambda-Calculi[END_REF]) that a map of cpos is continuous for the Scott topology if and only if it is Scott-continuous (i.e. a monotone map of cpos which commutes with directed limits). Moreover, if (D, ⊑) is algebraic, then the collection of the sets ↑d := {e | d ⊑ e} with d finitary is a basis for the Scott topology.

From Scott-Continuity to Continuity

Lemma 3.1 If U ⊆ A ω is Scott-open, then {α ∈ A ω | α ⊥ ∈ U } is open. Proof. Let α ∈ A ω such that α ⊥ ∈ U . Consider the set S α of all p ⊥ such that p ∈ A <ω approximates α. Then S α is directed and has limit α ⊥ . Since U is Scott-open, it follows that there is some finite p ⊆ α such that p ⊥ ∈ U . Now, if β ∈ [p], then p ⊥ ⊑ β ⊥ , hence β ⊥ ∈ U since U is Scott-open. It follows that α ∈ [p] ⊆ {γ ∈ A ω | γ ⊥ ∈ U }. Lemma 3.1 implies the expected fact that if f is represented by a Scott-continuous f * , then f is continuous. Lemma 3.2 If f * represents f and f * is Scott-continuous then f is continuous. Proof. Let (m, b) ∈ ω × B. We show that f -1 [{(m, b)}] is open in A ω . Since f * rep- resents f , for all α ∈ A ω we have α ∈ f -1 [{(m, b)}] iff α ⊥ ∈ (f * ) -1 ↑{(m, b)} ⊥ . But (f * ) -1 ↑{(m, b)} ⊥ is
Scott-open thanks to the Scott-continuity of f * , and it follows from Lem. 3.

1 that f -1 [{(m, b)}] is open in A ω .

Traces

It is well-known that a Scott-continuous map g : D → cpo E on algebraic cpos (D, ⊑ D ) and (E, ⊑ E ) is completely determined by its values on finitary elements. More precisely, g : D → po E is Scott-continuous if and only if for all d ∈ D we have:

g(d) = {g(d ′ ) | d ′ is finitary and ⊑ d} .
Hence, in order to define f * : A ω → cpo B ω from a continuous f : A ω → B ω , it suffices to specify f * on the finitary elements of A ω . A possibility to analyse this is to look at how f * is generated from a "trace" 3 . We say that τ

⊆ A ω × (ω × B) is a trace of f * : A ω → po B ω if for all d ∈ A ω , f * (d) = {{(m, b)} ⊥ | ∃e, e ⊑ d and (e, (m, b)) ∈ τ } . (3) 
We say that τ is finitary if it contains only finitary e ∈ A ω . This gives a necessary and sufficient condition for f * to be Scott-continuous: Proof. The "if" direction is trivial, and the "only if" direction follows from the algebraicity of A ω . Given f : A ω → B ω , the two equivalent definitions of continuity ( 1) and (2) of Sect. 2.3 lead to two possible finitary traces to define an f * :

Proposition 3.3 f * : A ω → po B ω is Scott-continuous if
τ f := {(s ⊥ , (m, b)) | s : ω ⇀ A finite and [s] ⊆ f -1 [{(m, b)}]} τf := {(p ⊥ , (m, b)) | p ∈ A <ω and [p] ⊆ f -1 [{(m, b)}]} (4) 
In order to ensure that τ f and τf can indeed be traces of some f * : 

A ω → B ω ,
{(m, b) ∈ ω × B | [d] ↑ ⊆ f -1 [{(m, b)}]}
defines a partial map from ω to B.

Proof. If [d] ↑ ⊆ f -1 [{(m, b)}] and [d] ↑ ⊆ f -1 [{(m, b ′ )}], then for all α ∈ [d] ↑ , we have (m, b), (m, b ′ ) ∈ f (α), hence b = b ′ .
The two traces τ f and τf are finitary and hence they both generate a Scott-continuous f * . According to Lem. 3.2, such an f * can not represent a non continuous f . However, f * always under-approximates f .

Lemma 3.6 Let f : A ω → B ω and let f * : A ω → cpo B ω have trace τ f or τf . Then for all α ∈ A ω , we have f * (α ⊥ ) ⊑ B ω f (α) ⊥ .
Actually, we can say more: f * represents f whenever f is continuous.

