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We present an analytical model of the time dependent, small amplitude deformation of
a free liquid surface caused by a spatially localized, axisymmetric, pulsed or continuous,
acoustic or electromagnetic radiation pressure exerted on the surface. By exactly solving
the unsteady Stokes equation, we predict the surface dynamics in all dynamic regimes,
namely inertial, intermediate and strongly damped regimes. We demonstrate the validity
of this model in all dynamic regimes by comparing its prediction to experiments consisting
in optically measuring the time dependent curvature of the tip of a hump created at the
a liquid surface by the radiation pressure of an acoustic pulse. Finally, we present a
numerical scheme simulating the behavior of a fluid-fluid interface submitted to a time-
dependent radiation pressure, and we show its accuracy by comparing the numerical
predictions with the analytical model in the intermediate and strongly damped regimes.

1. Introduction
The measurement of interfacial and bulk properties of liquids, soft solids and films has

motivated the development of several non-contacting techniques in order to overcome the
drawbacks of the classical tensiometers and related dynamometric techniques that are
their intrusive nature, the associated possible chemical contamination of the samples and
the difficulty to study liquid-liquid and soft interfaces. In this context, the analysis of
the spatio-temporal dynamics of either thermally or artificially excited small amplitude
deformations (so called ripples) of free liquid surfaces, of liquid-liquid interfaces or of sur-
faces of soft solids has been shown for a long time to be an efficient way for determining in
a non invasive manner several interfacial and bulk properties such as surface (Sakai et al.
(2001)) and interfacial (Mitani & Sakai (2002)) tension, bulk viscosity (Yoshitake et al.
(2005)), surface (Bonfillon-Colin (1994)) and bulk elasticity (Monroy & Langevin (1998)),
adsorption kinetics (Sakai et al. (2005)),... While the analysis of the light scattered by
thermally excited ripples is the earliest non-contacting technique (Langevin (1992); Mad-
sen et al. (2004)), other powerful methods have been more recently developed. They are
based on the controlled generation of ripples by the Maxwell stress due to an electric
field produced by a charged blade or needle (Sohl et al. (1978); Langevin (1992); Stenvot
& Langevin (1988); Sakai & Yamamoto (2006)), or by the radiation pressure (RP) of a
laser (Komissarova et al. (1988); Grigorova et al. (1990); Sakai et al. (2001)) or of an
acoustic beam (Khuri-Yakub et al. (1988); Cinbis & Khuri-Yakub (1992)). The appeal
of all these techniques relies on the key fact that the spatio-temporal dynamics of small
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amplitude ripples is independent of their amplitude. This indeed makes the accuracy of
these techniques independent of dynamometric calibration of the excitation setups.

These non-contacting techniques have already proved their usefulness not only in soft
matter science (Mitani & Sakai (2005); Monroy & Langevin (1998)) but also for the
in situ monitoring of the quality of inks used in printers (Stockhausen (1985)), for the
size calibration of droplets produced by liquid sample dispensers used in biotechnological
applications (Williams (2005)), and should constitute promising technologies for appli-
cations at high pressure, high temperature or in natural environments (Cinbis (1992)).

Given the growing use of the above listed non-contact techniques for bulk and surface
metrology, a precise knowledge of the generation, propagation and attenuation of the
ripples is required in order to accurately determine the interfacial properties of interest
from the monitored surface dynamics. Concerning liquid free surfaces and liquid-liquid
interfaces, inertia and surface tension (and gravity to a less relevant extent in this con-
text) are the causes of the propagation of the ripples, while viscosity is responsible for
their attenuation and to their eventual over-damping at large dissipation. Various models,
either empirical or with a limited range of validity, have been published together with the
description of the associated non-contact measurement techniques: simplified analytical
(Khuri-Yakub et al. (1988); Cinbis & Khuri-Yakub (1992)) and numerical (Cinbis et al.
(1993)) models of inviscid dynamics of free liquid surfaces, analytical model of weakly
damped dynamics of free liquid surfaces (Ostrovskaya (1988a); Sakai et al. (2001)), model
of over-damped dynamics of free liquid surfaces with zero Bond number (Yoshitake et al.
(2005)), model of free liquid surface over-damped dynamics applied to liquid-liquid in-
terfaces over-damped dynamics (Mitani & Sakai (2002, 2005)).

On the other side, since Rayleigh’s and Kelvin’s seminal works, the physics of ripples
propagation has been the subject of several theoretical efforts: Summarizing and extend-
ing previous works, Lamb (1932) and Levich (1962) treated the case of one-dimensional
(1D), harmonic waves at the free surface of a liquid, both without and with viscous ef-
fects. Prosperetti (1976) determined the exact solution of the initial-value problem of the
propagation of 1D, freely decaying waves at a free surface of a viscous liquid.

The aim of the present work is threefold:
• to derive from this theoretical corpus an exact description of the dynamics of ripples

with circular symmetry caused by a spatially localized pulse of acoustic or electromag-
netic RP applied on a free liquid surface. We focus our attention on these two kinds
of surface forcing because they have already been implemented in efficient and versatile
non contact surface measurement techniques (Sakai et al. (2001); Cinbis & Khuri-Yakub
(1992)).
• to validate this analytical model through a quantitative comparison with experi-

mental measurements of the dynamics of a free liquid surface forced by pulsed acoustic
radiation pressure.
• to validate a numerical code describing the spatio-temporal dynamics of a fluid-fluid

interface by comparison with the analytical model.
In § 2 we present the characteristic features of the RP excitations under consideration. In §
3 we present and solve the problem of the spatio-temporal dynamics of axially symmetric
deformations of a free liquid surface. In § 4 we give a simple physical interpretation of the
analytical solution of the problem. In § 5 we present simplified solutions of the problem
in the asymptotic regimes of zero, weak and strong dissipation. In § 6 we illustrate the
model in the particular case of an acoustic excitation. In § 7 we compare the predictions
of the model with measurements of the motion of the hump produced at a free liquid
surface by a pulse of acoustic radiation pressure. Finally, in § 8 present a numerical
code describing the spatio-temporal dynamics of a fluid-fluid interface and based on the
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Figure 1. Geometry and notations used in the model.

Boundary Element applied to Brinkman’s equation and compare its predictions to the
analytical model.

2. Radiation pressure fields
2.1. Background assumptions

In this work we focus on the deformation of liquid free surfaces induced by the radiation
pressure of either a focused electromagnetic beam with Gaussian profile or an acoustic
beam produced by a spherical ultrasonic transducer. Since both kinds of beams are
axially symmetric, the resulting interface deformations are also axially symmetric. The
focal plane of the exciting beam is assumed to coincide with the initially flat liquid free
surface or interface. Cylindrical coordinates (r, θ, z) centered on the vertical beam axis
with origin O coinciding with the beam focus and the associated local base (er, eθ, ez)
will be used throughout this work, see figure 1. Free surface or interface deformations
are described by their position and time dependent height h(r, t). In the following, small
amplitude deformations are assumed, i.e. (i) their slope with respect to the horizontal
is small:

∣∣ ∂h
∂r

∣∣
t
(r, t)

∣∣ ¿ 1 ∀r, ∀t and (ii) they are much smaller than the characteristic
length scale of divergence of the electromagnetic or acoustic field along z. Consequently,
(i) the beams are always assumed to impinge on the interface at normal incidence and
(ii) the radiation pressure field does not depend on h(r, t).

We now detail the characteristic features of the radiation pressure applied by each kind
of beam.

2.2. Acoustic excitation
Basically, the radiation stress exerted by an acoustic field on the irradiated interface
separating two fluids results from the imbalance between the time averaged Lagrangian
stresses exerted on both sides of the interface. According to Borgnis (1953); Chu & Apfel
(1982); Lee & Wang (1993); Landau & Lifshitz (1987), the acoustic radiation stress
exerted by a continuous plane wave of finite width impinging on the interface between a
lower fluid 1 and an upper fluid 2 (of density ρi and sound speed ci, i = 1, 2) is normal
to the interface (this is the reason why we call it radiation pressure hereafter) and can
be written as πrad = AIincez in the case of a horizontal interface irradiated at normal
incidence, where Iinc is the intensity of the incident acoustic wave:

Iinc =
〈p2

inc〉t
ρici

(2.1)

where pinc is the variation of the pressure with respect to the hydrostatic pressure asso-
ciated with the incident acoustic wave (acoustic pressure), 〈 〉t denotes time averaging,
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i = 1 (resp. i = 2) if the incident beam propagates upward (resp. downward) and:

A = ε
2
ci

ρ2
i c

2
i + ρ2

jc
2
j − 2ρiρjc

2
i

(ρici + ρjcj)2
, (2.2)

where ε = 1, i = 1, j = 2 (resp. ε = −1, i = 2, j = 1) if the incident beam propagates
upward (resp. downward).

