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Eddy-current modeling of a continous conductivity
profile resulting from a diffusion process

Marc Lambert and Frédéric Nouguier and Riadh Zorgati

Abstract—This paper deals with the modelisation of Eddy-
Current measurements over combustion turbine blade coatings
affected by depletion of aluminum. First, we model the response
of an Eddy-Current coil over a layered metallic structure with
a top over-aluminized coating by extending the analytical Uzal-
Rose’s model for one hyperbolic tangent conductivity profile to
a conductivity profile using two hyperbolic tangents for taking
inward and outward depletion of aluminum inside the coating
into account. Results obtained with this model are similar to
those obtained with a numerical multi-layer model but with a
reduced computing time.

Index Terms—coils, eddy current testing, electrical conductiv-
ity measurement, inverse problems, probes

I. I NTRODUCTION

The modelization of the response of a sensor in the presence
of conductive material of different geometry is of great interest
as exemplified in [1] where the interaction of an Eddy-current
coil with a right-angled conductive wedge is dealt with, in
[2] in which the impedance calculation of a bobbin coil in a
conductive tube with eccentric walls is treated. Some others
works proposed some ideas to work with arbitrary shaped
coil as in [3] whereas in [4] the case of the inductance of
a coil in a nonhomogenous surrounding is dealt with. Here
the eddy-current modeling of the interaction of a coil with
a continous conductivity profile resulting from a diffusion
process is proposed.

In the electrical industry, power production using gas tur-
bines has to be developed in a significant way. In order to
achieve a good economical performance, the thermal efficiency
of gas turbines has been improved by increasing the firing
temperatures. Large increase by hundreds of degrees of gas
temperature has been made possible using high technologies
regarding both cooling of the hot section components and pro-
tection against hot corrosion and high temperature oxidation of
the surface of some components, like blades in high-pressure
section.

This protection involves specific coatings using Ni-based
super-alloys where aluminum and chrome, contained in precise
proportion, form protective Al2O3 or Cr2O3 surface oxides
against corrosive attacks. Yet, advanced blades protectedby
a top over-aluminized coating are affected by a significant
inward and outward depletion of aluminum. Inward depletion
is due to migration of aluminum from the coating to the blade
substrate, induced by differences of conductivities between the
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two layers, in order to restore the thermodynamical equilib-
rium. Outward depletion is due to migration of aluminum in
the coating towards the surface to reform the protective oxides
layer which spalls off during hostile conditions operation.
Unfortunately, when losing aluminum, advanced top over-
aluminized coating degrades and, if not timely repaired, this
might lead to blade failure. Benefits of a higher operating
temperature is then counteracted by possible limited operating
life and high replacement cost. It is hence necessary to predict
remaining blade coating life by assessing condition and quality
of the coating. Expected reduction of shut-downs caused by
blade coating failure then should contribute to optimize the
maintenance of combustion turbines.

By providing information related to the electrical conduc-
tivity depth profile, the multi-frequency Eddy Current (EC)
non-destructive technique can be useful for reaching that goal.
The paper is organized as follows. The configuration at hand is
described in section II. Section III is devoted to the solution
of the direct problem which aims at modeling the response
of an EC coil above a layered metal structure protected by a
top over-aluminized coating degraded by inward and outward
diffusion of aluminum. To take such diffusion process of
aluminum inside the blade into account, we develop a model
where the conductivity profile, which varies continuously with
depth in the blade, is described via two hyperbolic tangents.
We hence extend the Uzal-Rose’s model [5]–[7] based on
one hyperbolic tangent conductivity profile. Comparison of
results obtained with this model and with those obtained
with a numerical multi-layer model, based on discretization
of the conductivity profile into a number of layers of constant
conductivity are presented in section VI.

II. EDDY CURRENT MODEL FORTURBINE BLADE

COATING

Save its convex and concave parts, a blade turbine made of
a substrate and a coating is considered as a doubly layered
isotropic, linear, homogeneous, non-magnetic and conductive
half-space. The top over-aluminized coating protects the sub-
strate by forming a thin adherent oxide and degrades in-service
by depletion of aluminum as commented upon before. The
conductivity of the coating layer is a continuous function of
depthz while the conductivity of the substrate layer is a given
constant (cf. Fig. 1).