Proposition 3.7 Let f : A ω → B ω and let f * : A ω → cpo B ω have trace τ f or τf . Then f * represents f if and only if f is continuous.
Proof. Lemma 3.2 implies that f is continuous whenever it is represented by f * . We show the converse for τf . Assume that f : A ω → B ω is continuous and let α ∈ A ω . We only have to show that f (α

) ⊥ ⊑ B ω f * (α ⊥ ). We have f (α) ⊥ (⊥) = ⊥ ⊑ B ⊥ f * (α ⊥ )(⊥) by definition. Let (m, b) ∈ f (α) ⊥ . By continuity of f , there is some p ∈ A <ω such that α ∈ [p] (i.e. p ⊥ ⊑ α ⊥ ) and [p] ⊆ f -1 [{(m, b)}], hence (m, b) ∈ f * (α ⊥ ).

Representation of Arbitrary Stream Functions

The previous section suggests that systematically building f * from a finitary trace may not be the right approach to define f * from f such that f * always represents f and f * is Scott-continuous if and only if f is continuous.

We try to relax the finitary condition on traces, because it fixes the Scott-continuity of f * inside its definition. In this section, given f :

A ω → B ω , we define f * : A ω → po B ω by: f * (d) := {(m, b) ∈ ω × B | [d] ↑ ⊆ f -1 [{(m, b)}]} ⊥ (5)
That f * is indeed a function follows from Prop. 3.5. Its monotony is obvious. The set

{(d, (m, b)) | [d] ↑ ⊆ f -1 [{(m, b)}]}
is a trace for f * . This trace is sufficient in the sense that for all (m, b) ∈ ω × B and all

finitary d ∈ A ω , if [d] ↑ ⊆ f -1 [{(m, b)}] then (m, b) ∈ f * (d).
The scheme (5) satisfies our first requirement on f * .

Lemma 4.1 Given any f : A ω → B ω , the f * defined from f as in ( 5) is monotone and represents f .

Proof. The monotonicity follows from the fact that d

⊑ d ′ implies [d ′ ] ↑ ⊆ [d] ↑ . Let α ∈ A ω . We have [α ⊥ ] ↑ = {α}, and therefore (m, b) ∈ f (α) implies (m, b) ∈ f * (α ⊥ ). It follows that f (α) ⊥ ⊑ f * (α ⊥ ). Conversely, if (m, b) ∈ f * (α ⊥ ), then we have [α ⊥ ] ↑ ⊆ f -1 [{(m, b)}], hence (m, b) ∈ f (α). It follows that f * (α ⊥ ) ⊑ f (α) ⊥ .
However, we show in Sect. 4.1 that the continuity of f does not imply the Scottcontinuity of f * . This does not happen when A ω is (topologically) compact: as shown in Sect. 4.2, if A ω is compact then the continuity of f implies the Scott-continuity of f * . We moreover show that in this case, f * is Scott-continuous whenever it has a sufficient trace and represents a continuous f .

Continuity Does Not Entail Scott-Continuity

We now show that ( 5) can induce a non Scott-continuous f * : A ω → po B ω from a continuous f : A ω → B ω . The surprising point is that this comes from a failure to the converse of Lem. 3.1, namely that when A is infinite, an open U ⊆ A ω can be such that the set of its Scott-approximants

{d ∈ A ω | [d] ↑ ⊆ U } is not Scott-open.
It will be shown in Sect. 4.2, this is not possible when A is finite. We work here with the Baire space N := ω ω . 

Lemma 4.2 There is an open

U ⊆ N such that {d ∈ A ω | [d] ↑ ⊆ U } is not Scott-open.
d i (a) := 0 if a ∈ {1, . . . , i + 1}, ⊥ otherwise. The set {d ∈ A ω | [d] ↑ ⊆ U } ⊆ N is not Scott-open since (i) [ {d i | i ∈ ω}] ↑ ⊆ U , (ii) for all i, [d i ] ↑ is not contained in U .

Proofs of the claims (i) and (ii).

