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On the enumerating series of an abstract numeration system

It is known that any rational abstract numeration system is faithfully, and effectively, represented by an N-rational series. A simple proof of this result is given which yields a representation of this series which in turn allows a simple computation of the value of words in this system and easy constructions for the recognition of recognisable sets of numbers.

It is also shown that conversely it is decidable whether an N-rational series corresponds to a rational abstract numeration system.

Introduction

In order to state our result, we have first to recall the definition -due to Lecomte and Rigo [START_REF] Lecomte | Numeration systems on a regular language[END_REF] -of an abstract numeration system and, in order to motivate it, the more common one of numeration systems.

Numbers do exist independently of the way we represent them, and operations on numbers are defined independently of the way they are computed. The role of a numeration system is to set a framework in which numbers are represented by words (over a suitable alphabet) allowing to describe operations on numbers as algorithms on the representations, that is, on words.

The most common numeration system -in our modern times -is the k-ary system where numbers are given their representation in base k, that is, written as words over the alphabet A k = {0, 1, . . . , k -1} and which do not start with 0 (but for the representation of 0 itself). The sequence of the representations of the integers in the binary system is: {0, 1, 10, 11, 100, 101, 110, . . .} .

While keeping the notion of position numeration system, the k-ary systems can be generalised by replacing the sequence (k n ) n 0 with some increasing sequence U = (U n ) n 0 of integers such that U 0 = 1 . Using a greedy algorithm, every integer n is then given a representation in the 'base' U , called its U -representation and denoted by n U . A well-known example is the Fibonacci numeration system based on the sequence F = (F n ) n 0 of Fibonacci numbers starting with F 0 = 1 and F 1 = 2 . In this system, every positive integer is given a canonical representation which is computed by the greedy algorithm and which is characterised by the fact it does not contain 11 as a factor. The sequence of the representations of the integers in the Fibonacci system is: {0, 1, 10, 100, 101, 1000, 1001, 1010, . . .} .

It is possible to look at these two numeration systems, the 2-ary system and the Fibonacci system, independently from the sequences (2 n ) n 0 and (F n ) n 0 and the greedy algorithm, and by just considering the set of words that represent the integers: 1{0, 1} * ∪{0} in the first case, 1{0, 1} * \{0, 1} * 11{0, 1} * ∪{0} in the second case and by enumerating the element of this set in the radix order. 1 In both cases, every integer will be given the same representation without reference to the way this representation is computed. It is the language of all representations that matters and this naturally leads to the definition of abstract numeration systems.

Definition 1 ([14]

). An abstract numeration system (or ANS for short) is a triple S = (L, A, <) where A is an alphabet equipped with a total order < and L is an infinite language of A * .

The system S allows to define a one-to-one correspondence between N and L by associating every integer n with the (n + 1)-th word of L in the radix order defined on A * by <. This representation of n is denoted by n S and conversely the corresponding value of a word w of L is denoted by π S (w). Of course, the following holds:

π S (w) S = w and π S ( n S ) = n .
In most cases, the alphabet A and the order < on A are fixed and understood and we speak of the ANS defined by the language L and we use the simpler notations n L and π L (w).

If L is a rational language of A * , we say that the ANS is rational. Beyond the irrepressible appeal to generalisation and abstraction, a true motivation that supports the definition of ANS is to understand which properties of a numeration system depend upon the whole language of the representations only, and which are more directly related to the way the representation of every number is computed. For instance, we have shown in a previous paper [START_REF] Angrand | Radix enumeration of rational languages[END_REF] that the successor function in a rational ANS is a piecewise cosequential function, whereas the characterisation of those systems for which this successor function is co-sequential is known in the case of β-numeration systems (cf. [START_REF] Frougny | On the sequentiality of the successor function[END_REF]) but seems to be out of reach for arbitrary rational ANS so far.

The purpose of this paper is to set up even tighter bonds between rational abstract numeration systems and classical automata theory. We reach this goal via the definition of the enumerating series of a numeration system and with the use of its representation in the case it is rational. Definition 2. Let S = (L, A, <) be an abstract numeration system. The enumerating series of S is the N-series over A * denoted by E S and defined by:

E S = w∈L (π S (w) + 1) w .
As above, the notation can be simplified as E L = w∈L (π L (w) + 1) w .