Above the blade, an EC probe with a circular coil of rectan-
gular cross-section with axis perpendicular to the blade surface
is operated at frequencies in the range of a few hundreds
of kHz to a few tens of MHz using a scanning frequency
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Fig. 1. Typical configuration of measurement with a theoretical conductivity
profile with inward and outward diffusion of aluminum (left); example of a
real diffusion process (right).

procedure. In this section, we aim at solving the related
direct problem consisting of modeling the EC impedance coil
response over a layered metallic blade structure and taking
the double diffusion of aluminum into account when the
conductivity depth profile is given.

Following the approach in [5]–[8], based on the Cheng-
Dodd-Deeds model [9], [10], the two main steps for estab-
lishing the model are determining the vector potential and
then calculating the coil impedance fromZ = V/I after
computing the electrical field byE (r) = −jωA (r). From the
fundamental result which gives the impedance of a coil located
above a two-layer metal whose upper layer conductivity varies
continuously with depth, one can calculate the variation of
impedance for a large number of configurations.

III. T HEORETICAL FORMULATION OF THE PROBLEM

A. General formulation for a continuous profile

The first step consists of calculating the magnetic vector po-
tential in air expressed asA (r) = ASource(r)+Aec(r), where
ASource(r) is the primary potential due to the time-harmonic
source current of the coilI exp(jωt) in an unbounded space
and Aec(r) is the secondary potential originated from the
EC induced within the conductive material. Assuming axial
symmetry and choosing the cylindrical coordinates centered
on the axis of the coil leads to a scalar problem, all vector
quantities being expressed with the only non-null component,
the azimuthal one, asA (r) = A (r, z)uθ. The expression of
the primary fieldASource(r, z) due to aNturn coil can be found
in [10] and the secondary fieldAec(r, z) is solution of the
diffusive equation (see [11] for a justification of eddy currents
model for the Maxwell equations):

∆Aec(r, z) = jωµ0σ (z)Aec(r, z) (1)

with

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
−

1

r2
, (2)

where the continuously varying conductivity profile is given
by σ(z), µ0 being the permeability of the air andω = 2πf the

angular frequency andf the frequency (in Hz). Let us defined
the skin depthδ (z) as

δ (z) =

√

2

ωµ0σ(z)
. (3)

Equation (1) can be solved by separation of variables
letting Aec(r, z) = R(r)W (z). The two ordinary differential
equations for ther and thez dependence, respectively, follows
as:

∂2

∂r2
R(r) +

1

r

∂

∂r
R(r) +

(

a2 −
1

r2

)

R(r) = 0 (4)

∂2

∂z2
W (z) =

[

a2 + jωµ0σ(z)
]

W (z). (5)

Whilst the solution of (4) is classically obtained using first- and
second-kind Bessel functions of the first order, the solution of
(5) constitutes a more challenging task and can be performed
by an analytical method for some particular conductivity pro-
files. Following the path presented in [8] the general solution
of (5) is given by

W (z) = CF1(f (z)) +BF2(f (z)) (6)

whereF1 and F2 are functions related to the choice of the
profile σ (z), f (z) originating from possible transformations
of the independent variable that take place during the solution
of (5). In so doing the expression of the azimuthal component
of the potential vector is given in a general form as

A1c(r, z) =

∫ +∞

0

µNturnII (ar1, ar2) e
azJ1(ar)

2a3(h2 − h1)(r2 − r1)

×
(

e−ah1 − e−ah2
)

da+

∫ +∞

0

C1e
−azJ1(ar)da,

∀z ∈ [0; +∞[ (7)

A2(r, z) =

∫ +∞

0

[C2F1 (f (z)) +B2F2 (f (z))] J1 (ar) da

∀z ∈ [−r; 0] (8)

A3(r, z) =

∫ +∞

0

B3F3 (g (z)) J1 (ar) da ∀z ∈]−∞;−r]

(9)

where f (z) and g (z) are two different functions ofz and
whereI (x1, x2) is given by

I (ar1, ar2) =

∫ x2

x1

xJ1 (x) dx. (10)

OnceA1c(r, z) is known,Z is deduced as

Z = K

+∞
∫

0

I (ar1, ar2)
2

a6

[

2
(

e−a(h2−h1) − 1 + a(h2 − h1)
)