(i) Let α ∈ [ {d i | i ∈ ω}] ↑ . For all i ∈ ω we have d i ⊑ α, hence α(i + 1) = 0. It follows that α(α(0) + 1) = 0, so that α ∈ U .
(ii) Let i ∈ ω and define α i as

α i =    0 → i + 1 k → 0 (1 ≤ k ≤ i + 1) k → 1 (k ≥ i + 2)
We have

α i ∈ [d i ] ↑ since α(k) = 0 for all 1 ≤ k ≤ i + 1. But α i / ∈ U since α i (α i (0) + 1) = α i (i + 2) = 1.
Using Lem. 4.2, we can show that (5) gives a non Scott-continuous representation of a suitable continuous f . It suffices for f to test whether its argument belongs to the open set U of Lem. 4.2.

Lemma 4.3 There is a continuous f : N → N such that f * : N → po N defined from ( 5) is not Scott-continuous.

Proof. Consider the open set U of Lem. 4.2 and define f : N → N as [START_REF] Escardó | Synthetic topology: of data types and classical spaces[END_REF]. We claim that:

f (α) = 1 ω if α ∈ U 0 ω otherwise Define f * from f as in
(i) f is continuous, (ii) f * is not Scott-continuous: f * ( {d i | i ∈ ω}) ⊑ {f * (d i ) | i ∈ ω}, where (d i ) i∈ω is defined in the proof of Lem. 4.2.
Proofs of the claims.

(i) We only have to show that N \ U is open. But α / ∈ U iff α(α(0) + 1) = 0 iff α ∈ [{(0, i), (i + 1, k)}] for some i ∈ ω and k ≥ 1. (ii) Since [ {d i | i ∈ ω}] ↑ ⊆ U , for all α ∈ [ i∈ω d i ] ↑ we have f (α) = 1 ω , hence f * ( i∈ω d i ) = (1 ω ) ⊥ = {(n, 1) | n ∈ ω} ⊥ . However, by Claim (ii) of the proof of Lem. 4.2, for all i ∈ ω there is some α in [d i ] ↑ such that f (α) = 0 ω . It follows that for all n ∈ ω, we have (n, 1) / ∈ f (α) ⊥ ⊒ f * (d i ), hence (n, 1) / ∈ i∈ω f * (d i ). Remark 4.4
The point is the definition of f * . In the case of Lem. 4.3, since f is definable in Gödel's system T, it is representable by a (strongly) stable function.

We see no other way in this situation than to use some (to our opinion) more contrived definition of f * , such as: Lemma 4.5 implies that f * is Scott-continuous whenever it has a sufficient trace and represents a continuous f : A ω → B ω with A finite. Recall that if f * is defined from f as in [START_REF] Escardó | Synthetic topology: of data types and classical spaces[END_REF], then f * represents f and has a sufficient trace.

f * (α ⊥ ) := f (α) ⊥ , f * (⊥ ⇒ a) := f (a ω ) ⊥ , f * (d) := {(m, b) | ∃p ∈ A <ω , p ⊥ ⊑ d and [p] ⊆ f -1 [{(m, b)}]} ⊥ otherwise.
Lemma 4.7 Let A be finite set and let f : A ω → B ω be represented by f * : A ω → po B ω . Assume that f * has a sufficient trace:

• for all (m, b) ∈ ω × B and all finitary d ∈ A ω , if [d] ↑ ⊆ f -1 [{(m, b)}] then (m, b) ∈ f * (d).
If f is continuous then f * is Scott-continuous.

Note that if f * represents f then f * (α ⊥ ) is strict by strictness of f (α) ⊥ . Recall that [d] ↑ is empty if and only if d = ⊥ ⇒ a for some a ∈ A, and in this case d is finitary.

Proof. Let ∆ be a directed subset of A ω . Since f * is monotone, it suffices to check that f * ( ∆) ⊑ A ω f * (∆). This is trivial if ∆ is finitary and in particular if [ ∆] ↑ is empty.