Since intense acoustic fields are required for observing noticeable mechanical effects of
the acoustic radiation pressure, we consider axially symmetric acoustic beams emitted by
spherically focused ultrasonic transducers. Considering a spherical ultrasonic transducer
with focal length z0 and radius a harmonically excited at frequency f , in its focal plane
the emitted acoustic field has the structure of an inhomogeneous plane wave and its
harmonic acoustic pressure field pinc(r, 0, t) in the transducer focal plane can be written
as (Kino (1987)):

pinc(r, 0, t) = Pf(r) cos(2πft + ϕ(r)) (2.3)

where P is the amplitude of oscillation of the acoustic pressure at the focus, ϕ(r) is a r
dependent phase, fbs(r) is the beam shape factor at z = 0:

fbs(r) =
∣∣∣∣
2J1(kcr)

kcr

∣∣∣∣ (2.4)

with kc = 2πa
λz0

, λ the acoustic wavelength of the incident beam and Jn the nth order
Bessel function of the first kind. In the following, we consider a harmonic wave train of
central frequency f , duration ∆t, and of square envelope. Thus, in the focal plane of the
transducer the radiation pressure field πrad can be written as:

πrad(r, t) = AIinc,0φ(r)D(t) (2.5)

where Iinc,0 = P 2

2ρici
is the acoustic intensity of the incident beam at the focus (i is the

index of the fluid in which the incident beam propagates), φ(r) = f2
bs(r) and D(t) =

H(t)H(∆t − t) is a door function of duration ∆t, H being the Heaviside function. The
Hankel transform φ̃(k) of φ(r), defined as φ̃(k) =

∫∞
0

rJ0(kr)φ(r) dr, has the following
expression:

{
φ̃(k) = 2

k2
c

(
1− k

πkc

√
1− k2

4k2
c
− 2

π arcsin
(

k
2kc

))
for k < 2kc

φ̃(k) = 0 for k > 2kc

(2.6)

The variations of the normalized acoustic intensity distribution in the transducer focal
plane kcr 7→ φ(r) and of its normalized Hankel transform in figure 2 (a, b).

2.3. Electromagnetic excitation

A photon of frequency ν propagating in a dielectric medium with refractive index n
possesses a momentum nhν/c, where c is the speed of light in vacuum and h the Planck
constant. The radiation stress exerted by an electromagnetic wave on the irradiated
interface separating two dielectric, isotropic media of different refractive indices results
from the change of the momentum of the photons crossing the interface (Wunenburger
et al. (2006)). The electromagnetic radiation stress exerted by a wave impinging on the
interface between a lower dielectric fluid 1 and an upper dielectric fluid 2 (of respective
refractive index ni, i = 1, 2) is normal to the interface (Wunenburger et al. (2006))
(hence it is called radiation pressure) and can be written as πrad = AIincez in the case
of a horizontal interface irradiated at normal incidence, where Iinc is the intensity of the
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Figure 2. (a) Variations of the normalized acoustic intensity distribution in the transducer
focal plane kcr 7→ φ(r). (b) Corresponding variation of its normalized Hankel transform

k/kc 7→ k2
c φ̃(k). (c) Normalized electromagnetic intensity distribution at the beam waist. (b)

Corresponding normalized Hankel transform.

incident electromagnetic wave, and :

A = ε
2ni

c

nj − ni

nj + ni
(2.7)

ε = 1, i = 1, j = 2 (resp. ε = −1, i = 2, j = 1) if the incident beam propagates upward
(resp. downward).

Since continuous wave Gaussian laser beams are usually used (Ostrovskaya (1988b);
Sakai et al. (2001); Mitani & Sakai (2002); Sakai et al. (2003, 2005); Yoshitake et al.
(2005); Mitani & Sakai (2005); Wunenburger et al. (2006)), we assume for Iinc the inten-
sity profile of a continuous laser beam in the TEM00 Gaussian mode in its focal plane
(i.e. at its waist):

I(r) = Iinc,0φ(r) (2.8)

where Iinc,0 is the electromagnetic intensity of the incident beam at the focus,

φ(r) = exp
(
−2r2

ω2
0

)
, (2.9)

with ω0 the beam waist radius. Iinc,0 is related to the beam power by the equality
Iinc,0 = 2P

πω2
0
.

As for the acoustic case, we consider a monochromatic electromagnetic wave train
of central frequency ν, duration ∆t and of square envelope. Thus, the electromagnetic
radiation pressure field exerted on the horizontal interface located in the beam focal
plane at normal incidence can be written as:

πrad(r, t) = AIinc,0φ(r)D(t)ez (2.10)
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Defining kc as kc = 2
ω0

, the Hankel transform φ̃(k) of φ(r) is:

φ̃(k) =
1
k2

c

exp
(
− k2

2k2
c

)
. (2.11)

The variations of the normalized electromagnetic intensity distribution at the beam waist
and of its normalized Hankel transform in figure 2 (c, d).

3. Model of free surface dynamics
3.1. Flow equations

We consider a liquid free surface, i.e. a liquid in contact with a gas of viscosity and
density both sufficiently small compared to the ones of the liquid so that during the
surface deformation, both its inertia and the viscous stresses it exerts on the liquid can
be considered as negligible compared to the liquid inertia and the liquid viscous stresses.
The liquid under consideration in this study is Newtonian and has homogeneous den-
sity ρ, dynamic viscosity η, and surface tension σ. It is submitted to the acceleration of
Earth’s gravity g = −gez, and occupies the lower half-space defined by z < 0 at rest.
The upper half-space, defined by z > 0, is filled with a gas whose pressure is assumed to
be uniform and constant equal to P0. The liquid flow associated with the deformation of
its free surface under the effect of radiation pressure is assumed to be characterized by a
small Re number and to be incompressible. Notice that this assumption implies that, in
the case of an acoustic excitation of the surface, the compressible flow associated with
the propagation of the acoustic beam is assumed to be decoupled from the incompress-
ible liquid motion associated with the deformation of the liquid surface, an assumption
usually made in studies of streaming flows induced by bulk acoustic absorption (see Ka-
makura et al. (1995) and references therein). Therefore, the liquid velocity field v(r, z, t)
associated with the surface deformation is solenoidal:

∇ · v = 0 (3.1)

and satisfies the linearized Navier-Stokes equation:

ρ
∂v
∂t

= −∇Ps + η∇2v + ρg. (3.2)

where Ps is the liquid pressure. The fluid is put out into axially symmetric motion by the
axially symmetric pulse of radiation stress πrad(r,t) exerted on the free surface of altitude
h(r, t). The kinematic boundary condition at the free surface is :

∂h

∂t
(r, t) = v(r, h(r, t)) · n(r, t) (3.3)

where n(r, t) is the vector normal to the interface oriented from the liquid to the gas.
The stress balance at the free surface is written as:

−P0n(r, t)− T(r, h(r, t), t) · n(r, t) + πrad(r, t) + σκn(r, t) = 0 (3.4)

where T = −PsI + 2ηD(v) is the hydrodynamic stress tensor expressed for the incom-
pressible flow of a Newtonian fluid, I the identity tensor, D(v) = 1

2 (∇v + t∇v), and
κ(r, t) is the surface curvature. Introducing the dynamic pressure p = Ps − P0 + ρgz in
(3.2) and (3.4), both become:

ρ
∂v
∂t

= −∇p + η∇2v (3.5)
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and

(p(r, h(r, t), t)− ρgh(r, t))n(r, t)− 2ηD(v)(r, h(r, t), t) ·n(r, t) + πrad(r, t) + σκn(r, t) = 0,
(3.6)

respectively. Finally, reminding that the radiation pressure is exerted from t = 0, the
liquid is initially at rest and its free surface is initially flat.

3.2. Implications of the assumption of small amplitude deformations
The assumption of small amplitude deformations, as defined in § 2.1, allows to also
considerably simplify the expressions of the boundary conditions at the free surface,
since then: (i) the surface curvature κ can be made linear in h:

κ(r, t) ' 1
r

∂

∂r

(
r
∂h

∂r

)
(r, t). (3.7)

(ii) n can be approximated by ez and (iii) evaluating (3.6) at the free surface is equivalent
to evaluating it at z = 0. Thus, since v is assumed to be independent of θ and to lie in
the meridian plane (vθ = 0), the projections of (3.6) along er and ez, respectively, are:

η

(
∂vr

∂z
+

∂vz

∂r

)
(r, 0, t) = 0, (3.8)

p(r, 0, t)− ρgh(r, t)− 2η
∂vz

∂z
(r, 0, t) + πrad(r, t) + σ

1
r

∂

∂r

(
r
∂h

∂r

)
(r, t) = 0. (3.9)

(iii) the kinematic boundary condition (3.3) can also be simplified:

∂h

∂t

∣∣∣∣
r

(r, t) = vz(r, 0, t) (3.10)

3.3. Flow decomposition
Following Lamb (1932) and Levich (1962), we solve this problem by expressing the flow
as the superposition of a solenoidal, irrotational flow whose velocity v(p) satisfies the
Euler equation and of a solenoidal, rotational flow whose velocity field v(r) satisfies an
equation of pure diffusion of momentum involving no pressure gradient, i.e.

v = v(p) + v(r) (3.11)

with

ρ
∂v(p)

∂t
= −∇p (3.12)

and

ρ
∂v(r)

∂t
= η∇2v(r). (3.13)

Expressing p as the sum of irrotational and rotational contributions p(p) and p(r),
respectively, and assuming ρ∂v(p)

∂t = −∇p(p) instead of (3.12) and ρ∂v(r)

∂t = −∇p(r) +
η∇2v(r) instead of (3.13), Prosperetti (1976) evidenced the pressure correction induced
by the rotational flow to the pressure of the potential flow. But since only the sum p
of both pressure terms actually matters for predicting the free surface shape, following
Lamb (1932) and Levich (1962) we do not split p and we use (3.12) and (3.13), despite
the fact that the method used in Prosperetti (1976) is physically more enlighting.