+
(

e−ah2 − e−ah1
)2

φ(a)
]

da

(11)

with
φ(a) =

C1

K
, (12)

K =
µNturnII (ar1, ar2)

(

e−ah1 − e−ah2

)

2a3(h2 − h1)(r2 − r1)
(13)
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K =
jωπµN2

turn

(h2 − h1)2(r2 − r1)2
. (14)

The expressions ofC1, C2, B2 andB3 are obtained from the
continuity conditions of the quantities and/or their derivatives
with respect to depth and/or their cancellation at±∞. Denot-
ing all such quantities as

L = F1 (f(z = 0)) ; (15)

M = F2 (f(z = 0)) ; (16)

N = F ′

1 (f(z))|z=0 ; (17)

O = F ′

2 (f(z))|z=0 (18)

P = F1 (f(z = −r)) ; (19)

Q = F2(f(z = −r)) (20)

R = F ′

1 (f(z))|z=−r ; (21)

S = F ′

2 (f(z))|z=−r (22)

T = F3 (g(z = −r)) ; (23)

U = F ′

3 (g(z))|z=−r (24)

where ′ means derivative with respect toz and solved the
corresponding linear system, the expression ofφ(a) is obtained
as

φ(a) =
(aM −O) (RT − PU) + (aL−N) (QU − ST )

(aM +O) (RT − PU) + (aL+N) (QU − ST )
(25)

Applying such an approach, analytical solutions of (5) for
a continuous conductivity functionσ(z) have been proposed
when σ(z) varies linearly, quadratically or exponentially [8]
and whenσ(z) is varying as an hyperbolic tangent [5]. In [12]
the authors are interested in the case of double-layer media
with depth-varying magnetic properties where the permeability
is continuously varying as a function of the exponential of the
depth whereas the case of a layered medium where both the
conductivity and the permeability are continuously varying as
a power of the depth is adressed in [13].

B. Series expansion of the formulation (11)

According to the method described in [14] the integral
expression of the impedance (11) can be replaced by a
series expansion (26) which allows a better control of the
convergence and a faster evaluation at least at low frequency.
This method is based on a reduction of the solution region
in the radial direction at a distanceb where a homogeneous
Dirichlet condition is imposed onto the radial component of
magnetic field. The integrand of (11) is slightly modified and
only evaluated at discrete valuesai of a, the latter being
obtained fromJ1 (aib) = 0. The numberM of ai to be taken
into account depends on the sought accuracy on the value of
Z.

ZM ≈ 2K

M
∑

i=1

I(air1, air2)
2

[aibJ0 (aib)]
2
a5i

×

[

(

e−aih2 − e−aih1
)2

φ(ai)

+ 2
(

e−ai(h2−h1) − 1 + ai (h2 − h1)
)

]

(26)

(note thatZM → Z whenM → +∞ for sufficiently largeb).

C. Particular formulation for a two-tanh-continous profile

For the applications which we are interested in, the inward
and outward diffusion are to be taken into account, so we
suggest to apply the analytical method for dealing with (5)
with a conductivity depth profile defined by two hyperbolic
tangents, one for the inward diffusion and the other for the
outward one, as follows:

σ(z) =















σ12 +∆σ

[

1 + tanh

(

z + c1
2v1

)]

∀z ∈ [−r, 0]

σ2 −∆σ

[

1 + tanh

(

z + c2
2v2

)]

∀z < −r

(27)
with ∆σ = (σ1 − σ12) /2 and whereσ1 is the conductivity
limit value related to the first profile whenz tends to+∞,
σ2 is the conductivity limit value related to the second profile
whenz tends to−∞ andσ12 is the joining conductivity limit
value related to the first profile whenz tends to respectively
−∞ and to the second profile whenz tends to+∞.

The joining point between the two sub-profiles, denoted
r, is obtained by equating expressions ofσ(z) in (27) for
z = −r. v1 and v2 can be seen as “the transition speed”
of the conductivity in the[−r, 0] and [−∞,−r] and c1 and
c2 the depth corresponding to the inflection point. A typical
profile of such a kind is shown in Fig. 1. In fact, such a
modeling allows us to define a large class of various profiles
with a small number of parameters adequately chosen. Let us
notice that with such a formulation a continuous increasing
(or decreasing) profile cannot be easily obtained even if, at
the boundary of the two layers, the conductivity, function of
depth, is allowed to be discontinuous.