We have to show that f * ( ∆)(e) ⊑ 

An Account in Hypercoherences

We give an account of our preceding results in Ehrhard's Hypercoherences [START_REF] Ehrhard | Hypercoherences: A strongly stable model of linear logic[END_REF]. Our motivation is to check that a trace similar to the "sequential" trace τf of (4) is indeed "sequential". We are thus looking at Strongly Stable maps of Hypercoherences. Maps of Hypercoherences are maps of the underlying qualitative domains [START_REF] Girard | The System F of Variable Types, Fifteen Years Later[END_REF]. At higher type, these maps work on representation of elements by some coding (traces) and not on the "extensional" elements themselves. We will thus represent f by a map f of the corresponding qualitative domains.

Basic Definitions.

We gather here some basic definitions on Hypercoherences. See e.g. [START_REF] Ehrhard | Hypercoherences: A strongly stable model of linear logic[END_REF][START_REF] Ehrhard | Projecting sequential algorithms on strongly stable functions[END_REF] for details. We need some notations. Given two sets A and B, we say that A is a multisection of B (written

A ✁ B) if ∀a ∈ A, ∃b ∈ B, a ∈ b and ∀b ∈ B, ∃a ∈ A, a ∈ b .
Moreover, given S ⊆ X × Y , we let S 1 and S 2 , the two projections of S, be:

S 1 := {x ∈ X | ∃y ∈ Y, (x, y) ∈ S} and S 2 := {y ∈ Y | ∃x ∈ X, (x, y) ∈ S}
An Hypercoherence is a set X together with a collection Γ(X) of non-empty finite subsets of X such that {x} ∈ Γ(X) for all x ∈ X. The set X is called the web of the Hypercoherence (X, Γ(X)).

Let (X, Γ(X)) be an Hypercoherence. The set of states qD(X) of its associated qualitative domain is be the set of all u ⊆ X such that all non-empty finite subset of u belong to Γ(X). The corresponding coherence C(X) is the set of all non-empty finite subset S of qD(X) such that all multisections of S belong to Γ(X). Note that (X, qD(X)) is a cpo whose finitary elements are exactly the finite u ∈ qD(X). Write qD fin (X) for the set of finite u ∈ qD(X).

Given Hypercoherences X and Y , a Strongly Stable function g : X → FS Y is a Scottcontinuous function from (qD(X), ⊆) to (qD(Y ), ⊆) such that for all S ∈ C(X), we have g(S) ∈ C(Y ) and g(S) = g( S). The Hypercoherence associated to X → FS Y has web qD fin (X) × Y and Γ(X → FS Y ) is the set of all non-empty and finite subsets u of qD fin (X) × Y such that if u 1 ∈ C(X), then u 2 ∈ Γ(Y ) and if moreover u 2 is a singleton, then u 1 is a Singleton.

To each g : X → FS Y , we can associate its trace tr(g) ⊆ qD fin (X) × Y : tr(g) := {(u, y) | y ∈ g(u) and u is minimal} , and g can be recovered from its trace as

g(u) = {y | ∃u ′ ⊆ u, (u ′ , y) ∈ tr(g)} .
By Proposition 19 of [START_REF] Ehrhard | Hypercoherences: A strongly stable model of linear logic[END_REF], qD(X → FS Y ) is exactly the set of traces of strongly stable maps from X to Y .

Representation.

Given a set A, its discrete Hypercoherence Γ(A) is the set of singletons {a} with a ∈ A.

Proposition 5.1 If X is a discrete Hypercoherence, then (i) qD(X) = {{x} | x ∈ X} ∪ {∅}, (ii) C(X) = {{{x}} | x ∈ X} ∪ {S ⊆ * fin qD(X) | ∅ ∈ S}.
• We now show that if S ∈ C(ω → FS A), then f (S) = f ( S).