In order to solve this set of equations, we introduce the velocity potential φ associated
with v(p) and the stream function ψ associated with v(r). Since φ is defined by

v(p) = ∇φ (3.14)



8 B. Issenmann, R. Wunenburger, H. Chrabi, M. Gandil and J.-P. Delville

it satisfies:

ρ
∂φ

∂t
= −p. (3.15)

Furthermore, the solenoidal property of v(p) leads to:

∇2φ = 0. (3.16)

On the other hand, the vorticity w = ∇ ∧ v = ∇ ∧ v(r) also satisfies a viscous diffusion
equation:

∂w

∂t
= ν∇2w. (3.17)

where ν = η
ρ is the liquid kinematic viscosity. Because of the axial symmetry of v, w is

orthoradial: w = weθ. The stream function ψ associated with v(r) satisfies:

v(r)
r =

∂ψ

∂z
(3.18)

v(r)
z = −1

r

∂(rψ)
∂r

. (3.19)

because of the solenoidal property of v(r). From (3.18-3.19) and the definition of vorticity
we deduce the following relation between w and ψ:

w =
∂

∂r

(
1
r

∂(rψ)
∂r

)
+

∂2ψ

∂z2
. (3.20)

3.4. Hankel-Laplace transform
Since the response of the surface to the pulse of radiation pressure is expected to be
harmonic neither in time nor in space, it involves a continuum of wavelengths and of
frequencies. Therefore, following Ostrovskaya (1988a), we apply Hankel and Laplace
transforms to the hydrodynamic fields. Assuming k ∈ R+, we define:

V (α)
r (k, z, s) =

∫ ∞

0

e−st

∫ ∞

0

rJ1(kr)v(α)
r (r, z, t) dr dt, α = p, r (3.21a)

V (α)
z (k, z, s) =

∫ ∞

0

e−st

∫ ∞

0

rJ0(kr)v(α)
z (r, z, t) dr dt, α = p, r (3.21b)

Φ(k, z, s) =
∫ ∞

0

e−st

∫ ∞

0

rJ0(kr)ϕ(r, z, t) dr dt (3.21c)

W (k, z, s) =
∫ ∞

0

e−st

∫ ∞

0

rJ1(kr)w(r, z, t) dr dt (3.21d)

Ψ(k, z, s) =
∫ ∞

0

e−st

∫ ∞

0

rJ1(kr)ψ(r, z, t) dr dt (3.21e)

P (k, z, s) =
∫ ∞

0

e−st

∫ ∞

0

rJ0(kr)p(r, z, t) dr dt (3.21f )

H(k, s) =
∫ ∞

0

e−st

∫ ∞

0

rJ0(kr)h(r, t) dr dt (3.21g)

Π(k, s) =
∫ ∞

0

e−st

∫ ∞

0

rJ0(kr)πrad(r, t) dr dt (3.21h)
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These transformations lead to rewrite (3.14), (3.16), (3.15), (3.17), (3.18), (3.19), (3.20),
(3.10), (3.8), (3.9) in the form:

V (p)
r = −kΦ (3.22a)

V (p)
z =

∂Φ
∂z

(3.22b)

−k2Φ +
∂2Φ
∂z2

= 0 (3.22c)

−sΦ =
P

ρ
(3.22d)

sW = ν

(
−k2 +

∂2

∂z2

)
W (3.22e)

V (r)
r =

∂Ψ
∂z

(3.22f )

V (r)
z = −kΨ (3.22g)

W =
(

∂2

∂z2
− k2

)
Ψ (3.22h)

sH = Vz(k, z = 0, s) (3.22i)

∂Vr

∂z
(k, z = 0, s)− kVz(k, z = 0, s) = 0 (3.22j )

P (k, z = 0, s)− ρgH(k, s)− 2η
∂Vz

∂z
(k, z = 0, s) + Π(k, s) = σk2H(k, s) (3.22k)

(3.22e) and (3.22h) imply that, to a gauge function Ψg satisfying
(

∂2

∂z2 − k2
)

Ψg = 0,
i.e. describing an irrotational, hence irrelevant flow, Ψ also satisfies a viscous diffusion
equation:

sΨ = ν

(
∂2

∂z2
− k2

)
Ψ (3.23)

The solutions of (3.22c) and (3.23) are of the form Φ = A(k)ekz and Ψ = C(k)elz,
respectively, with l2 = k2(1 + s

νk2 ) and A(k), C(k) ∈ R. Injecting these expressions of Φ
and Ψ in (3.22d, 3.22i, 3.22j, 3.22k) allows to express H as a function of Π:

H(k, s) =
k

(νk2)2
1

F (X)
Π
ρ

, (3.24)

where

X2(k, s) =
l2

k2
= 1 +

s

νk2
, (3.25)

F (X) = (X2 + 1)2 − 4X + ∆, (3.26)

with

∆(k) =
Ω(k)2

(νk2)2
, (3.27)

where

Ω(k) =
√

gk +
σ

ρ
k3. (3.28)



10 B. Issenmann, R. Wunenburger, H. Chrabi, M. Gandil and J.-P. Delville

From a physical point of view, Ω(k) is the pulsation of plane surface waves of real wave
number k propagating at the surface of an inviscid fluid, and (νk2)−1 is the characteristic
timescale of viscous diffusion of momentum over the length scale k−1 (Lamb (1932);
Levich (1962)). F (X(k, ω)) = 0 where ω = is is the dispersion relation of plane surface
waves of real wave number k and complex pulsation ω at the surface of a viscous fluid.

3.5. Analytical solution
The surface deformation height h(r, t) can be determined by inverting (3.21g):

h(r, t) =
∫ ∞

0

kJ0(kr)L−1(H(k, s)) dk (3.29)

where L−1(H(k, s)) is the inverse Laplace transform of H(k, s). Given (3.24), (2.5) and
(2.7), h(r, t) can be rewritten as:

h(r, t) = AIinc,0
1

ρν2

∫ ∞

0

J0(kr)
k2

φ̃(k)L−1

( L(D)(s)
F (X(k, s))

)
dk (3.30)

where L(D)(s) is the Laplace transform of D(t).
Given the definition of D(t), L−1

(
L(D)(s)

F (X(k,s))

)
is calculated using the convolution the-

orem:

L−1

( L(D)(s)
F (X(k, s))

)
=

∫ t

0

D(τ)L−1

(
1

F (X(k, s))

)
(t− τ) dτ, (3.31)

=
∫ t

0

L−1

(
1

F (X(k, s))

)
(τ) dτ if t < ∆t, (3.32)

=
∫ t

t−∆t

L−1

(
1

F (X(k, s))

)
(τ) dτ if t > ∆t. (3.33)

In order to determine L−1
(

1
F (X(k,s))

)
, following Prosperetti (1976), we exploit the poly-

nomial form of F (X(k, s)) of the variable X by performing a partial fraction expansion
of 1/F (X):

1
F (X)

=
4∑

i=1

ai(k)
X −Xi(k)

(3.34)

where Xi(k), i = 1− 4 are the roots of the polynomial F (X),

Xi(k) =
αi

2

√
−4

3
+

8 + 6∆(k)
3G(k)

+
2
3
G(k)+

βi

2

√√√√−8
3
− 8 + 6∆(k)

3G(k)
− 2

3
G(k) + γi

8√
− 4

3 + 8+6∆(k)
3G(k) + 2

3G(k)
, (3.35)

with

G(k) =
(
19− 9∆(k) + 3

√
33− 54∆(k)− 3∆(k)2 − 3∆(k)3

)1/3

, (3.36)

α1,2,3,4 = (−1,−1, 1, 1), β1,2,3,4 = (−1, 1,−1, 1), γ1,2,3,4 = (−1,−1, 1, 1), and

ai(k) =
1

Πj 6=i(Xi(k)−Xj(k))
. (3.37)

As L−1
(

1√
s−a

)
= 1√

πt
+ a exp(a2t)

(
1 + erf(a

√
t)

)
, L−1(L(Q)(s + 1)) = exp(−t)Q(t)



Unsteady deformations of a free liquid surface caused by radiation pressure 11

and L−1(L(Q)( s
ω )) = ωQ(ωt),

L−1

(
1

F (X(k, s))

)
=

ω(k) exp(−ω(k)t)√
πω(k)t

4∑

i=1

ai(k) +

ω(k) exp(−ω(k)t)
4∑

i=1

ai(k)Xi(k) exp
(
Xi(k)2ω(k)t

) (
1 + erf(Xi(k)

√
ω(k)t)

)
.

Since
∑4

i=1 ai(k) = 0, as shown in Prosperetti (1976), the general integral G(k, t) of

L−1
(

1
F (X(k,s))

)
is:

G(k, t) =
4∑

i=1

ai(k)Xi(k)
X2

i (k)− 1
[
exp(ω(k)t(X2

i (k)− 1)) ×
(
1 + erf(Xi(k)

√
ω(k)t)

)
− 1−Xierf(

√
ω(k)t)

]
. (3.38)

Finally,

h(r, t) = AIinc,0
1

ρν2

∫ ∞

0

J0(kr)
k2

φ̃(k)(G(k, t)−G(k, 0)) dk if t < ∆t

= AIinc,0
1

ρν2

∫ ∞

0

J0(kr)
k2

φ̃(k)(G(k, t)−G(k, t−∆t)) dk if t > ∆t (3.39)

The computation of h(r, t) is performed using the dimensionless wave number k̃ = k/kc:

h(r, t) =
AIinc,0

σk2
c

∫ ∞

0

J0(kcrk̃)(k2
c φ̃(kck̃))

1
k̃ + Boc

k̃

∆(k̃)(G(k, t)−G(k, 0)) dk̃ if t < ∆t

=
AIinc,0

σk2
c

∫ ∞

0

J0(kcrk̃)(k2
c φ̃(kck̃))

1
k̃ + Boc

k̃

∆(k̃)(G(k, t)−G(k, t−∆t)) dk̃

if t > ∆t (3.40)

where ∆(k̃) =
σ
ρ k3

c

(νk2
c)2

(
1
k̃

+ Boc

k̃3

)
, Boc = (`2k2

c )−1 being the Bond number associated with

the characteristic wave number kc and ` =
√

σ
ρg the capillary length associated with the

liquid surface. We now give a physical interpretation of this analytical solution.