Remark 1. The above definition has been taken so that the language L is entirely determined by E L . Indeed, L = supp (E L ) .

One certainly could have taken E L = w∈L (π L (w)) w as a definition for E L .

All the results we are going to describe would have been valid and it may have looked more natural. But we would have lost the information on the first word of L, that is, the representation of 0.

The starting point of our work is a direct proof of the following result (the definition of N-rational series will be recalled below).

Theorem 1 ([7]

). The enumerating series of a rational abstract numeration system is an N-rational series.

In [START_REF] Choffrut | Rational transductions and complexity of counting problems[END_REF], Theorem 1 was a corollary of constructions set up for establishing the rationality or algebraicity of a family of counting problems by means of rational transductions. Theorem 1 was also given another and specialised proof in [START_REF] Rigo | Numeration systems on a regular language : arithmetic operations, recognizability and formal power series[END_REF]. Even if both this and the original proofs are effective, the one we give below in Section 3 amounts to compute directly a representation of E L from a representation of (the characteristic series of) L and also to give an even more compact algorithm for calculating the coefficient of a word w in E L , that is, the value of w in the system L increased by 1. We then deduce from this latter algorithm the construction of the automaton that recognises the set of representations in the system L of a recognisable set of numbers (Section 4). It is to be noted that the same last construction was also given in [START_REF] Krieger | Decimation of languages and state complexity[END_REF] (cf. Remark 6).

The next result plays the role of a converse of Theorem 1: of course not every N-rational series is the enumerating series of a rational number system, but one can at least know when it is the case. Theorem 2. It is decidable whether an N-rational series is the enumerating series of a (rational) abstract numeration system or not.

We end the paper with some problems that are directly inspired by Theorem 1.

Preliminary and notation

This paper makes use of several notions of automata theory such as unambiguous, or deterministic, automata, rational series and languages, with which the reader is supposed to be familiar. Definitions that are not given here are to be found in reference books such as [START_REF] Eilenberg | Automata, Languages and Machines[END_REF][START_REF] Berstel | Rational Series and their Languages[END_REF][START_REF] Sakarovitch | Eléments de théorie des automates[END_REF]. Our notation are mainly those used in [START_REF] Sakarovitch | Eléments de théorie des automates[END_REF].

In the sequel, A is a finite alphabet, A * the free monoid generated by A, 1 A * the empty word, identity of A * . The length of a word w in A * is denoted by |w|. Let A be totally ordered by <. The radix order ≺ on A * is defined by:

2 u ≺ v if either |u| < |v| , or |u| = |v| , u = w a u ′ , v = w b v ′ and a < b .
The radix order is a well order, that is, every non empty subset of A * has a smallest element for ≺ and can thus be used to enumerate any subset of A * . Let K be a semiring; for instance, N, the semiring of non negative integers. A (K-)series s (over A * ) is a map from A * to K, and the image of a word w by s is called the coefficient of w in s and is denoted by <s, w>. The set of series over A * with coefficients in K is denoted by K A * . The support of a series s is the language, denoted by supp s, which contains those words whose coefficient in s is different from 0 K . Conversely, the characteristic series of a language L of A * is the N-series, denoted by L, defined by <L, w> = 1 if w is in L and <L, w> = 0 otherwise.

We call (K-)representation, of dimension n, a triple (λ, µ, ν) where µ is a morphism µ : A * → K n×n from A * to the n × n-matrices with entries in K, and λ and ν are two vectors of dimension n with entries in K, λ a row vector and ν a column vector. A series s in K A * is (K-)recognisable if there exists a representation (λ, µ, ν) such that, for every w in A * , <s, w> = λ • µ (w) • ν .

A series is (K-)rational if it is the behaviour of a finite (K-)automaton, that is, an automaton with multiplicity in K (the behaviour of an automaton A is the series where the coefficient of a word w is the sum of the multiplicities of all computations in A with label w). Finite K-automata whose transitions are labelled by letters and K-representations are two ways to describe the same concept. 3 The illustration given with Example 1 suffices for the definition. As every K-automaton is equivalent to one which is labelled by letters, the families of K-rational and Krecognisable series coincide.

