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We study the totally asymmetric simple exclusion process (TASEP) on complex networks, as a paradigmatic
model for transport subject to excluded volume interactions. Building on TASEP phenomenology on a single
segment and borrowing ideas from random networks we investigate the effect of connectivity on transport. In
particular, we argue that the presence of disorder in the topology of vertices crucially modifies the transport
features of a network: irregular networks involve homogeneous segments and have a bimodal distribution of
edge densities, whereas regular networks are dominated by shocks leading to a unimodal density distribution.
The proposed numerical approach of solving for mean-field transport on networks provides a general framework
for studying TASEP on large networks, and is expected to generalize to other transport processes.

PACS numbers: 89.75.-k, 64.60.-i, 05.60.Cd, 02.50.-r

Delivering matter, energy or information is a crucial re-
quirement for the functioning of any complex system, ranging
from the sub-cellular level of biological organisms to globe-
spanning man-made structures. Transport is often organized
along line-like pathways, which are in turn interconnected to
form a network structure. In this perspective, diffusion along
networks has been studied extensively (see, e.g., [1, 2]). On
the other hand, interactions play a fundamental role in the
transport properties of many systems: intracellular traffic of
molecular motors on the cytoskeleton, pedestrian traffic on an
ensemble of paths and traffic of information packages on the
internet are but a few prominent examples. They lead to emer-
gent collective phenomena, such as the appearance of jams.

The totally asymmetric simple exclusion process (TASEP)
is a paradigmatic model for one-dimensional non-equilibrium
transport subject to excluded volume interactions: entities
(“particles”) hop in a given direction, but cannot occupy the
same place [3]. TASEP was initially introduced as a model
for the kinetics of RNA polymerization by ribosomes [4], but
has since then received much general interest, including from
fundamental statistical physics [5] and mathematics [6]. Nu-
merous generalizations have been developed and applied to
various areas, such as the collective motion of motor proteins
along cytoskeletal filaments, vehicular traffic, etc. [7, 8].

The collective behavior of exclusive transport on a network,
however, is not well understood at this stage. A body of nu-
merical work on TASEP-like models on networks, often with
complex details, exists in the context of traffic [8], but less so
on biological transport [9]. In terms of a paradigmatic analy-
sis based on TASEP, knowledge is still limited to either sim-
ple topologies with at most two junctions [10, 11], or involves
structureless links, e.g. in tree-like networks [12].

In this letter we address the question of how the topology
of a network affects its TASEP transport characteristics.
Combining concepts from the area of complex networks [1]
with mean field (MF) methods for TASEP in the presence of
junctions [11] we construct the global behavior from that of
single segments. This allows us to rationalize many features

of transport on large-scale random networks in terms of
theoretical arguments, and furthermore leads to an algorithm
to numerically solve the MF problem of TASEP transport on
a large scale network. In particular we argue that irregularity,
i.e. randomness in the vertex degrees, strongly modifies the
transport properties of a network.

TASEP on a network. – We generalize the TASEP trans-
port rules [3, 4] to a closed network of NS directed segments
and NV vertices or junctions. The segments consist of L sites
along which particles perform unidirectional random sequen-
tial hops subject to hard-core on-site exclusion. At the junc-
tions, particles from kinv incoming segments compete for oc-
cupying the same vertex site v, while a particle can leave the
junction through one of koutv outgoing segments with equal
probability. Figure 1 serves as an illustration for a network
withM=30 junctions. We write ρv for the average occupancy

x

FIG. 1. (color online). An example of a Poissonian network of
M = 30 junctions with c = 1 and its strongly connected compo-
nent (bold). Every segment consists of L sites on which particles
undergo TASEP dynamics. At the junctions the particles choose one
of koutv outlets.

of a vertex v with 0≤ρv≤1. Particle number conservation in
the junction v reads

∂ρv
∂t

=
∑
v′→v

J(v′,v) −
∑
v←v′′

J(v,v′′) , (1)
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the sums run over vertices v′ identifying incoming segments
(v′, v) and over vertices v′′ for outgoing segments (v, v′′).