4. Physical interpretation
4.1. Flow type

The variations of Xi, i = 1 − 4 as a function of ∆ are shown in figure 3 (a, b). The
association of these roots in one or two pairs of conjugate complex roots is due to the
fact that the coefficients of F (X) are real. While X1 and X2 always form a pair of
conjugate complex numbers, X3 and X4 are real for ∆ < ∆0 with ∆0 ' 0.582 and
complex for ∆ > ∆0.

The corresponding dependence of the growth rates si = νk2(1 − X2
i ) on ∆ is shown

in figure 3 (c, d). For ∆(k) < ∆0, s1 and s2 are conjugate complex numbers with
(negative) real part and imaginary part both scaling as νk2. The corresponding flow
is thus oscillatory and overdamped since it is characterized by an oscillation period
comparable to its damping time scale. For ∆(k) > ∆0, the imaginary parts of s1 and
s2 both scale as νk2

√
∆ = Ω(k), while their negative real part still scales as νk2. The
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Figure 3. Variations versus ∆ of the real part (a) and the imaginary part (b) of the four roots
Xi, i = 1 − 4 of (3.35). Variations versus ∆ of the real part (c) and the imaginary part (d) of
the associated growth rates si, i = 1 − 4, as defined by (3.25). Upper inset of (a): Variation of
∆ versus k for a water free surface (black curve) and a 100 cSt Silicone oil (red curve). Other
insets: same data as the main figure in logarithmic scales.

corresponding flow is thus oscillatory and weakly damped: circular surface waves of wave
number k propagate with small damping.

For ∆(k) < ∆0, both s3 and s4 are negative reals. The corresponding flow and surface
motion are simply damped. Since s3 scales as νk2 and s4 scales as Ω2(k)/(νk2), in the
∆(k) → 0 limit |s4| is asymptotically much smaller than |s3|, |Re(s1)| and |Re(s2)|. Thus,
the flow associated of characteristic damping time scale s−1

4 is damped asymptotically
much more slowly than the three other flows of characteristic damping time scales s−1

i , i =
1−3. For ∆(k) > ∆0, s3 and s4 behave asymptotically like s1 and s2. The corresponding
surface motion is propagative and weakly damped.

We conclude from this analysis that for ∆(k) < ∆0 the surface motion is globally
damped with Ω2(k)/(νk2) as the leading damping time scale while for ∆(k) > ∆0 circular
surface waves with wave number k propagate with pulsation Ω(k) and are weakly damped
with damping time scale (νk2)−1.

4.2. Flow spatial extension

The flow is the superposition of an irrotational flow and a viscous flow, whose velocity
fields are (V (p)

r = −kA(k) exp(kz), V
(p)
z = kA(k) exp(kz)) and (V (r)

r = lC(k) exp(lz),
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Figure 4. (a) Variations versus ∆ of the ratio of the radial components 2Xi/(1 + X2
i ) and of

the axial components 2/(1 + X2
i ) of the irrotational part and of the viscous part of the flow

associated with each root Xi, i = 1 − 4 of (3.35). (b) Variations versus ∆ of the ratio k/l the
characteristic lengthscales of penetration of the irrotational part and of the viscous part of the
flow associated with each root Xi of (3.35), i = 1− 4.

V
(r)
z = −kC(k) exp(lz)), respectively. The resolution of the hydrodynamic problem per-

formed in 3.4 implies that the viscous to irrotational velocity ratios corresponding to
each root Xi of F (X) have the following expressions: V

(r)
r /V

(p)
r = 2Xi/(1 + X2

i ) and
V

(r)
z /V

(p)
z = 2/(1 + X2

i ). The variations versus ∆ of these velocity ratios are shown
in figure 4 (a). When ∆ → ∞, all the velocity components of the viscous flow be-
come small compared to the velocity components of the irrotational flow. Simultaneously,
k/l = 1/Xi → 0 for all Xi, as shown in figure 4 (b), i.e. the irrotational flow spreads
more deeply within the liquid than the viscous flow: for ∆ →∞ the flow is almost every-
where irrotational except in a thin layer close to the surface, where a flow contribution of
small amplitude due to the viscous diffusion of momentum arises. On the contrary, when
∆ → 0, all the velocity fields are of comparable amplitude and spatial extend: during the
deformation of the surface, the viscous diffusion of momentum has enough time to occur
down to the penetration depth of the inertial flow within the liquid, therefore affecting
it noticeably.

5. Asymptotic behaviours
Identifying the dynamic regime to which a given experiment corresponds requires to

evaluate the typical value of ∆ characterizing the surface deformation. Since kc is the
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typical value of k within the surface wave packet excited both acoustically and electro-
magnetically, as shown by (2.6) and (2.11), the typical value of ∆ is ∆c = ∆(kc). ∆c,
which is ratio of the frequency of inviscid surface waves of wavenumber kc and of the
attenuation rate of surface waves due to viscosity, is usually called the frequency param-
eter. If ∆c ¿ 1 (resp. À 1), the dynamics of the surface deformation is expected to be
overdamped (resp. propagative and weakly damped). One may advance that, since vis-
cous dissipation increases with k, evaluating ∆ at k = kc underestimates viscous effects.
But since φ̃(k) vanishes for large k in both the acoustic and electromagnetic cases (in the
acoustic case, it is even strictly equal to zero for k > 2kc), the influence of contributions
corresponding to values of k much larger than kc on the flow is expected to be negligible.

5.1. The inviscid case

For low viscosity liquids and broad beams such that ∆c À 1, we expect the liquid surface
response to be well described by a model of inviscid flow. Considering ν = 0 in § 3, the
flow reduces to a potential flow. The corresponding surface deformation height can be
straightforwardly deduced:

h(r, t) = AIinc,0
1
ρ

∫ ∞

0

k2J0(kr)φ̃(k)(G(k, t)−G(k, 0)) dk if t < ∆t,

= AIinc,0
1
ρ

∫ ∞

0

k2J0(kr)φ̃(k)(G(k, t)−G(k, t−∆t)) dk if t > ∆t. (5.1)

where

G(k, t) =
1

Ω2(k)
(1− cos(Ω(k)t)). (5.2)

The spatio-temporal evolution of the liquid surface height appears as the result of the
propagation of a wave packet of undamped surface eigenmodes of wave number k and
pulsation Ω(k) with k ranging from 0 to typically kc. Using the dimensionless wave
number k̃:

h(r, t) =
AIinc,0

σk2
c

∫ ∞

0

J0(kcrk̃)(k2
c φ̃(kck̃))

1
k̃ + Boc

k̃

(1− cos(Ω(k̃)t)) dk̃ if t < ∆t

=
AIinc,0

σk2
c

∫ ∞

0

J0(kcrk̃)(k2
c φ̃(kck̃))

1
k̃ + Boc

k̃

(cos(Ω(k̃)(t−∆t))− cos(Ω(k̃)t)) dk̃

if t > ∆t (5.3)

where Ω(k̃) =
√

σk3
c

ρ k̃3
(
1 + Boc

k̃2

)
. Thus, assuming Boc ¿ 1 (which is the case in all

experiments reported in the introduction), the characteristic time scale of variation of

the surface deformation is Ω−1
c , where Ωc =

√
σk3

c

ρ . Considering the case of a pulse wise
excitation of the surface (i.e. such that ∆t ¿ Ω−1

c ), for t > ∆t (5.3) can be rewritten as:

h(r, t) =
AIinc,0

σk2
c

∫ ∞

0

J0(kcrk̃)(k2
c φ̃(kck̃))

1
k̃ + Boc

k̃

Ω(k)∆t sin(Ω(k̃)t) dk̃. (5.4)

Consequently, since the integrand in (5.4) is of the order of Ω(k)∆t and k̃ varies between 0
and O(1), in the range of small values of the Bond number, the characteristic height of the
unsteady surface deformation h is predicted to scale as AIinc,0

σk2
c

Ωc∆t = AIinc,0∆t
√

1
ρσkc

.
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5.2. The case of weak viscous dissipation

Still trying to grasp the effect of viscous dissipation on the surface deformation dynamics
in the ∆c À 1 limit, i.e. in situations for which the typical damping time constant of the
surface motion ω−1

c , where ωc = ω(kc) = νk2
c , is much larger than the typical surface

oscillation period Ω−1
c , we can simplify the resolution of the flow problem by exploiting

the asymptotic expressions of the physical roots of F (X). As shown in figure 3 (a, b), in
the ∆c À 1 limit, both the real and imaginary parts of X3 and X4 scale as ∆1/4. Thus,
following Ostrovskaya (1988a), since in the ∆ À 1 limit |Xi|n À |Xi| À 1, n = 2, 4 and
i = 3, 4, we simplify (3.26) to a bi-quadratic form:

F (X) ' (X2 + 1)2 + ∆. (5.5)