The inclusion (⊇) follows from the monotonicity of f . For the other direction, let S = {d A similar study could have been carried out in domains for finite and infinite lists. There are different possibilities, depending on the strictness conditions imposed on the data type. Typical Haskell lists are fully lazy, and their domain (which contains streams by completeness) contains also approximations with "holes" such as, say, [⊥, 1]. Hence most of the material of Sect. 3 and Sect. 4, and in particular the negative results of Sect. 4.1 should apply to this framework. Another possibility is to use head strict lazy lists, as in e.g. [START_REF] Pitts | A Co-induction Principle for Recursively Defined Domains[END_REF]. In this case, the only possible Scott-approximants are finite lists of non-bottom elements. The negative results of Sect. 4.1 should not apply to this case, but the positive results of Sect. 4.2 should also not apply. Note these both kinds of finite/infinite lists are available in the (strict, call-by-value) language OCaml [START_REF] Leroy | The Objective Caml System Release 3[END_REF] thanks to the Lazy module, as well as in the (lazy) language Haskell [START_REF] Marlow | Haskell 2010[END_REF] thanks to strictness '!' type annotation.

Conclusion.

We have studied the representation of stream functions in Scott domains for the corresponding PCF types. As expected, these domains are well suited for the representation of continuous functions. This is moreover adapted to the framework of Ehrhard's Hypercoherences. However, our results seem to indicate that it is difficult to represent a stream function by a monotone map on the correspond domain, and to require that the representant is Scott-continuous if and only if the represented function is continuous. This kind of modularity fails in the general case for reasons that are not clear to us. Fortunately, things work well in the compact case, which corresponds to one of our motivations.

It is nevertheless unclear how to use this kind of domains to represent backtracking mechanisms used to approximate non-continuous functions (see e.g. [START_REF] Semmes | A Game for the Borel Functions[END_REF]). Further work will concern more concrete and flexible framework such as Hyland-Ong games [START_REF] Hyland | On Full Abstraction for PCF: I, II, and III[END_REF], or game presentations of sequential data structures such as [START_REF] Melliès | Sequential algorithms and strongly stable functions[END_REF].

Remark 3 . 4

 34 Note that (3) is possible for a given d ∈ A ω only when the set {{(m, b)} ⊥ | ∃e, e ⊑ d and (e, (m, b)) ∈ τ } is bounded ( A ω is bounded complete [1, 16]). In this case, (3) is equivalent to f * (d) = {(m, b) | ∃e, e ⊑ d and (e, (m, b)) ∈ τ } ⊥ .

Proposition 3 . 5

 35 we can check that with τ = τ f and τ = τf , the set {(m, b) | ∃e, e ⊑ d and (e, (m, b)) ∈ τ } defines a partial function from ω to B. This follows from a more general result (recall that [s] = [s ⊥ ] ↑ and that d ⊑ d ′ implies [d ′ ] ↑ ⊆ [d] ↑ ): Given f : A ω → B ω and d ∈ A ω , the set

Proof.

  Consider the open set U ⊆ N made of the α ∈ N such that α(α(0) + 1) = 0 . Note that U is the union of the basic open sets [{(0, i), (i + 1, 0)}] for i ∈ ω. Consider now the directed family (d i ) i∈ω ∈ N with

10 4. 2 . 3

 1023 Representation.

  A ⊥ f * (∆)(e) for all e ∈ ω ⊥ . Consider first the case of e = ⊥. If f * ( ∆)(⊥) = ⊥ then we are done. Otherwise,f * ( ∆)(⊥) = b ∈ B. Since [ ∆] ↑ is assumed to be non-empty, let α ∈ [ ∆] ↑ . By monotonicity of f * , we have f * (α ⊥ )(⊥) = b, which contradicts the strictness of f * (α ⊥ ). Consider now the case of e = m ∈ ω. If f * ( ∆)(m) = ⊥ then we are done. So let b ∈ B such that (m, b) ∈ f * ( ∆). We show that there is some d ∈ ∆ such that (m, b) ∈ f * (d). Since [ ∆] ↑ is assumed to be non-empty, let α ∈ [ ∆] ↑ . By monotonicity of f * , we have (m, b) ∈ f * (α ⊥ ) hence (m, b) ∈ f (α) since f * represents f . It follows that [ ∆] ↑ ⊆ f -1 [{(m, b)}]. But f -1 [{(m, b)}] ⊆ A ω isopen by continuity of f . Since A is finite, by Lem. 4.5 there is d ∈ ∆ such that [d] ↑ ⊆ f -1 [{(m, b)}]. If d is finitary, then we are done by assumption on f * . Otherwise, by algebraicity of A ω and since [d] ↑ ⊆ f -1 [{(m, b)}], by Lem. 4.5 again there is a finitary d ′ ⊑ d such that [d ′ ] ↑ ⊆ f -1 [{(m, b)}], and we are done by assumption on f * .