We briefly review the behavior of an isolated segment
linked to reservoirs, which we will build on. Its average den-
sity ρ and current J are known to be homogeneous, provided
that segments are at least of moderate size, such that boundary
effects remain small. Both are set by the entry rate α and exit
rate β [13]:

ρ(α, β) =

 α α ≤ β, α < 1/2 (LD)
1− β β ≤ α, β < 1/2 (HD)
1/2 α, β ≥ 1/2 (MC)

(2)

with the current given by the parabolic current-density relation

J(α, β) = ρ(α, β)
(
1− ρ(α, β)

)
. (3)

These three homogeneous phases are high density (HD), low
density (LD) and maximal current (MC), but for α = β a
non-homogeneous shock phase (SP) arises, for which LD
and HD regions coexist on the same segment, separated by a
diffusing domain wall [14].

Mean-field theory and algorithm. – We extend the MF
analysis of [11] to large scale networks to establish an algo-
rithm operating on the junction occupancies ρv as the only
variables. To do so, we neglect correlations between neigh-
bouring sites, as is usually done in MF [13]. Then the entry
(exit) rate α (β) for a segment are effective rates, which de-
pend only on the occupancies of the adjacent vertices [11]:

α = ρv′/koutv′ and β = 1− ρv′′ . (4)

The entry rate α is reduced according to the out-degree koutv′ ,
since particles on vertex v′ are distributed uniformly over all
outgoing edges. Assuming homogeneous segments, the effec-
tive rates in (2) and (3) can be substituted into the continuity
equation (1) to yield a closed set ofNV equations in the vertex
occupancies:

∂ρv
∂t

=
∑
v′→v

J

(
ρv′

koutv′
, 1−ρv

)
−
∑
v′′←v

J

(
ρv
koutv

, 1−ρv′′

)
, (5)

where the sums run over all vertices v′ (v′′) which are up-
stream (downstream) from v. The microscopic dynamics lack
particle-hole symmetry at the junctions, as is reflected in Eq.
(5) by the factor 1/koutv′ in the entry rate.

The numerical MF algorithm consists of iteratively finding
the stationary solution to (5), thereby achieving considerable
computational advantage upon simulations since we only
need to update the NV junction occupancies ρv . In the
following we will study transport on random networks as
model systems, complementing MF solutions of Eqs. (5)
by explicit simulations. Throughout, we exploit the fact
that macroscopic observables are self-averaging on these
ensembles, as we have verified directly by analyzing different
network instances.
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FIG. 2. (color online). The average segment current J as a function
of the overall density ρ on a Bethe network of degree c superposing
numerical mean-field predictions (closed symbols), explicit simula-
tions (NV = 80 junctions, L = 100 sites per edge, open symbols)
and a one-vertex analytical result Eq. (6) (solid lines). The dashed
lines delimit the different phases for c = 2.

TASEP on a Bethe network. – As an example of closed
random graphs with regular topology we consider the directed
Bethe network, drawn from the c-regular ensemble [17], in
which all vertices have identical connectivity c = kin = kout.
The undirected Bethe network is well known in statistical me-
chanics from the study of, for example, spin models on graphs
[16]. Figure 2 shows the average segment current J as a func-
tion of the overall density ρ. The standard result for the current
J(ρ)=ρ(1−ρ) is recovered for c=1, where the Bethe network
reduces to a simple ring. As connectivity is increased, the
overall current is reduced: this may appear counter-intuitive,
but reflects the fact that vertices progressively become bot-
tlenecks and block the flow of particles. More precisely, the
current parabola is truncated at intermediate densities by a
plateau-like region, which widens but lowers with connectiv-
ity c. To interpret these results, we first give an explanation
based on the phenomenology of TASEP on a line. To this
end, we point out that an analytical solution to Eqs. (5) can be
given for the Bethe network, since all NV equations become
identical due to equal vertex connectivities. Therefore the so-
lution requires identical occupancies ρv for all vertices, from
which segment currents and densities follow: all vertices, and
therefore all segments, are equivalent. The transition from the
LD to the HD phase appears when the effective rates (4) are
equal (α= β), i.e. at ρv = c/(c + 1). Using Eqs. (2-4) this
leads to distinct regimes for the current, yielding the truncated
parabola for the MF current-density relation:

J (ρ) =

{ c
(c+1)2 for ρ∗ < ρ < 1− ρ∗

ρ(1− ρ) otherwise
, (6)

with LD phases (for ρ < ρ∗), and HD phases (for ρ > 1−ρ∗),
where ρ∗ = 1/(c + 1). The plateau can be rationalized in
terms of domain wall phenomenology [14], recalling that α =
β indicates a SP with a diffusing domain wall between LD
and HD zones which coexist on the same segment. Since both
zones have complementary densities (ρLD = 1 − ρHD), the
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current is not affected as further particles are accomodated by
growing the HD zones at the expense of the LD zones [14, 15].

These MF arguments capture the essential transport
features well, as is shown by the simulation data on Fig.2
(and this remains true also for triangular and square lattices).
Deviations arise, however, on the current plateau (where
MF underestimates the current) and close to the transitions
(where explicit simulations furthermore reveal the particle-
hole asymmetry, which increases with connectivity c). The
numerical MF algorithm does not provide a solution on the
plateau, since the assumption of homogeneous segments does
not hold, but it otherwise reproduces the theoretical results
with great precision. In summary, despite its random nature,
TASEP transport through a Bethe network may be understood
in terms of a single effective vertex, similar to the Ising model
on a Bethe lattice [16].

TASEP on a Poissonian network. – In order to explore
the effect of irregularity, i.e. non-uniform vertex connectiv-
ity, we study TASEP on the Poissonian ensemble, closely re-
lated to the Erdös-Rényi ensemble [17]: any two vertices are
connected with probability c/NV , yielding an average con-
nectivity c. In order to avoid artefacts we consider transport
on the strongly connected component (SCC) of the Poissonian
network, in which each vertex can be reached from all other
vertices. We find the SCC using an algorithm developed by
Tarjan [18]. For illustration we refer to Fig.1, which shows a
particular realization of a Poissonian ensemble with c=1, the
SCC highlighted in bold.

We first comment on the transport characteristic J(ρ) of
TASEP transport on Poisson networks. Figure 3 shows the
current J (averaged over all segments) as a function of den-
sity ρ, for various connectivities c. The MF results are in
excellent agreement with simulations, thereby validating the
MF algorithm for disordered networks. The comparison to
Bethe networks with identical connectivities c shows that both
networks carry the same current J(ρ) at very low and very
high densities. However, they behave very differently at in-
termediate densities. We observe that (i) currents in Poisso-
nian networks are significantly lower than in the correspond-
ing Bethe networks, (ii) even on the MF level, the current J(ρ)
no longer possesses particle-hole symmetry (ρ ↔ 1−ρ), and
(iii) the density at which the highest current is achieved lies
below half-filling, and progressively reduces with connectiv-
ity c. The most striking difference, however, is the absence of
a plateau in J(ρ) for the Poissonian network. In contrast to
Bethe networks, this suggests that no SP segments involving
domain walls arise over any extended density range.

A finer understanding is obtained by analysing how the
transport features of individual segments are distributed across
the network. Consider first the distribution of segment densi-
ties, shown for a connectivity c = 10 and an overall density
ρ = 0.3, see Fig.4(a). It is bimodal with peaks corresponding
to segments carrying either a very low or a very high density.
We are therefore dealing with two sub-networks of segments
either in LD or HD phase, in contrast to the Bethe scenario
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FIG. 3. (color online). The current-density characteristic of the
strongly connected component of Poissonian graphs of given aver-
age connectivity c. Simulations (markers) with NV = 200 junctions
and segments of L = 100 sites are compared to mean field results
(solid lines) for the identical network. For comparison, the Bethe re-
sult Eq. (6) is shown for the same c (dotted lines). Results are not
ensemble-averaged: sample to sample fluctuations are of the order
of the symbol sizes, but mean field and simulation results for a given
topology coincide as in the example.

where all segments are in SP at intermediate densities (single
peak in red). Interestingly, the distribution of the segment cur-
rents remains unimodal for Poisson networks, Fig. 4(b), thus
putting a similar load on all segments.