In the ∆ À 1 limit, the roots of (5.5) are: X3 =
√
−1− i

√
∆ = ∆1/4√

2
(1−i)+O(∆−1/4) and

X4 =
√
−1 + i

√
∆ = ∆1/4√

2
(1 + i) +O(∆−1/4), in agreement with their direct calculation

shown in the insets of figure 3 (a, b). In the ∆ À 1 limit, the corresponding values of the
growth rates have the following expressions s3 = −2νk2− iΩ(k) and s4 = −2νk2 + iΩ(k)
. The corresponding surface deformation dynamics is therefore expected to be mainly
inertial, i.e. oscillatory and weakly damped, with a characteristic inertial time scale of
the order Ω(kc)−1 and a damping time scale of the order of (νk2

c )−1 À Ω(kc)−1. The
major interest of this simplification is to transform F (X) into a polynomial function of
s:

F (X(k, s)) ' (s + 2)2 + ∆ = (s− s3)(s− s4) (5.6)

i.e. an analytic function of s, so that the resulting surface deformation dynamics can
be approximated with a simple superposition of exponential functions of time. This
simplification means that wa can neglect the memory term in the harmonic oscillator-like
equation describing the evolution of the amplitude of each surface eigenmode established
in Prosperetti (1976) (equation (18) of Prosperetti (1976)). By proceeding in the same
way as in § 3.5 and using L−1

(
1

s−a

)
= exp(−at), we deduce that the surface deformation

height satisfies (3.39) with:

G(k, t) =
ω2(k)
Ω(k)

exp(−2ω(k)t)(−2ω(k) sin(Ω(k)t)− Ω(k) cos(Ω(k)t)) + Ω(k)
4ω2(k) + Ω2(k)

(5.7)

The spatio-temporal evolution of the liquid surface height appears as the result of the
propagation of a wave packet of weakly damped surface eigenmodes of wave number k,
pulsation Ω(k) and damping time constant ω(k) with k ranging between 0 and typically
kc. Using the dimensionless wave number k̃:

h(r, t) =
AIinc,0

σk2
c

∫ ∞

0

J0(kcrk̃)(k2
c φ̃(kck̃))

1
k̃ + Boc

k̃

(G̃(k, t)− G̃(k, 0)) dk̃ if t < ∆t

=
AIinc,0

σk2
c

∫ ∞

0

J0(kcrk̃)(k2
c φ̃(kck̃))

1
k̃ + Boc

k̃

(G̃(k, t)− G̃(k, t−∆t)) dk̃

if t > ∆t (5.8)

where

G̃(k, t) =
1− exp(−2ω(k)t)(cos(Ω(k)t) + 2√

∆(k)
sin(Ω(k)t))

1 + 4
∆(k)

(5.9)
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Thus, still considering Boc ¿ 1, the characteristic time scale of variation of the surface
deformation is Ω−1

c .

5.3. The case of strong viscous dissipation
In the ∆c ¿ 1 limit, the surface motion is expected to be essentially damped. As shown in
figure 3 (c, d), since |s1|, |s2| and |s3| scale as νk2 (more precisely, to zeroth order in ∆ in
the ∆ → 0 limit, sj ' νk2(−3.5437−(−1)j 2.2303 i), j = 1, 2 and s3 ' −0.9126 νk2), the
corresponding damped flows are expected to vanish with a characteristic time constant
τ that scales as ω−1

c . On the contrary, since in the ∆c ¿ 1 limit −s4 = νk2 ∆
2 ¿ νk2,

the corresponding flow is expected to be damped with a characteristic time constant

τ ′ that scales as
(

Ω2
c

ω(kc)

)−1

∝ η/(σkc) in the Boc ¿ 1 limit. Since τ ¿ τ ′, as soon
as t À τ , the surface motion is expected to be characterized by a single time constant,
namely τ ′. More precisely, since in the |z| → ∞ limit (with |arg(z)| < 3π

4 ) exp(z2)erf(z) ∼
exp(z2)− 1√

π
1
z (1+O(|z|−4)), in the limit of large values of |Xi

√
ωt| (3.38) can be rewritten

as:

G(t) =
4∑

i=1

aiXi

X2
i − 1

[
exp(sit)

(
2− 1√

π

1
Xi

√
ωt

(1 +O(|Xi

√
ωt|−4))

)
− 1−Xierf(

√
ωt)

]
.

(5.10)
Thus, since in the ∆ → 0 limit |s4| ∝ Ω2

ω ¿ |si| ∝ ω, i = 1 − 3, in the range t À ω−1,
G(t) can be rewritten as:

G(t) =
3∑

i=1

−aiXi

Xi − 1
+ ω

a4X4

s4
(2 exp(s4t)− 1−X4). (5.11)

Thus,

h(r, t) =
AIinc,0

σk2
c

∫ ∞

0

J0(kcrk̃)(k2
c φ̃(kck̃))

1
k̃ + Boc

k̃

(1− exp(s4(k)t)) dk̃ if t < ∆t

=
AIinc,0

σk2
c

∫ ∞

0

J0(kcrk̃)(k2
c φ̃(kck̃))

1
k̃ + Boc

k̃

∆(k)
2

exp
(
−∆(k)

2
ω(k)t

)
ω(k)∆t dk̃

if t > ∆t and ∆t ¿ τ ′ (5.12)

Consequently, since the integrand in (5.12) is of the order of ∆(k)ω(k)∆t, in the range
of small values of the Bond number, the characteristic height of the unsteady surface
deformation h is predicted to scale as AIinc,0

σk2
c

Ω2
c

νk2
c
∆t = AIinc,0

1
ηkc

∆t.

6. Illustration of the surface dynamics
We now illustrate the above given theoretical predictions and demonstrate their con-

sistency in the particular case of an acoustic surface excitation. In the measurement
techniques cited above, the surface deformation dynamics is detected by measuring (i)
the surface height by confocal microscopy (Cinbis & Khuri-Yakub (1992)), acoustic time-
of-flight measurement (Khuri-Yakub et al. (1988); Williams (2005)) or holography (Os-
trovskaya (1988b)), (ii) the deflection of a light beam reflected by the liquid surface acting
as a tilted mirror (Sohl et al. (1978); Grigorova et al. (1990); Bonfillon-Colin (1994); Mi-
tani & Sakai (2002); Sakai et al. (2003); Sakai & Yamamoto (2006)) that is proportional
to the surface slope, (iii) the defocus of a light beam reflected by the deformation tip
acting as a spherical mirror (Sakai et al. (2001); Yoshitake et al. (2005); Mitani & Sakai
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Figure 5. Upper curves: radius dependent curvature of the free surface of an inviscid liquid
at various instants after a pulse of acoustic radiation pressure. Lower, dashed curve: radius
dependence f(r) of the axisymmetric radiation pressure pulse exerted on the surface. Lower,
solid curve: radius dependent curvature of the free surface at t = 30 µs, magnified four times
for clarity purpose. Both latter curves have been shifted vertically.

(2005)) that is proportional to the tip curvature. Thus, we will study the behavior of both
the surface height h(r, t) and its curvature κ(r, t). Given (3.7), expressions for κ(r, t) are
straightforwardly derived from those for h(r, t) by multiplying the integrand by −k2 in
(3.39, 5.1) and by −k2

c k̃2 in (3.40, 5.3, 5.8, 5.12).
We consider a beam emitted by a focused transducer of numerical aperture NA =

2a
z0

= 1 working at frequency f = 2.25 MHz and propagating in a fluid of sound speed
c = 1500 m.s−1, for which kc = π/λ = 4712 m−1. The chosen wave train duration is
∆t = 8.88 µs, i.e. 20 acoustic periods. The liquid density is ρ = 1000 kg.m−3 and has a
variable viscosity ranging from 3.92× 10−3 to 1.24× 10−6 m2 · s−1. The Bond number is
constant and equal to 6.1× 10−3.

We define a characteristic surface deformation height hc as hc = AIinc,0
σk2

c
and a charac-

teristic surface deformation curvature κc as κc = k2
chc.

Since the surface curvature is directly related to the radiation pressure forcing through
(3.9), we begin our illustration of the surface dynamics by analyzing the spatio-temporal
variations of the dimensionless curvature κ(r, t)/κc in the inviscid case. The r variation
of κ(r, t)/κc for several values of t are shown in figure 5. At the bottom of the graph
the acoustic beam shape factor fbs(r) is compared with the vertically expanded surface
curvature profile at early stage of the surface deformation r 7→ κ(r, t = 30µs). Notice
the coincidence between the distance between two consecutive side lobes of f(r) and the
pseudo-wavelength of the wavy curvature profile (this initial wavy curvature profile of
the liquid surface is not observed in the case of a Gaussian, electromagnetic forcing).
Also notice the propagation of the humps of the curvature profile away from the beam
axis as divergent circular waves and the oscillation of the sign of the curvature at r = 0.

In figure 6 (d) the time dependence of the dimensionless curvature of the deformation
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Figure 6. Dimensionless curvature of the hump tip κ(0, t)/κc as function of time t for various
values of the frequency parameter ∆c.

tip t 7→ κ(0, t)/κc in the inviscid case is shown. Given our last remark on figure 5,
we interpret its oscillations as the consequence of the successive arrivals at r = 0 of
convergent circular waves induced at t = 0 by the side lobes of f(r).