Example 2. The language L 1 of words with an even number of b's is recognised by the automaton A 1 drawn at Figure 1. The representation (λ 1 , µ 1 , ν 1 ) associated with A 1 is The proof of Theorem 1, as given in [START_REF] Choffrut | Rational transductions and complexity of counting problems[END_REF] where Theorem 1 is (part of) Corollary 8, is based on the construction of an unambiguous rational transduction that associates to every word u all words v that are greater than u in the radix order. From this, it is easy to derive that the image of the characteristic series of a rational language L is a recognisable series, and equal to E L -up to the intersection (or Hadamard product) with L. The advantage of this construction is that it can be applied to unambiguous context-free languages and to various other counting functions as well. The inconvenient is that it does not provide directly the representation of E L , although it is very similar to the one we develop below.

λ 1 = 1 0 , µ 1 (a) = 1 0 0 1 , µ 1 (b) = 0 1 1 0 , ν 1 = 1 0 . b b a a
In [START_REF] Rigo | Numeration systems on a regular language : arithmetic operations, recognizability and formal power series[END_REF], Theorem 1 is Proposition 29; its proof is more direct than in [START_REF] Choffrut | Rational transductions and complexity of counting problems[END_REF] in the sense it does not rely on the rational transduction machinery but makes use instead of the characterisation of recognisable series as those which belong to a finitely generated stable submodule of K A * . But this proof yields neither the representation of E L nor a simple mean to compute it.

Preparation

If a is a letter of A, let us denote by A a the set of letters of A smaller than a:

A a = {b ∈ A | b < a} .
If u be a word of A * , let us denote by P (u) the set of words of A * (strictly) smaller than u in the radix order:

P (u) = {v ∈ A * | v ≺ u} .
This set P (u) can be defined by induction on the length of u by the following remark. Any word smaller than u followed by any letter is smaller than u a, and so is u b for any letter b smaller than a, and the empty word is also smaller than u a. These three sets are pairwise disjoint and any word smaller than u a falls in one of them. Altogether, we have proved the following lemma:

4 Lemma 3. ∀u ∈ A * , ∀a ∈ A P (u a) = 1 A * ∪ uA a ∪ P (u)A .
Let L be a rational language of A * and (λ, µ, ν) the N-representation which corresponds to an unambiguous finite automaton which recognises L:

∀w ∈ A * λ • µ (w) • ν = 1 ⇐⇒ w ∈ L .
We use the following notation: if K is a (finite) subset of A * , then µ (K) = w∈K µ (w) . As (λ, µ, ν) corresponds to an unambiguous automaton, we have:

∀K ⊆ A * λ • µ (K) • ν = w∈K λ • µ (w) • ν = card (K ∩ L) . (1) 

Proof of Theorem 1

Let S = (L, A, <) be a rational ANS, A an unambiguous automaton that recognises L, (λ, µ, ν) the corresponding N-representation, and k its dimension. From (1) follows:

∀u ∈ A * λ • µ (P (u)) • ν = card ({v ∈ A * | v ∈ L and v u}) .
and thus:

∀w ∈ L λ • µ (P (w)) • ν = π L (w) .
From Lemma 3 follows:

5 ∀u ∈ A * , ∀a ∈ A λ • µ (P (u a)) • ν = λ • µ (1 A * ) • ν + λ • µ (u) • µ (A a ) • ν + λ • µ (P (u)) • µ (A) • ν . ( 2 
)
Let σ = µ (A) and, for every a in A, σ a = µ (A a ). Thus (2) is rewritten as:

∀u ∈ A * , ∀a ∈ A λ • µ (P (u a)) • ν = λ • ν + λ • µ (u) • σ a • ν + λ • µ (P (u)) • σ • ν . (3) 
Let (η, κ, ζ) be the representation of dimension 2k + 1 described by the following (1, k, k)-block decomposition:

η = 1 λ 0 , ∀a ∈ A κ (a) =   1 0 λ 0 µ (a) σ a 0 0 σ   , ζ =   0 0 ν   .
It is routine to verify, by induction on the length of u, and based on Lemma 3, that λ • µ (P (u))

• ν = η • κ (u) • ζ for every u in A * . Let now ξ =   1 0 ν
  and let s be the series realised by (η, κ, ξ):

∀u ∈ A * <s, u> = 1 + card ({v ∈ A * | v ∈ L and v ≺ u}) .
5 cf. Remark 6 below.