  1 , . . . , d n } ∈ C(ω → FS A) and ({m}, b) ∈ f (S). Hence, for all 1 ≤ i ≤ n there is a minimal p i ∈ A <ω such that (p i ) tr ⊆ d i and (m, b) ∈ f [p i ]. But {(p 1 ) tr , . . . , (p n ) tr } ⊑ {d 1 , . . . , d n }. Reasoning similarly as above, we get that p 1 = • • • = p n (=: p), hence p tr ⊆ S and ({m}, b) ∈ f ( S). 6 Concluding Remarks 6.0.6 Other Possible Domains for Streams.

  and write [d] ↑ for the set of streams which are Scott-approximated by d. Note that this set is never empty if d is strict (d

 

They correspond exactly to cliques of the coherence space[START_REF] Girard | Linear Logic[END_REF] ω ⊸ A where ω and A are discrete.

In contrast with e.g.[START_REF] Amadio | Domains and Lambda-Calculi[END_REF], we do not call them "compact" in order to avoid confusion with the topological notion of compactness, to be used in Sect 4.2.

By lack of a better name, we depart from the usual terminology (see e.g.[START_REF] Amadio | Domains and Lambda-Calculi[END_REF]) since we do not require any minimality in the trace. This will be regained with Hypercoherences in Sect. 5.

The Compact Case

In this section we show that the problem raised by Lem. 4.2 does not appear when A ω is a compact topological space, which exactly means that A is finite. We thus avoid the counter-example of Lem. 4.3. This implies that f * is Scott-continuous whenever it has a sufficient trace and represents a continuous f .

Topological Compactness.

A subset set C of a topological space (X, Ω(X)) is compact if for any family (A i ) i∈I of open sets such that C ⊆ i∈I A i , there is a finite I 0 ⊆ I such that C ⊆ i∈I 0 A i . We say that (X, Ω(X)) is compact when X is compact in (X, Ω(X)). It is well-known (see e.g. [START_REF] Kechris | Classical Descriptive Set Theory[END_REF]) that a closed subset of a compact set is compact and also that A ω is compact if and only if A is finite.

4.2.2

The Set of Scott-Approximants of an Open is Scott-Open.

We now show that the topological compactness of

The upward closure is trivial, and as suggested by Lem. 4.2, the point is the "finite" observation of limits.

Proof. The set [ ∆] ↑ is closed by Lem. 2.1, and hence compact since A ω is compact. So, we may assume that there are s 1 , . . . , s n finite partial from

We will show that

We proceed by contradiction, by showing that from any α ∈

), contradicting the assumption on the s i 's.

First, note that if (m, a) ∈ S \ ∆, then no (m, b) with b = a belongs to ∆, since (m, a) belongs to some 

Proof. (i) First, we have ∅ ∈ qD(X) since the empty set has no non-empty subset. Furthermore, if x ∈ X, then the only non-empty subset of {x} is {x}, and {x} ∈ Γ(X) since X is discrete.

Conversely, assume that s ∈ qD(X) with distinct x, y ∈ s. Then {x, y} is a finite non-empty subset of s which is not in Γ(X).

(ii) If x ∈ X then {{x}} ⊆ * fin qD(X). Moreover, u ✁ {{x}} implies u = {x}, so that u ∈ Γ(X). On the other hand, if S ⊆ * fin qD(X) contains the empty set, then S has no multisection and we are done.

Conversely, if S ∈ C(X) does not contain the empty set, then S is of the form {{x 1 }, . . . , {x n }}. Since {x 1 , . . . , x n } is a multisection of S, we must have {x 1 , . . . , x n } ∈ Γ(X), but this is possible only when n = 1. Proposition 5.1.(i) tells us that given a set X equipped with the discrete Hypercoherence, we can identify (qD(X), ⊆) with the discrete cpo X ⊥ .