Figure 6 displays the time dependence of the dimensionless curvature of the deforma-
tion tip for several values of ∆c ranging from 10−3 to 104 predicted using the general
model (3.40). These predictions are confronted to their overdamped approximation in
the ∆c ¿ 1 limit and to their weakly viscous (5.8) and inviscid (5.3) approximations in
the ∆c À 1 limit. Notice the good agreement between the general model and (i) the over-
damped approximation for ∆c 6 10−3, as shown in figure 6 (a, b), (ii) the weakly viscous
and inviscid approximations for ∆c > 103, as shown in figure 6 (d), that defines a broad
range 10−3 < ∆c < 103 for the relevance of the general model. Also notice the damping
of the curvature oscillations as ∆c decreases leading eventually to their disappearance
for ∆c < 102.

We repeat this analysis for the surface deformation height. Figure 7 displays the time
dependence of the dimensionless height of the surface deformation tip, h(0, t)/hc, for
several values of ∆c ranging from 10−3 to 104 predicted using the general model (3.40).
These predictions are confronted to their overdamped approximation in the ∆c ¿ 1 limit
and to their weakly viscous (5.8) and inviscid (5.3) approximations in the ∆c À 1 limit.
Notice again the good agreement between the general model and (i) the overdamped
approximation for ∆c 6 10−3, as shown in figure 7 (a), (ii) the weakly viscous and
inviscid approximations for ∆c > 103, as shown in figure 6 (d), that confirms the broad
range 10−3 < ∆c < 103 of relevance of the general model for h(0, t) too.

Figure 8a displays the ∆c dependence of the maximal dimensionless tip height hmax/hc

reached by h(0, t)/hc and of the maximal dimensionless tip curvature κmax/κc reached
by κ(0, t)/κc. As predicted by the inviscid model (§ 5.1), in the ∆c À 1 range both hmax

and κmax scales as Ωc∆t and are thus independent of ∆c in the ∆c À 1 range. Figure
8 (b) displays the ∆c dependence of the time th max (resp. tκ max) at which h(0, t) (resp.
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Figure 7. Dimensionless height of the hump tip h(0, t)/hc as function of time t for various
values of the frequency parameter ∆c.
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Figure 8. (a) Maximal dimensionless tip height hmax/hc reached by h(0, t)/hc (squares) and
maximal tip curvature κmax/κc reached by κ(0, t)/κc (circles) as function of the the frequency
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Figure 9. Variation of h(0, t)/hc (a) and of κ(0, t)/κc (b) in logarithmic scale versus t/η for
several values of ∆c falling in the overdamped regime.

κ(0, t)) attains its maximum hmax (resp. κmax). As predicted by the inviscid model (§
5.1), th max and tκ max both scale as Ω−1

c and are thus independent of ∆c in the ∆c À 1
range. Furthermore, as predicted by the overdamped model (§ 5.3), in the ∆c ¿ 1
range both hmax and κmax scale as 1

ηkc
and thus scale as

√
∆c, as shown in figure 8 (a).

The overdamped model (§ 5.3) also predicts a late stage exponential relaxation of the
surface deformation with a single characteristic time scale τ ′ = η

σkc
. Figure 9 displays

the variations of h(0, t)/hc and of κ(0, t)/κc (in logarithmic scale) as a function of t/η for
several values of ∆c falling in the overdamped regime. As expected, log(h(0, t)/hc) and
log(κ(0, t)/κc) decrease linearly in t/η with a slope that is independent of ∆c. Finally,
notice that in the ∆c ¿ 1 range the time th max at which h(0, t) attains its maximum,
that corresponds to the transition from the regime of viscous diffusion of vorticity, of
time constant τ = ω−1

c , to the regime of relaxation of the surface deformation, of time
constant τ ′ = ∆−1

c ω−1
c , slowly increases as ∆c decreases, whereas the time tκ max at which

κ(0, t) attains its maximum slowly decreases as ∆c decreases.

7. Comparison with experiments
The goal of the experiments presented in this section is to test the validity of the

analytical model presented above. Our setup is based on an acoustic excitation of the
free liquid surface and on the optical detection of the surface curvature at the tip of the
deformation. The bumped liquid surface acts as a partially reflecting spherical mirror
that focuses/defocuses a laser beam impinging on it. The focusing/defocusing of the
reflected beam is detected by simple spatial filtering. First, we present the experimental
setup, then we compare our measurements of the temporal evolution of the curvature of
the deformation tip generated at the surface of several liquids of variable viscosity with
our analytical model.
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Figure 10. Experimental setup. UT: ultrasonic transducer. M: mirror. λ/4 : quarter-wave plate.
BSC: beam splitter cube. GP: Glan Prism. ID: iris diaphragm. PD: photo-detector. cw laser:
continuous wave laser.

7.1. Experimental setup

The liquid sample is contained in a glass tank closed by a PTFE bottom cap, see figure
10. A vertically immersed Imasonic spherical ultrasonic transducer (UT) of focal length
F = 38 mm, numerical aperture 1, central frequency f = 2.25 MHz, bandwidth 600 kHz,
focal zone length 3.2 mm, is mounted through the cap. It periodically emits sine wave
trains toward the free liquid surface located in its focal plane. The acoustic wave trains are
composed of 20 cycles at carrier frequency f and are emitted at a typical repetition rate of
50 Hz. After a propagation delay τ = F/c, where c is the sound speed in the liquid, each
wave train induces an axially symmetric surface deformation (hump) whose characteristic
diameter is of the order of 1 mm. The hump raises then relaxes over a characteristic time
scale of the order of 1 ms. The waist formed by a set of lenses (not shown in figure 10)
of an initially circularly polarized 17 mW cw TEM00 He-Ne laser beam (wavelength in
vacuum λ0 = 0.6328 µm) is located at the tip of the interface deformation. A Glan prism
(GP), a beam splitter cube (BSC) and mirrors (M) allow to linearly polarize the beam
and to direct it toward the liquid surface. Since the incident laser beam impinges on
the surface at normal incidence, a quarter-wave plate (λ/4) is used to extract the part
of the laser beam that has been reflected by the tip of the acoustic RP induced surface
deformation. This reflected laser beam is then filtered through a tunable iris diaphragm
(ID) of typical diameter 1 mm distant of D = 0.79 m from the liquid surface. Finally,
it is focused on an amplified photodiode (PD) of bandwidth 170 kHz. The photodiode
voltage signal is acquired in the DC mode and averaged over 500 sweeps using a digital
oscilloscope of bandwidth 300 MHz.

We now explicit the relation between the hump tip curvature κ(0, t) and the optical
power P(t) of the reflected and filtered laser beam which is measured using the photo-
diode. The condition at which the illuminated area of the hump can be considered as a
surface of homogeneous (r-independent) curvature is that the diameter of the laser beam
at the altitude of the liquid surface is much smaller than the characteristic diameter of
the surface deformation, namely λ for the transducer used in this study (Issenmann et al.
(2006)). If this condition is fulfilled, the hump tip can be actually considered as a spher-
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ical mirror of curvature κ = κ(0, t). Since the beam waist radius ω0, defined by (2.9), is
equal to 44 µm, this condition is satisfied not only when the waist of the laser beam is
located at the liquid surface (z = 0), but also at close distance from it, say a distance
comparable to its natural diffraction length (Rayleigh range) z0 = πω2

0
λ0

= 10 mm. So,
considering that the beam waist of the laser beam impinging on the liquid surface is
distant of z from it (z is positive if the laser beam waist is located in air, i.e. in front of
the liquid surface), the power P of the part of the reflected beam that passes through the
diaphragm of radius RI and located at D + z from the mirror can be written as (Saleh
& Teich (1991)):

P = P0

(
1− exp

(
− 2R2

I

ω′2(D + z − z′)

))
(7.1)

where P0 is the total optical power of the reflected laser beam, z
′
= −κ−1 +M2(z +κ−1)

is the distance from the waist of the reflected beam to the mirror, M(z) =

∣∣∣ −κ−1

z+κ−1

∣∣∣
(1+

z0
z+κ−1 )1/2 ,

and ω
′
0(z) = M(z)ω0 is the waist radius of the reflected beam. The dependence of ∆P∗ =

(P(κ)−P(0))/P(0) versus κ for several values of z ranging from−2z0 to 2z0 is represented
in figure 11. The sensitivity of ∆P to κ is observed to strongly depend on z (amplitude
and sign of variation) and displays a non monotonic behavior. Nevertheless, is it found
to always depend linearly on κ for |κ| ¿ 10 m−1. This means that in the range of Iinc,0

in which κ(0, t) is linear in Iinc,0 and ∆P∗ is linear in κ, (i) the photodiode voltage is
linear in Iinc,0, or equivalently, the shape of the photodiode voltage signal is independent
of Iinc,0, and (ii) ∆P∗(t) is simply proportional to κ(0, t). This range of values of Iinc,0

is called hereafter the fully linear regime. Consequently, a simple experimental criterium
for tuning Iinc,0 to sufficiently small values for being in the fully linear regime is that the
shape of the photodiode voltage signal shall not depend on Iinc,0 (i.e. on the UT supply
power). Moreover, in this regime the measured photodiode voltage signal can be directly
compared to the predicted hump tip curvature κ(0, t). Notice also that the sensitivity of
∆P∗ to κ increases with |z|. Consequently, we have chosen z ' z0 in order to satisfy the
condition of sphericity of the mirror formed by the hump and to make ∆P∗ sensitive to
the κ variations.