For the case of a single tanh-profile all details can be found
in [5] and in the following only the two tanh-profiles will be
dealt with. In such a case it can be shown that the expression
of the special functionsF1, F2 andF3 are

F1(y2 (z)) = yµ2 (z) [1− y2 (z)]
ν

× 2F1(µ+ ν, µ+ ν + 1; 2µ+ 1; y2 (z))

F2(y2 (z)) = y−µ
2 (z) [1− y2 (z)]

ν

× 2F1(ν − µ+ 1, ν − µ; 1− 2µ; y2 (z))

F3(y3 (z)) = yλ3 (z) [1− y3 (z)]
τ

× 2F1(λ+ τ, λ+ τ + 1; 2λ+ 1; y3 (z)) (28)

with

y2 (z) =
(

1 + e
−

z+c1
v1

)−1

,

y3 (z) =
(

1 + e−
z+c2
v2

)−1

,

µ = v1
√

a2 + jωµ0σ12,

ν = v1
√

a2 + jωµ0σ1,

λ = v2
√

a2 + jωµ0σ2,

τ = v2
√

a2 + jωµ0σ12.

(29)
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2F1(α, β; γ;x) is the Gauss hypergeometric function defined
as [15]

2F1(α, β; γ;x) =

+∞
∑

k=0

(α)k(β)k
(γ)k

xk

k!
(30)

where(α)k is the Pochhammer symbol given by

(α)k = α(α + 1)(α+ 2) · · · (α+ k − 1). (31)

Let us define the derivative of2F1(α, β; γ;x) with respect to
x as [15]

∂

∂x
2F1(α, β; γ;x) =

αβ

γ
2F1(α+ 1, β + 1; γ + 1;x) (32)

Introducing the expressions of (28) in (24) and using the
derivative’s rules (32) allows to express the analytical formula-
tion of the functionsL,M,N,O, P,Q,R, S, T, U (see§ A for
their analytical expressions) and then to obtain the expression
of φ (a) through (25).

IV. B RIEF DESCRIPTION OF THE MULTI-LAYER MODEL

Proper results for numerically validating our approach in the
two-tanh profile configuration do not appear in the literature. A
classical scheme consisting in the approximation of the contin-
uously varying conductivity profile by slicing the coating layer
into a sufficiently high number of planar homogeneous layers
of given thickness and constant conductivity is considered. It
can be sketched as follows

1) the lower half-space (z < 0 in Fig. 1) is divided in two
parts:

• the upper one (zone 2 in Fig. 1) is a non-
homogeneous slab of thicknessd. It is divided
into N homogeneous sub-layers of constant thick-
ness ∆(= d/ (N − 1)) and conductivityσi, i =
1 . . . , N − 1, such as to provide a good discretized
description ofσ (z);

• the lower one (zone 3 in Fig. 1) is taken as a half-
space of constant conductivityσ (z = d);

2) the Fresnel reflection coefficient for a TE-polarized
electromagnetic wave of the multi-layer structure is
computed using the algorithm proposed in [10]. It can be
shown (no detail is provided here) that such a coefficient
is nothing butφ (a) in (11) or in (26);

3) for each frequencyf , a givenN and a givend are chosen
and the corresponding impedanceZ is computed using
either (11) or (26);

This method should ensure, in theory, high accuracy of the
solution. In practice, the high number of discretization layers
requested leads to a method which might be unsuitable, despite
its generality, due to increase of computing time with respect
to the number of layers considered.

For our purpose and for sake of simplicity, let us consider
a configuration for which we would like to compute the
impedanceZ for a range of frequencies fromfmin to fmax.
Thend is chosen large enough to entirely include the varying
part of σ (z) and is kept constant for all frequencies. Hered
has been arbitrarily chosen as:

d =

√

2

ωminµ0σmin
(33)

with σmin = min (σ1, σ12, σ2) and ωmin = 2πfmin, fmin

being the smallest frequency which we are interested in. Once
d has been fixed thenN is chosen large enough by trial-error
scheme so that the corresponding impedanceZN –obtained
for N layers– tends to the true impedanceZ at the higher
frequencyfmax.