The bimodal density distribution is also the key to under-
standing how the network adjusts to higher overall densities,
by successively switching individual segments from a LD to a
HD phase. The inset in Fig.4(a), obtained for ρ = 0.7, shows
that the typical densities of HD/LD segments are not signif-
icantly modified, whereas the proportion of the HD network
grows at the expense of its LD counterpart as further particles
are added. This is further documented by the fraction nHD

(nLD) of edges in HD (LD) phases, Fig. 4(c). For the Pois-
sonian network nHD is roughly equal to the overall density
ρ, thereby confirming that the change from LD to HD in ir-
regular networks occurs progressively. This linear behavior
of nHD is furthermore very robust with respect to variations
of average connectivity c (data not shown), implying that this
picture remains valid for all connectivities c.

Transport on highly connected networks. – Significant in-
sight into TASEP transport on general random networks can
be gained from analyzing the (MF) high-connectivity limit.
Ultimately all vertices constitute bottlenecks, taking their oc-
cupancy close to saturation. Therefore we expand the MF Eqs.
(5), posing ρv = 1− rv/c, with rv ∼ O(1). The distribution
of individual segment densities ρs then becomes [19]

WS(ρs) =
∑
k

pdeg(k) k

c

∫
drWV (r) δ (ρs − ρ±) (7)

where pdeg(k)k/c represents the degree distribution of ver-
tices when selecting a random segment, WV (r) is the distri-
bution of r, which follows from the MF Eqs. (5). The high
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FIG. 4. (color online). Distribution of segment properties for net-
works of connectivity c = 10, comparing a Poisson network (black)
to a Bethe network (dashed red). Symbols show simulation results,
lines are mean-field predictions. (a) Distribution of segment densities
WS(ρs) for an overall density ρ=0.3 (inset: ρ=0.7). Convergence
of the density peak to a delta peak is very slow in simulations due to
collective fluctuations in the shock phase, closed markers correspond
to fourfold longer runs than open ones. (b) Distribution of segment
currents W (Js) for ρ=0.3. (c) Fraction of segments in high (nHD)
and low (nLD) density segments as a function of the overall density ρ.

(low) density value ρ+ (ρ−) are set by the vertex saturation
parameter r/c relative to the vertex degree k, as

ρ± =

{
ρ− = 1/k if r/c > 1/k
ρ+ = 1− r/c if r/c < 1/k

. (8)

This shows that the bimodal distribution WS in the segment
densities, with a fraction of segments in LD and a fraction in
HD, is a general feature for complex irregular networks. This
is particularly well illustrated in the strong connectivity limit
c→∞, where WS(ρs) reduces to

WS(ρs) = (1− ρ) δ(ρs) + ρ δ(1− ρs) . (9)

The prefactors of the δ functions explain the linear behavior
of nHD, and our above interpretation for Poissonian networks
hence generalizes to general irregular random networks.

Conclusions and Outlook. – TASEP transport on closed
random networks has been shown to lead to very different sce-
narios for regular and irregular topologies. Despite the mini-
mal character of TASEP, there may be direct implications: the
presence of bimodality, which we have shown to be robust,
in biological tracer experiments would make our findings di-
rectly useful for their interpretation. But our results also raise

interesting questions, such as the interplay of biological trans-
port and crowding, and their possible regulation by the cy-
toskeletal network.

An important result of our study is that MF arguments lead
to very good predictions for the global transport properties of
closed networks, and provides a framework for their interpre-
tation. Moreover, our numerical MF method gives access to
system sizes currently beyond the reach of simulations. Gen-
eralizations of the approach to open random networks and
other network topologies seem straightforward. In addition,
we may also expect it to generalize to other transport pro-
cesses, as long as the behavior of an individual segment is
known and boundary-controlled, i.e. determined by the occu-
pancy of the junctions it connects to.
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