7.2. Experimental results
In order to test the validity of the analytical model described for all dynamic regimes, i.e.
over a large range of values of ∆c, with a special attention to the intermediate regime, for
which no analytical prediction was formerly available, we performed surface deformation
experiments using several liquids (water and Silicone oils) having different viscosities
ranging from 1 cSt to 100 cSt. The density and the viscosity of the Silicone oils could
be retrieved from the manufacturer (ABCR, Germany), while those of water could be
found in Weast (1971). The sound speed has been measured in-house using the time of
flight method. Since the surface tension is very sensitive to impurities, we measured the
surface tension of each liquid sample immediately after the surface deformation exper-
iment using the drop weight method and the correlation of Zhang & Mori (1993). All
the measurements have been performed in the temperature range T = 23 − 26◦C. The
physical properties of these liquids are presented in Table 1.

In figure 12 the time-dependent relative variation of the power of the reflected and
filtered beam ∆P∗ measured in the fully linear regime is compared with the hump tip
curvature evolution κ(0, t) predicted using the above presented analytical model (3.39).
When implementing the radiation pressure excitation into the model, we took into ac-
count the additional contribution of the acoustic echoes impinging on the surface after
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Figure 11. Predicted variations versus the curvature of the hump tip of the relative variation
of the optical power measured by the photodetector for several values of the distance between
the laser beam waist and the liquid surface (z is positive if the laser beam waist is located in
air, i.e. in front of the liquid surface). z0 is the Rayleigh range of the laser beam.

viscosity density sound speed surface tension ∆c

ν ρ c σ (mN.m−1)
(cSt) (kg.m−3) (m.s−1) (drop weight method)

water 1 1000 1490 72 15, 000
Silicone oil 5 918 968 19.6 100
Silicone oil 10 935 980 19.8 30
Silicone oil 20 950 995 19.9 6
Silicone oil 50 970 997 20.2 1
Silicone oil 100 966 1000 20.2 0.3

Table 1. Physical properties of the liquid samples used for the experimental test of the
analytical model.

their reflection on the UT surface with a delay of nτ , n being the number of reflections
on the UT surface encountered by the echo. The amplitude of the echoes could be in-
dependently and precisely measured by visualizing their electric signature on the UT
voltage signal as they reflect on the UT emitting surface. The associated pressure reflec-
tion coefficient was found to be equal to 0.45 for water and to decrease monotonously
from 0.43 for 5 cSt to 0.32 for 100 cSt Silicone oil. Given these values, only the two first
echoes noticeably contribute to the overall radiation pressure excitation. As shown in
figure 12, a quantitative agreement between the hump tip curvature evolution and the
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Figure 12. Comparison between the measured time-dependent power of the reflected and fil-
tered beam ∆P∗(t) that is proportional to the hump tip curvature (solid curves) and the hump
tip curvature evolution κ(0, t) predicted using our analytical model (symbols): (a) water, (b)
5 cSt, (c) 10 cSt, (d) 20 cSt, (e) 50 cSt, (f) 100 cSt Silicone oil. All the signals have been
normalized by their maximum. Note the progressive change of the horizontal scale.

time-dependent measured optical power, both normalized by their maximum, is obtained
without any adjustable parameter for all the experiments, demonstrating the accuracy
of our analytical model for each dynamic regime.
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8. Validation of a numerical procedure for computing the
spatio-temporal dynamics of a fluid-fluid interface

The aim of this section is to present in details a numerical procedure describing the
spatio-temporal dynamics of a fluid-fluid interface and to validate it by comparing its
predictions in the particular case of a liquid-gas interface to the analytical model pre-
sented above. Such a procedure is indeed required for predicting the behavior of forced
interfaces in more complex situations such as free (Zhang & Chang (1988)) or sessile
drops (Chräıbi et al. (2008)), meniscii, wetting films, for which the assumption of infinite
liquid phases and of initial flat interface are not valid. This method solves a two-phase
unsteady Stokes problem where the resolution of stress and velocity field is performed in
both fluids.
The Boundary Element Method (BEM) is used for this purpose. It is indeed very ac-
curate for solving interfacial problems, as demonstrated in many references (Sherwood
(1987); Manga & Stone (1994); B. Berkenbusch & Zhang (2008)). Since the hydrody-
namic problem is unsteady, The BEM is applied to Brinckman’s equation, as presented
hereafter.

8.1. Numerical implementation
We consider two fluid phases labeled i, i = 1, 2. The mass conservation and unsteady
Stokes equations are for each phase, respectively:

∇ · vi = 0 ; i = 1, 2 (8.1)

ρi
∂vi

∂t
= −∇Pi + ηi∆vi ; i = 1, 2 (8.2)

For sake of generalization, we make the problem dimensionless considering v0, k−1
c , Pi0,

τ0 respectively as a reference velocity, length, pressure (in each fluid) and time such as:

v0 =
σ

η1
; Pi0 = ηiv0kc ; τ0 =

1
kcv0

(8.3)

The temporal discretization of equation (8.2) follows a standard implicit approach,

∆i
v(t+∆t)

i − v(t)
i

∆t
= −∇P

(t+∆t)
i + ∆v(t+∆t)

i ; i = 1, 2 (8.4)

where

∆1 =
σ

ρ1ν2
1kc

; ∆2 =
σ

ρ2ν2
2kc

ζ (8.5)

and ζ = η2
η1

is the dynamic viscosity ratio. ∆1, which is the relative magnitude of inertial
effects to viscous effects in fluid 1, corresponds to its frequency parameter.

Defining the parameter αi and the body force bi in each phase as:

αi =

√
∆i

∆t
; bi = α2

i v
(t)
i (8.6)

we find the following Brinkman’s equation, which can successfully be solved with the
BEM (Occhialini et al. (1992); Pozrikidis (2002)).

α2
i v

(t+∆t)
i = −∇P

(t+∆t)
i + ∆v(t+∆t)

i + bi ; i = 1, 2 (8.7)

In addition to the bulk flow equations, we consider the stress balance condition at the
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interface:
T1 · n12 − ζT2 · n12 = (κ(r)−Bocz + πrad(r, t))n12 (8.8)

where Ti = −piI + 2D(vi) and πrad(r, t) is a Gaussian excitation:

πrad(r, t) = π0e
− r2

2 H(t)H(δt− t). (8.9)
π0 is a dimensionless number giving the relative magnitude of radiation to Laplace pres-
sure, δt the dimensionless pulse duration.
The continuity of velocity at the interface together with a Lagrangian description of its
motion give:

v1 = v2 (8.10)

dx
dt

= v(x) (8.11)

Since the solutions to Brinkman’s problem can be formulated in terms of Green’s
functions (Pozrikidis (1992, 2002)), we can rewrite the governing equations as a system
of integral equations over the boundaries of the computational domain. Once boundary
conditions on SI , SW1 and SW2 are used (see figure 13), and ne being a vector normal
to the surface and pointing outward, the velocity field in the fluid bulk can be written
as:

vi(x) =
∫

SI+SW i

U · Ti · nedSy −
∫

SI+SW i

ne · K · vidSy +
∫

Vi

U · bidVy i = 1, 2 (8.12)

Adding the latter equation written for fluid 1 to the same written for fluid 2 multiplied
by ζ and using (8.8) and n = n12 leads to the following equality:

1 + ζ

2
v(x) =

∫

SI

U · n(κ(ry)−Bocz(ry) + πrad(ry, t))dSy+

(ζ − 1)
∫

SI

n · K · vdSy +
∫

SW1

U · (T1 · n)dSy − ζ

∫

SW2

U · (T2 · n)dSy +
∫

V1

U · b1dVy + ζ

∫

V2

U · b2dVy (8.13)

U and K are Brinkman’s Green kernels for velocity and stress respectively and are given
by ((Pozrikidis 1992)):

Uij =
1

8πd

(
Aδij + B

didj

d2

)
(8.14)

Kijk =
1
8π

(
− 2

d3
(δijdk + δkjdi)[e−D(D + 1)−B]

− 2
d3

δikdj [1−B]− 2
didjdk

d5
[5B − 2e−D(D + 1)]

)
(8.15)

where d = y − x, y(ry, zy) is the integration point and D = αd. A and B are defined as:

A(D) = 2e−D

(
1 +

1
D

+
1

D2

)
− 2

D2
(8.16)

B(D) = −2e−D

(
1 +

3
D

+
3

D2

)
+

6
D2

(8.17)

and A(0) = B(0) = 1.



Unsteady deformations of a free liquid surface caused by radiation pressure 27

Figure 13. Typical configuration of the computational domain showing the two fluids and the
liquid interface initially at rest.