In order to get the enumerating series of L, we must retain the words that belong to L only, that is, to make the Hadamard product with the characteristic series L of L:

E S = s ⊙ L ,
and E S is N-rational as the Hadamard product of two N-rational series (this is often referred to as (another) Schützenberger Theorem6 ).

Remark 2. The construction underlying the proof yields for E L an N-representation of dimension 2 k 2 + k.

Computation of the value of a word

The description of a N-rational series s by a N-representation gives a way to compute the coefficient of any word w in s. Theorem 1 thus solves ipso facto the problem of computing the value π L (w) of a word w in a rational abstract number system L (which occupies the whole Sect. 2 in [START_REF] Lecomte | Abstract numeration systems[END_REF]).

If s has a representation (χ, ω, φ) of dimension n, and if w is of length ℓ, the general algorithm consists in computing χ

• ω(w i+1 ) = (χ • ω(w i )) • ω(a i+1 ) for i = 0 to i = ℓ -1
, where a i is the i-th letter of w and w i its prefix of length i. Every step costs 2 n 2 operations, thus in total, roughly 2 ℓ n 2 operations.

It would be not such a good idea, however, to apply this general algorithm to the representation of dimension 2k 2 +k we have obtained in the proof of Theorem 1 above. Its particular form allows, in fact, to compute with vectors and matrix of dimension k only.

Given as above the unambiguous automaton A of dimension k which recognises L and the corresponding N-representation (λ, µ, ν), we associate a pair α(w), γ(w) with every w in A * , where α(w) and γ(w) are two (row) vectors of dimension k, α(w) with entries in {0, 1}, γ(w) with entries in N. The pair α(w), γ(w) is computed by induction on the length of w in the following way. Let ℓ be the length of w, let α(1 A * ) = λ , β(1 A * ) = λ , and γ(1 A * ) = 0 , and, for every 0 i < ℓ, let

α(w i+1 ) = α(w i ) • µ (a i+1 ) , β(w i+1 ) = α(w i ) • σ a i+1 , and γ(w i+1 ) = λ + β(w i+1 ) + γ(w i ) • σ .
All α(w) have entries in {0, 1} since A is unambiguous. As a simple reformulation of the preceding subsection, we have π L (w) = γ(w)•ν if α(w)•ν = 1 , that is, if w is recognised by A and thus in L, π L (w) undefined otherwise. This algorithm, that is, the computation of α(w), γ(w) , costs roughly 6 ℓ k 2 operations.

Example 3. Let us consider again the language L 1 and the DFA A 1 of Figure 1. We have thus:

σ a = 0 0 0 0 , σ b = 1 0 0 1 , σ = 1 1 1 1 .
The computation of π L 1 (bbabb) for instance takes the following steps.

i a i α i β i γ i 0 (1, 0) (1, 0) (0, 0) 1 b (0, 1) (1, 0) (2, 0) 2 b (1, 0) (0, 1) (3, 3) i a i α i β i γ i 3 a (1, 0) (0, 0) (7, 6) 4 b (0, 1) (1, 0) (15, 13) 5 b (1, 0) (0, 1) (29, 29) And finally π L 1 (bbabb) = (29, 29) • ν 1 = 29.
Remark 3. The computation of α(w), γ(w) is very similar to the construction called product of an automaton by a skew action in [START_REF] Sakarovitch | On the decomposition of k-valued rational relations[END_REF][START_REF] De Souza | Etude structurelle des transducteurs de norme bornée[END_REF].

Representation of recognisable subsets of numbers

If s is an N-rational series, that is, a map s : A * → N , it is well known that for any recognisable set of numbers X, s -1 (X) is a rational set of A * (see [3, Corol. III.2.4], [8, Th. VI.10.1] or [17, Corol. III,4,21], for instance). Theorem 1 thus directly implies the following statement, which has also been proved without reference to it in [START_REF] Lecomte | Numeration systems on a regular language[END_REF] and in [START_REF] Krieger | Decimation of languages and state complexity[END_REF].