The Hypercoherence associated to A ω is the Hypercoherence of ω → FS A, where ω, A are discrete and the function space is the strongly stable one.

It is possible to show that ω → FS A and A ω are isomorphic w.r.t. the pointwise order (which is different from the stable order, corresponding to (qD(ω → FS A), ⊆)). We do not need this generality since it is easy to directly represent any s : ω ⇀ A by its trace: let

Note that this encompasses the cases of p ∈ A <ω and α ∈ A ω .

Proposition 5.2 If s : ω ⇀ A, then s tr ∈ qD(ω → FS A).

Proof. Let S ⊆ (s tr ) fin be non-empty and such that S 1 ∈ C(ω). Since ∅ / ∈ S 1 , we have S 1 = {{n}}, hence S 2 = {a} ∈ Γ(A). Moreover, both S 1 and S 2 are singletons.

We have for f similar properties as for the f * 's of Sect. 3.

Lemma 5.3 f is Scott-continuous and moreover represents f if and only if f is continuous.

Proof. Monotonicity follows from the shape of the definition. Scott-continuity follows from the fact that p tr ∈ qD(ω → FS A) is finite. That f represents f if and only if f is continuous directly follows from the definition of f .

We now show that f is strongly stable. Thanks to Ehrhard's collapse theorem [START_REF] Ehrhard | Projecting sequential algorithms on strongly stable functions[END_REF], this means that f can be "extensionally" represented by a sequential algorithm in the sense of [START_REF] Berry | Sequential Algorithms on Concrete Data Structures[END_REF]. Lemma 5.4 f is strongly stable.

Given sets A and B, we write

It is shown in [START_REF] Ehrhard | Hypercoherences: A strongly stable model of linear logic[END_REF] that if S ∈ C(A) for some Hypercoherence A, and S ′ is a non-empty finite subset of qD(A) such that S ′ ⊑ S, then S ′ ∈ C(A).

Proof. We show that f preserves coherences S ∈ C(ω → FS A) and their intersections.

Let S ∈ C(ω → FS A). Then S is a finite non-empty subset of qD(ω → FS A). Hence S is of the form {d 1 , . . . , d n }. Let

Assume first that ∅ ∈ M 1 . Hence we have x j = ∅ for some j, and it follows that (∅, b j ) ∈ f (d i ) for some i. But this is impossible by definition of f .

It thus follows from Prop. 5.1.(ii) that M 1 = {{k}} for some k ∈ ω, hence that M is of the form {({k}, b 1 ), . . . , ({k}, b m )}.

We show that b

By assumption, for all 1 ≤ j ≤ m, there is some 1

-Assume that we do not have p 1 = • • • = p m . Hence, there is a least l such that there are 1 ≤ j 0 , j 1 ≤ m and a ∈ A such that (l, a) ∈ p j 0 \ p j 1 .

Assume that l ∈ dom(p j ) for all j. Hence {({l}, p 1 (l)), . . . , ({l}, p m (l))} is a finite multisection of {d 1 , . . . , d n }, so that {({l}, p 1 (l)), . . . , ({l}, p m (l))} belongs to Γ(ω → FS A). It follows that p 1 (l) = • • • = p m (l), but this contradicts the assumption that p j 0 (l) = p j 1 (l) for some j 0 , j 1 .

It therefore must be the case that l ∈ dom(p j 0 ) \ dom(p j 1 ) for some j 0 , j 1 .

But by assumption on l, for all l ′ < l we have l ′ ∈ dom(p 1 ) ∩ • • • ∩ dom(p m ) and p 1 (l ′ ) = • • • = p m (l ′ ). Hence p j 1 is a prefix of all the p j 's, and therefore (p j 1 ) tr is contained in all the d i 's. By monotonicity of f (Lem. 5.3), we get ({k}, b j 1 ) ∈ f (d i ) for all 1 ≤ i ≤ n. This implies b j = b j 1 for all 1 ≤ j ≤ m. But then the minimality of the p j 's would imply that p j 0 = p j 1 , contradicting l ∈ dom(p j 0 )\dom(p j 1 ) (note that in this case, we already have b 1 = • • • = b m , which was our primarily goal).

We therefore have