Such a choice is clearly not optimal and could be efficiently
improved.

1) The thickness∆i of the ith sub-layer should be adapted
to the local curvature of the profileσ (z) –small when
σ (z) is rapidly varying, large whenσ (z) is almost
constant.

2) Only theM first sub-layers, those which are able to
correctly describe the attenuation phenomena, have to
be taken into account. As a matter of fact, knowing that
eddy currents only penetrate at few skin depths in a
metal plate and that the skin depth varies with respect to
frequency (see (3)) the higher the frequency the smaller
the number of sub-layers to take into account.

However for shake of simplicity such an adaptive scheme has
not been applied in the following.

V. NUMERICAL TREATMENT

Numerically speaking the computation of (11) is difficult.
As a matter of fact, even if we know that such an integral
is convergent, —I(r1, r2) is decreasing andφ (a) plays the
role of a reflection coefficient and then is bounded by1 when
a goes to+∞— the theoretical formulation ofφ (a) (25)
involves the hypergeometric function (30) or its derivative (32)
in its numerator and denominator.

The fast computation of the Gauss hypergeometric function
2F1 with complex parameters is a difficult task and is still
the subject of significant research as exemplified in [16] and
[17] with two different approaches. Both of them provide
Fortran subroutines which have been used in our numerical
simulations, [16] proposed a very general approach to compute
all hypergeometric functionspFq (subroutine PFQ) whereas
[17] focuses on the computation of the Gauss hypergeometric
function 2F1 (subroutine HYP2F1) we are interested in.

The numerical integration of (11) is performed using the
DQAGI subroutine provided by IMSL.

VI. N UMERICAL VALIDATION

A. A single tanh profile [5]

The validation of our approach is made by comparison with
the results given in [5] for a single tanh profile. With reference
to Fig. 1 the parameters of the measurement configuration
are taken as:r1 = 1.3mm, r2 = 3.3mm, h1 = 0.5mm,
h2 = 7.8mm and Nturn = 580. According to (27) the
conductivity profile has the following parameters:σ1 =
1.509× 107 Sm−1, σ12 = 3.766× 107 Sm−1, c1 = 0.3mm
andv1 = 0.1857mm.

A comparison of the results at three frequencies is shown
in Table I for different values ofb. A brief study of the
convergence of the results with respect of the choice of the
hyper-parameterb is presented. A very good agreement is
observed with [5].
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(a) Real part of∆Z

1 kHz 10 kHz 100 kHz

[5] 0.008 17 0.025 83 −0.688 36
Numerical Integration 0.008 165 0.025 809−0.688 31

N = 10 0.008 169 0.025 85 −0.687 99
N = 20 0.008 165 0.025 823−0.688 20

(b) Imaginary part of∆Z

1 kHz 10 kHz 100 kHz

[5] −0.008 28 −0.225 71 −1.497 19
Numerical Integration−0.008 28 −0.225 65 −1.496 37

N = 10 −0.008 267−0.225 57 −1.496 45
N = 20 −0.008 28 −0.225 66 −1.496 77

TABLE I
COMPARISON OF THE RESULTS FROM[5] AND THE ONES OBTAINED USING

THE NUMERICAL INTEGRATION AND THE SERIES EXPANSION WITH
b = NR2, N = 10, 20 USING HYP 2F1.

Numerical Series expansion
integration N = 10 N = 20

PFQ – 37.41 66.22
HYP 2F1 1.36 0.06 0.11

TABLE II
COMPARISON OF THECPUTIMES (IN SECOND) NEEDED TO COMPUTEZ

FOR 100FREQUENCIES BETWEEN1 kHz TO 100 kHz FOR THE TWO
FORMULATIONS (INTEGRAL EQUATION (11) AND SERIES EXPANSION(26))

USING DIFFERENT SUBROUTINES TO COMPUTE2F1 .

To illustrate the ability of the series expansion to provide
good results at a lower computional cost than the numerical
integration a comparison of the CPU times needed to compute
the impedance for 100 frequencies between1 kHz to 100kHz
every 1 kHz is proposed. As exemplified in Table II the
subroutine HYP2F1 seems to be much more efficient than
PFQ for our application.

