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TASEP transport on networks: Theory for strongly connected networks

I. Neri, N. Kern and A. Parmeggiani

In this document we present details of the analytical arguments for TASEP transport on general networks

in the high connectivity limit (equations 7-9).

High connectivity and the notion of bottlenecks Our arguments are conjectured to be valid for
networks with high connectivity, in the sense that any typical vertex becomes sufficiently connected to form

a bottleneck. While still comprising the majority of networks, this condition is slightly stronger than simply
asserting a high average connectivity c: it also requires the typical vertex to have a connectivity of order

c. This implies that, as the average connectivity c increases, essentially all junctions will saturate at high
occupancies and form bottlenecks. It is this observation which will allow us to formulate a theory for high

connectivity.
As concrete examples of networks fulfilling this condition, we may of course cite Bethe networks (pdeg(k) =

δk,c) and Poissonian networks (pdeg(k) = e−c ck/k!), but also scale-free networks (for which pdeg(k) =
k−γ/(

∑

∞

k=c k) for k ≥ c, zero otherwise).

Density distributions As a starting point, it will be useful to recall that mean field equations for

transport on any closed network are established in terms of the vertex occupancies ρv as

∂ρv
∂t

=
∑

v′→v

J

(

ρv′

koutv′
, 1−ρv

)

−
∑

v′′←v

J

(

ρv
koutv

, 1−ρv′′

)

, (1)

and that we are interested in steady-state solutions to this equation. These equations rely on the fact that
the behaviour of any segment is boundary-controlled, i.e. the density ρs of a segment linking vertices v′

and v′′ is directly determined by the occupancies ρv′ , ρv′′ of these vertices. For any given instance of a
random network, the vertex occupancies ρv′ are given by equation (1). When sampling over independent

network realisations, the variables (ρv′ , ρv′′, k) are statistically distributed, and we note their distribution
W (ρv′ρv′′ , k).

We wish to establish a relation for the distribution WS(ρs) of segment densities ρs. To do so, we exploit
the fact that the density on an edge is set by the adjacent vertices v′ and v′′, via the effective entry/exit

rates. We first decompose into contributions from all vertex pairs, such that

WS(ρs) =

∞
∑

k=0

∫ 1

0

dρv′

∫ 1

0

dρv′′ W (ρv′ , ρv′′ , k) δ
(

ρs − ρ±(v
′, v′′)

)

, (2)

where the sum in k runs over all possible out-degrees k [of vertex v′]. In this expression the selection of high
(low) density values ρ+ (ρ−) in the oriented segment connecting vertices v′ and v′′ is achieved, according to

the occupancies of adjacent vertices, through the function

ρ± =

{

ρ− =
ρ
v′

kout
v′

if ρv′/k
out
v′ < 1− ρv′′

ρ+ = 1− ρv′′ otherwise
. (3)
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In the following we make the assumption that the joint distribution of the random variables associated
with (ρv′ , ρv′′ , k) factorizes, for high connectivities, as

W (ρv′ , ρv′′, k) = WV (ρv′) WV (ρv′′)
pdeg(k) k

c
. (4)

Here pdeg(kout) is the distribution of out-degrees kout of the vertices and pdeg(k) k/c is the corresponding

degree distribution of vertices when picking an (oriented) segment at random. Although we cannot formally
prove the factorization property, exact approaches on the study of dynamics of models on graphs indicate

that this is valid in the high-connectivity limit [1, 2].

Mean-field theory: expansion close to saturation All strongly connected junctions form bottlenecks
as soon as the necessary overall density is exceeed. Their occupancies ρv will then be close to saturation,

suggesting the expansion

ρv = 1− rv/c+O
(

c−2
)

, (5)

with rv an expansion parameter taken to be independent of the typical connectivity c.

Substituting this into the argument of the delta function in equation (2) it becomes clear that, to leading
order, both contributions can in fact be taken to be independent of ρv′ :

ρ± =

{

ρ− =
ρ
v′

k
= 1

k
−

r
v′

k c
≃ 1/k if rv′′ & 1

ρ+ = ρv′′ ≃ 1−
r
v′′

c if rv′′ . 1
, (6)

where we have used equation (3) and the expansion (5), and the fact that statistically relevant nodes have

out-degree kout ≃ c.
To leading order, we can therefore integrate out the term WV (ρv′) in equation (2), after factorization by

equation (4), which yields

WS(ρs) =

∞
∑

k=0

pdeg(k) k

c

∫ 1

0

dρv′′ WV (ρv′′) δ (ρs − ρ±) , (7)

which is the result announced in the main body of the paper, where we have chosen to express it in terms

of the small parameter rv′′ . In combination with equation (6) it implies a bimodal distribution, with a low
density peak at around ρs ≃ 1/c and a high density peak at around ρs ≃ 1− 1/c.

Infinitely connected limit Clearly, the limit of infinite connectivity is important to analyze. Taking
c → ∞ yields ρ− = 1/k → 0, whereas ρ+ = 1− r/c → 1. Therefore the high-connectivity limit for the edge

density distribution is

WS(ρs) = (1− ρ) δ (ρs) + ρ δ(ρs− 1) , (8)

where the prefactors follow from the conditions

ρ =

∫ 1

0

ρsWS(ρs) dρs and 1 =

∫ 1

0

WS(ρs) dρs , (9)

expressing the definiton of the overall density as well as normalization ofWS. This establishes the bimodality

of the distribution for the segment densities WS(ρs). As a consequence of this result, the fraction of high
density segments is related to the overall density by nHD = ρ. Equation (8) furthermore implies a simple
relation for the variance of the distribution of segment densities, σ2 = ρ (1−ρ). We have numerically explored

the solution to the mean field equations (1) for connectivities up to c = 50, see figure (1) confirming this
limit for a Poissonian network, which thereby validates our approach.
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Figure 1: The fraction of segments in HD phase nHD and the variance σ2 of the segment density distribution
WS(ρs) as a function of overall density ρ, obtained for Poissonian networks. Different curves correspond to

different average connectivities c. The predicted linear variation of nHD with the overall density is robust, ie.
almost unsensitive to the connectivity c. The variance σ2 has a roughly parabolic shape for all connectivities,

and asymptotically approaches the predicted limiting curve σ2 = ρ (1− ρ) for the infinitely connected limit.

Special case of regular networks The question arises whether the bimodal distribution of segment
densities (equation (7)) is contradictory with the earlier mean-field results in the main article, stating a

unimodal distribution for the Bethe network. A careful analysis shows how this apparent inconsistency is
lifted. Indeed, for a Bethe network all vertex degrees are identical, pdeg(k) = δk,c (using the Kronecker

delta), and all vertices behave identically

WS(ρs) = δ (ρs − ρv) with ρv = const . (10)

Furthermore all segments have identical densities, implying that the overall density is simply ρ = ρs = ρv.
Note that the condition discriminating the two regimes on a segment is rv = 1, which translates to

ρ∗v = 1 − r∗v/c ≃ 1 − 1/c. When compared to the analytical MF condition for having a HD phase in the
Bethe network, ρ∗ = c/(c+1), a Taylor expansion for c ≫ 1 shows that these conditions are indeed consistent

to leading order.
As to equation (8) for the bimodal distribution, it remains consistent in the limiting case, since ρ for

a Bethe network reduces to either one or zero in the infinite connectivity limit; as is seen from the mean-
field results, all intermediate densities involve shocks, for which the mean field equations are not valid by
construction. For both ρ → 0 and ρ → 1 one of the peaks in equation (10) is eliminated, such that the result

remains coherent also for regular networks.
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