Corollary 4 ([14]

). A recognisable set of numbers is L-recognisable in any rational abstract numeration system L.

If Corollary 4 requires formally no proof after the characterisation of rational abstract numeration systems given by Theorem 1, it is interesting to further investigate the construction which, given L and a recognisable set of numbers X computes an automaton which recognises the set X L . The computation method used in the preceding section (which is not the mere application of the general result that yields Corollary 4) allows to establish easily the following statement. Proposition 5. Let L be a rational language over A * recognised by a deterministic automaton of dimension k. For any integers p and r < p, let X p,r = pN + r be the set of integers congruent to r modulo p. Then the language X p,r L of representations of numbers in X p,r is recognised by a deterministic automaton with at most k p k states.

Proof. Let A be an automaton, with set of states Q of cardinal k, which recognises L and (λ, µ, ν) the corresponding N-representation. If A is deterministic, then λ and µ are row monomial and so are all α(w), for w in A * , which are thus in 1-1 correspondence with the elements of Q.

Let C be the automaton whose set of states is

R = { α(w), δ(w) | w ∈ A * }
where δ(w) = γ(w) mod p .

Thus, R ⊆ Q × (Z/pZ) k . The transitions of C are defined by, for every a in A:

∀w ∈ A * , ∀a ∈ A α(w), δ(w) a --→ C α(wa), δ(wa) .
The initial state of C is (λ, 0) and its final states are those α(w), δ(w) where α(w) is final in A and δ(w) • ν = r mod p . It then follows that the language accepted by C is X p,r L .

Remark 4. If we start from an unambiguous automaton A of dimension k, the same method yields a deterministic automaton C with at most 2 k p k states.

Example 4. The automaton built in this way from A 1 and for the recognisable set of numbers 3 N + 1 is the automaton C 1 shown at Figure 2 (this automaton is not minimal; its minimal quotient has only 8 states). Remark 5. In [START_REF] Lecomte | Abstract numeration systems[END_REF], another construction has been given for the same purpose.

The automaton D built with this other method and which recognises X p,r L is not deterministic, but codeterministic and has, roughly, k p k+1 states. Since D is codeterministic, its determinisation yields the minimal automaton of X p,r L and thus, thanks to Proposition 5, does not produce an exponential blow-up. We do not know of a direct proof of this fact.

Remark 6. After the submitted version was written (and sent), we have learned of the reference [START_REF] Krieger | Decimation of languages and state complexity[END_REF]. Not only Corollary 4 is established there, but with a method of proof which is very similar to ours. Our Lemma 3 is Lemma 1 in [START_REF] Krieger | Decimation of languages and state complexity[END_REF]. The term representation is not used there but the matrices µ(a), σ a and σ are defined (under other notation) and used to give the same proof of Equation (2) (Lemma 2 in [START_REF] Krieger | Decimation of languages and state complexity[END_REF]). Afterwards, [START_REF] Krieger | Decimation of languages and state complexity[END_REF] develops in another direction than this paper: it proves lower bounds for the state complexity of X p,r L and shows that the property corresponding to Corollary 4 does not hold for context-free languages.

Remark 7. If the numeration system considered is a positional numeration system (and still a rational one), and under some supplementary hypotheses, then the exact number of states for the minimal automaton of X p,r L can be computed (cf. [START_REF] Charlier | State complexity of testing divisibility[END_REF]).

Proof of Theorem 2

The image of a rational language by a rational relation (or transduction) is a rational language; this classical result, due to Nivat and called Evaluation Theorem in [START_REF] Eilenberg | Automata, Languages and Machines[END_REF], extends to rational series, as we state now (cf. [START_REF] Sakarovitch | Eléments de théorie des automates[END_REF]). if it is defined, is a K-rational series over B * .

It is this result that was used in [START_REF] Choffrut | Rational transductions and complexity of counting problems[END_REF] for the proof of Theorem 1.