B. A two-tanh profile case

As already said (§ IV), in the two-tanh profile configuration
we have not been able to find proper results in the literature
to numerically validate our theoretical approach. A multi-
layer model (described§ IV) have then been developped and
numerical results compared. Again with reference to Fig. 1 the
parameters of the measurement configuration are:r1 = 2mm,
r2 = 4mm, h1 = 0.5mm h2 = 7.3mm and Nturn = 200.
According to (27) the conductivity profile has the following
parameters:σ1 = 7× 105 Sm−1, σ12 = 5× 105 Sm−1,
σ2 = 8× 105 Sm−1, c1 = 0.2mm, v1 = 0.03mm, c2 =
0.8mm and v2 = 0.1mm. The variation of impedance∆Zi

is computed atNfreq frequencies equally distributed between
fmin = 100 kHz andfmax = 10MHz every100 kHz.

Let us define the discrepency between a reference∆Zi, i =
1, . . . , Nfreq and an approximated value∆Zi taken as

Err =
1

Nfreq

Nfreq
∑

i=1

|∆Zi −∆Zi|

|∆Zi|
(34)

Comparison of variations of impedance obtained with the
analytical model and those obtained with a numerical multi-
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Fig. 2. Conductivity Profile.

CPU Time (s) Err (%)

HYP 2F1 6.63 –

Multi-layer
M = 1000 24.48 795.0324
M = 10 000 247.58 78.1864
M = 100 000 2506.05 7.8057
M = 1000 000 25 087.74 0.7805

TABLE III
COMPARISON OF THECPUTIMES (IN SECOND) AND THE ERROR(IN %)

FOR THE COMPUTATION OFZ USING A NUMERICAL INTEGRATION OF (11)
WITH THE ANALYTICAL AND THE MULTI -LAYER MODELS.

layer model using the numerical integration is very good as
reported in Fig. 3, corresponding CPU time and error being
given in Table 3. Let us emphasize that best matching with the
multi-layer model requires a number of, at least,N = 100 000
layers, which can be explained by the fact that, as described
in § IV, the two multi-layer model parametersd andN are
kept constant for all frequencies and whatever the variation of
the conductivity profile.

The analytical formulation and numerical integration being
validated let us now focus on the series expansion approach
and its advantages. In the following only the analytical formu-
lation using the subroutine HYP2F1 to compute2F1 will be
used and a comparison between the results using the numerical
integration and the series expansion approach is provided
in Fig. 4 and the corresponding CPU times and errors are
reported in Table IV. It can be seen thatb –which has been
chosen as an integer multiple ofR2 as b = NR2– should be
carefully chosen and a too small value, hereN = 2, leads
to a large error whereas a higher value,N = 10, gives very
good results. As expected whenN increases the error between
numerical integration and the series expansion decreases and
tends to0 which is paid for by an increase in computing time
even if the “series” CPU time is still ten times lower (for
N = 20) than the “numerical integration” one.

VII. C ONCLUSION

In the context of development of decentralized power gen-
eration, it is of economical importance to improve the thermal
efficiency of gas turbine by increasing the firing tempera-
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Fig. 3. Comparison of results obtained with analytical and multi-layer models for different number of layersN .
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Fig. 4. Comparison of the results obtained with analytical using a numerical integration and the series expansion withb = NR2, N = 2, 10, 20 with
HYP 2F1.

CPU Time (in s) Err (in %)

Numerical integration 6.63 –

Serie expansion
N = 2 0.11 15.3062
N = 10 0.40 0.0126
N = 20 0.67 0.0011

TABLE IV
COMPARISON OF THECPUTIMES (IN SECOND) AND THE ERROR(IN %)

FOR THE TWO FORMULATIONS OFZ (INTEGRAL EQUATION (11) AND

SERIES EXPANSION(26)) USING DIFFERENT VALUESb = NR2 ,
N = 2, 10, 20, 2F1 BEING COMPUTED WITHHYP 2F1.