In (8.13), the first term in the right hand side describes the flow contribution due to
interfacial tension, radiation pressure and gravity, whereas the second term accounts for
the shear rates contrast on the interface. The latter term vanishes when ζ = 1. The
third and fourth terms account for shear occurring along SW1 and SW2 as a result of the
no-slip boundary condition. The two last terms account for the contribution of the body
force. Unlike the other terms, the latter are evaluated over the bulk of fluids 1 and 2. The
velocity along the interface as well as the stress exerted on all the boundaries SI , SW1

and SW2 are determined by solving the discrete form of this equation using a numerical
procedure.
This procedure requires first the reduction of surface boundaries SI , SW1 and SW2 and
volumes V1 and V2 into line boundaries and surfaces, respectively. Due to this integral
formulation and to the axial symmetry, the problem is reduced to a 1D problem. Line
boundaries, shown in figure 13, need to be discretized with line mesh while surfaces S1

and S2 are discretized in quadrilaterals. The numerical integration on these quadrilaterals
is performed using 2D Gauss quadratures (Davis & Rabinowitz (1984)) and isoparametric
transformations. The line mesh is made of constant boundary elements i.e. line segments
with centered nodes. Both azimuthal and line integrations of (8.13) are performed using
Gauss quadratures. The fluid-fluid interface is parameterized in terms of arc length and is
approximated by local cubic splines, so that the curvature can be accurately computed.
The distribution and the number of points are adapted to the shape of the interface,
so that the concentration of elements is larger in regions where the interface curvature
gradient is large. The motion of the interface is followed using the kinematic condition
(8.11) which is discretized using an Euler time scheme, such as:

r(t+∆t) = r(t) +
v
(t)
r + v

(t+∆t)
r

2
∆t (8.18)

z(t+∆t) = z(t) +
v
(t)
z + v

(t+∆t)
z

2
∆t (8.19)

At the beginning of the first iteration, t = 0 and vi = 0 and therefore there is no bulk
term bi. At the end of this iteration, the velocity field is solved at the interface but
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η1(Pa.s) ν1(cSt) ∆1 ∆2

0.054 54 5 17.9
0.077 80 2.5 12.5
0.17 170 0.5 5.7
0.55 550 0.05 1.76

Table 2. Values of the fluid properties used in the computations.

is also calculated at the interior of the domains on a Nr × Nz uniform grid with Nr

and Nz adapted such that the velocity spatial variations is accurately described. For
next iterations, the bulk term bi, which is always calculated from the previous velocity
field, is interpolated using a four-points inverse distance weighting method with power
parameter equal to one.

A typical computation begins with a flat interface at rest. The excitation is switched
on at t = 0. The direction of deformation of the interface depends on the sign of π0.
The time step is chosen to provide an accurate description of the temporal variation of
velocity. Variations of the time step did not show significative change in the results.

8.2. Comparison with analytical predictions
7 We now compare the results given by the numerical resolution with the analytical
model. Since this model is suited to a liquid-gas interface, we consider that phase 2
is air (ρ2 = 1.3 kg/m3, η2 = 2 10−5 Pa.s, ν2 = 15 cSt) and that phase 1 is a liquid
(ρ1 = 1000 kg/m3) whose dynamic viscosity η1 can be freely varied. Surface tension
is chosen to be equal to σ = 70 mN/m and the characteristic wave number kc is fixed
equal to 4712 m−1 in order to correspond to a water-air interface in the experimental
configuration presented on §.

Table 2 summarizes the numerical values used in the computations. Figure 14 shows a
comparison between the numerical prediction using the BEM and the analytical model.
A quantitative agreement is observed concerning both the axial velocity at the hump tip
and the temporal variation of its curvature in the frequency parameter range ∆c 6 5
(since Bo ¿ 1, ∆1 ' ∆c). We have noticed that the mismatch between the numerical
predictions and the analytical model increases as ∆c increases. This can be explained
by noting that our numerical method is better suited to flows where the viscosity has
important to moderate effects. For purely inertial or weakly viscous regimes (∆c À 1),
a resolution based on a potential flow formulation (i.e. Laplacian equation) and BEM
would be more adequate. The observed quantitative agreement between the numerical
simulation and the analytical model in the viscous and intermediate regimes demon-
strates the accuracy of this numerical scheme.

9. Conclusion
To summarize, we developed an analytical model of the time dependent, small ampli-

tude deformation of a free liquid surface caused by a spatially localized, axisymmetric,
pulsed of continuous, acoustic or electromagnetic radiation pressure exerted on the sur-
face. By exactly solving the unsteady Stokes equation, we have been able to predict
the surface dynamics in all dynamic regimes, namely inertial, intermediate and strongly
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Figure 14. Temporal variation of interface tip curvature of a liquid-air interface for various
values of the frequency parameter ∆1 ' ∆c (symbols: numerical results, solid curve: theory).

Pulse duration is 40 µs, π0 = 1 and Boc = (ρ1−ρ2)g

σk2
c

= 0.006. Inset: Temporal variation of tip

vertical velocity (symbols: numerical results, solid curve: theory).

damped regimes. We have demonstrated the validity of this analytical model over a broad

range of values of the frequency parameter ∆c =
gkc+

σ
ρ k3

c

(νk2
c)2 , i.e. in all dynamic regimes,

by comparing its prediction to experiments consisting in optically measuring the time
dependent curvature of the tip of a hump created at a free liquid surface by the radiation
pressure of an acoustic pulse. Finally, we have developed a numerical scheme simulating
the behavior of a fluid-fluid interface submitted to a time-dependent radiation pressure,
and we have showed its accuracy by comparing the numerical predictions with the ana-
lytical model in the intermediate and strongly damped regimes. Since radiation pressure
based non-contacting techniques of measurement of liquid properties usually involve all
the dynamic regimes, this new general solution of this initial-value problem of spatio-
temporal dynamics of a liquid surface should constitute a key for the improvement of the
accuracy and versatility of these techniques. Moreover, the analytical model presented in
this paper can also be straightforwardly applied to the case of unsteady deformations of
a free liquid surface caused by an axisymmetric electric field. Finally, note that the seem-
ingly similar problem of the deformation of a liquid-liquid interface caused by radiation
pressure, which is also of considerable practical interest (Mitani & Sakai (2002, 2005)),
presents some additional difficulties (Chandrasekhar (1955)) which we plan to address
using the same tools in the near future.
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waves at the transition from propagating to overdamped behavior. Phys. Rev. Lett. 92 (9),
096104.

Manga, M. & Stone, H. A. 1994 Low reynolds number motion of bubbles, drops and rigid
spheres through fluid-fluid interfaces. J. Fluid Mech. 287, 279–298.

Mitani, S. & Sakai, K. 2002 Measurement of ultralow interfacial tension with a laser interface
manipulation technique. Phys. Rev. E 66, 031604.

Mitani, S. & Sakai, K. 2005 Observation of interfacial tension minima in oil - water-surfactant
systems with laser manipulation technique. Faraday Discuss. 129, 141–153.

Monroy, F. & Langevin, D. 1998 Direct experimental observation of the crossover from
capillary to elastic surface waves on soft gels. Phys. Rev. Lett. 81, 3167–3170.

Occhialini, J. M., Muldowney, G. P. & Higdon, J. J. L. 1992 Boundary intergral/spectral
element approaches to the navier-stokes equations. Int. J. Numer. Methods Fluids 15,
1361–1381.

Ostrovskaya, G. V. 1988a Deformation of the free surface of a liquid under the pressure of
light. i. theory. Sov. Phys. Tech. Phys. 33 (4), 465–468.

Ostrovskaya, G. V. 1988b Deformation of the free surface of a liquid under the pressure of
light. ii. experiment. Sov. Phys. Tech. Phys. 33 (4), 468–470.

Pozrikidis, C. 1992 Boundary integral and singularity methods for linearized viscous flow .
Cambridge University Press.



Unsteady deformations of a free liquid surface caused by radiation pressure 31

Pozrikidis, C. 2002 A practical guide to boundary element methods with the software library
BEMLIB . Chapmann and Hall / CRC.

Prosperetti, A. 1976 Viscous effects on small-amplitude surface waves. Phys. Fluids 19, 195–
203.

Sakai, K., Honda, H. & Hirakoa, Y. 2005 Rapid ripplon spectroscopy with ms time resolu-
tion. Rev. Sci. Instrum. 76, 063908.

Sakai, K., Mizumo, D. & Takagi, K. 2001 Measurement of liquid surface properties by laser-
induced surface deformation spectroscopy. Phys. Rev. E 63, 043602.

Sakai, K., Tachibana, K., Mitani, S. & Takagi, K. 2003 Laser excitation of high frequency
capillary waves. J. Colloid Interf. Sci. 264, 446–451.

Sakai, K. & Yamamoto, Y. 2006 Electric field tweezers for characterization of liquid surface.
Appl. Phys. Lett. 89, 211911.

Saleh, B. & Teich, M. 1991 Fundamentals of photonics . John Wiley and Sons.
Sherwood, J. D. 1987 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech.

188, 133–146.
Sohl, C. H., Miyano, K. & Ketterson, J. B. 1978 Rev. Sci. Instrum. 49, 1464.
Stenvot, C. & Langevin, D. 1988 Study of viscoelasticity of soluble monolayers using analysis

of propagation of excited capillary waves. Langmuir 4, 1179–1183.
Stockhausen, N. 1985 Method and apparatus for measuring and/or monitoring the surface

tension of a fluid. US patent 4,611,486.
Weast, R. C., ed. 1971 Handbook of Chemistry and Physics , 52nd edn. The Chemical Rubber

Co.
Williams, R. O. 2005 Non-contact techniques for measuring viscosity and surface tension

information of a liquid. US patent 6,925,856,B1.
Wunenburger, R., Casner, A. & Delville, J.-P. 2006 Light-induced deformation and in-

stability of a liquid interface. i. statics. Phys. Rev. E 73, 036314.
Yoshitake, Y., Mitani, S., Sakai, K. & Takagi, K. 2005 Measurement of high viscosity with

laser induced surface deformation technique. J. Appl. Phys. 97, 024901.
Zhang, J. Z. & Chang, R. K. 1988 Shape distorsion of a signle water droplet by laser-induced

electrostriction. Optics Lett. 13, 916–918.
Zhang, Z. & Mori, Y. H. 1993 Formulation of the harkins-brown correction factor for drop-

volume description. Ind. Eng. Chem. Res. 32, 2950–2952.