Proof of Theorem 2. Let s in NRat A * and L = supp s in Rat A * . The set L is totally ordered by the radix order L = {w 0 < w 1 < w 2 < . . . < w n < . . .} and Succ L is the function from A * into itself whose domain is L and which maps every w i to w i+1 . It is well-known that Succ L is a rational function ( [START_REF] Berthé | On the cost and complexity of the successor function[END_REF][START_REF] Frougny | Number representation and finite automata[END_REF]) and hence unambiguous ( [START_REF] Eilenberg | Automata, Languages and Machines[END_REF][START_REF] Sakarovitch | Eléments de théorie des automates[END_REF]). It then follows that the series Succ L (s) = i=∞ i=0 <s, w i > w i+1 is an N-rational series and t = s -Succ L (s) is a Z-rational series. Now, s is the enumerating series E L of the abstract numeration system L if, and only if, for every positive integer i, <t, w i > = 1 , that is, if, and only if, t -L \ {w 0 } = 0 , a condition which is known to be decidable as Z is a sub(semi)ring of a field (cf. [START_REF] Eilenberg | Automata, Languages and Machines[END_REF][START_REF] Sakarovitch | Eléments de théorie des automates[END_REF]).

Problems and future work

Looking at abstract number systems as N-rational series naturally leads to two families of questions. The first family consists in questions on N-rational series which ask to which extent the series is related to abstract number systems; the second in questions which generalise to N-rational series questions that are usually considered for (abstract) numeration systems.

An example of questions in the first family is to ask if it is decidable whether a given N-rational series is the enumeration (in a radix ordering) of its (rational) support in a certain, and unknown, abstract numeration system. This seems to be rather a difficult problem. An obvious necessary condition for a series to be a positive instance of this problem is itself a non trivial problem that can be formulated in the following way.

Example 1 .

 1 Let A = {a, b} , with a < b and let L 1 be the language of words with an even number of b's: L 1 = {w ∈ {a, b} * | |w| b ≡ 0 mod 2} . The sequence of the representations of the integers is: {ε, a, aa, bb, aaa, abb, bab, . . .} and, for instance, 18 L 1 = a a b a b and π L 1 (b b a b b) = 29 .

Figure 1 :

 1 Figure 1: A DFA accepting words with an even number of b's

Figure 2 :

 2 Figure 2: A DFA recognising the set 3N + 1 in the ANS L 1 .

Proposition 6 .

 6 Let ϕ : A * → B * be an unambiguous rational relation and s a K-rational series over A * . Then the seriesϕ(s) = w∈A * <s, w> ϕ(w) = u∈B * <s, ϕ -1 (u)> u ,(4)

The definition of radix order will be given below.

Notice that ≺ is not reflexive and is not the order but the strict part of the radix order.

This is true only because A * is a free monoid.

cf. Remark 6 below.

cf. [3, Th. I.5.3], [8, Prop. VI.7.1] or [17, Cor. III.3.9].

Acknowledgements

The authors are grateful to Sylvain Lombardy for the discussions with him on this problem. They also have greatly benefited from having access to the chapter of Lecomte and Rigo on abstract numeration systems in the book Combinatorics, Automata and Number Theory to be published by Cambridge University Press.

The authors are particularly indebted to Michel Rigo who, after seeing a first version of this paper, gave them the information that Theorem 1 was already known, the pertinent references, and the encouragements to nevertheless write down a complete version.

Conjecture 7. It is decidable whether an N-rational series is a monotone increasing function (for a given order of letters).

A result due to Honkala [START_REF] Honkala | A decision method for the recognizability of sets defined by number systems[END_REF] provides a kind of converse of Corollary 4 in the case of p-ary numeration systems and states that it decidable whether a precognisable set of numbers is recognisable. The generalisation of this result to larger class of numeration systems has been recently studied in [START_REF] Bell | A decision problem for ultimately periodic sets in non-standard numeration systems[END_REF][START_REF] Charlier | Abstract numeration systems: recognizability, decidability, multidimensional S-automatic sequences, and real numbers[END_REF]. Its generalisation to abstract number systems has been stated as a problem in [START_REF] Honkala | A note on decidability questions related to abstract numeration systems[END_REF]. It is also a typical example of a question in the second family.

Conjecture 8. It is decidable whether the set of coefficients of an N-rational series is a recognisable set of numbers.

Summary

In this short paper, we have presented a new idea for the study of abstract number systems, which brings to the subject the whole power of weighted automata theory. In return, the subject of abstract number systems naturally opens new questions for the theory of N-rational series.