ture. To optimize the maintenance cost of such advanced
gas turbine, it is crucial to predict remaining coating life
for reducing unexpected shut-downs caused by blade coating
failure due to depletion of aluminum. Eddy Current Non-
Destructive Evaluation can play a key role in assessing the
conditions of turbine blade coating by estimating conductivity

depth profiles. In this paper, we have reported on efforts
towards that goal. We have developed the direct model of the
impedance of an EC coil above a metal structure protected
by a top over-aluminized coating degraded by inward and
outward diffusion of aluminum, assuming that the conductivity
profile follows a two-hyperbolic-tangent law. The analysisof
the approach as suggested is quite interesting, since the results
obtained with this model are similar to those obtained with a
numerical multi-layer model with a significant reduction of
computing time.
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APPENDIX

In the following and in the case of the two tanh-profil the
analytical expressions of the general functions presentedin
(24) are given.

L =
[1− y2 (0)]

ν

y−µ
2 (0)

2F1 (µ+ ν, µ+ ν + 1; 2µ+ 1; y2 (0))

M =
[1− y2 (0)]

ν

yµ2 (0)
2F1 (ν − µ+ 1, ν − µ; 1− 2µ; y2 (0))

N =

[

y2 (0)− y22 (0)
]

v1

[

[µ− (µ+ ν) y2 (0)]

y1−µ
2 (0) [1− y2 (0)]

1−ν

× 2F1 (µ+ ν, µ+ ν + 1; 2µ+ 1; y2 (0))

+ yµ2 (0) [1− y2 (0)]
ν (µ+ ν)(µ+ ν + 1)

2µ+ 1

× 2F1 (µ+ ν + 1, µ+ ν + 2; 2µ+ 2; y2 (0))

]

O =

[

y2 (0)− y22 (0)
]

v1

[

(ν + 1− µ)(ν − µ)

yµ2 (0) (1− 2µ) (1− y2 (0))ν

× 2F1(ν − µ+ 2, ν − µ+ 1; 2− 2µ; y2 (0))

[1− y2 (0)]
ν−1

yµ+1
2 (0)

[µ− (µ+ ν) y2 (0)]

× 2F1(ν−µ+1, ν−µ; 1− 2µ; y2 (0))

]

P =
[1− y2 (−r)]

ν

y−µ
2 (−r)

2F1(µ+ ν, µ+ ν + 1; 2µ+ 1; y2 (−r))

Q =
[1− y2 (−r)]

ν

yµ2 (−r)
2F1(ν − µ+ 1, ν − µ; 1− 2µ; y2 (−r))

R =

[

y2 (−r)− y22 (−r)
]

v1

[

[µ− (µ+ ν) y2 (−r)]

× 2F1(µ+ ν, µ+ ν + 1, 2µ+ 1; y2 (−r))

+
[1− y2 (−r)]

ν

y−µ
2 (−r)

(µ+ ν)(µ+ ν + 1)

2µ+ 1

× 2F1(µ+ ν + 1, µ+ ν + 2; 2µ+ 2; y2 (−r))

]

S =

[

y2 (−r)− y22 (−r)
]

v1

[

[1− y2 (−r)]
ν

yµ2 (−r)

(ν + 1− µ)(ν − µ)

−2µ+ 1

× 2F1(ν − µ+ 2, ν − µ+ 1; 2− 2µ; y2 (−r))

−
[1− y2 (−r)]

ν−1

yµ+1
2 (−r)

[µ− (µ− ν) y2 (−r)]

× 2F1(ν−µ+1, ν−µ; 1− 2µ; y2 (−r))

]

T =
(−r) [1− y3 (−r)]

τ

y−λ
3

× 2F1(λ+ τ, λ+ τ + 1; 2λ+ 1; y3 (−r))

U =

[

y3 (−r)− y23 (−r)
]

v2

[

[1− y3 (−r)]τ−1

y1−λ
3 (−r)

× [λ− (λ+ τ) y3 (−r)]

× 2F1(λ + τ, λ+ τ + 1; 2λ+ 1; y3 (−r))

+
[1− y3 (−r)]

τ

y−λ
3 (−r)

(λ+ τ)(λ + τ + 1)

2λ+ 1

× 2F1(λ + τ + 1, λ+ τ + 2; 2λ+ 2; y3 (−r))

]

µ, ν, y2, y3 are defined in (29).
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