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Abstract

In this paper we present the numerical investigation of a three-dimensional
four field model for magnetic reconnection in collisionless regimes. The model
describes the evolution of the magnetic flux and vorticity together with the
perturbations of the parallel magnetic and velocity fields. We explored the
different behavior of vorticity and current density structures in low and high
β regimes, β being the ratio between the plasma and magnetic pressure. A
detailed analysis of the velocity field advecting the relevant physical quanti-
ties is presented. We show that, as the reconnection process evolves, velocity
layers develop and become more and more localized. The shear of these layers
increases with time ending up with the occurrence of secondary instabilities
of the Kelvin-Helmholtz type. We also show how the β parameter influences
the different evolution of the current density structures, that preserve for
longer time a laminar behavior at smaller β values. A qualitative explana-
tion of the structures formation on the different z-sections is also presented.

Key words: Nonlinear dynamics, plasma instabilities, fluid instabilities,
numerical simulations

1. Introduction

Magnetic reconnection is a fundamental process in highly conductive flu-
ids and plasmas [1, 2]. It can be defined as a change in the topology of the
magnetic field lines, which decouple their motion from the fluid one. It is
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associated with a release of magnetic energy into heat, plasma kinetic energy
and fast particle energy and it is characterized by the formation of current
density sheets in the reconnection region along with strong velocity layers.
The range of phenomena involving magnetic reconnection is very wide. It
includes solar flares, geomagnetic substorms, interaction of the solar wind
with the magnetopause, sawtooth oscillations and disruptions in laboratory
plasma, such as in Tokamaks. One of the problems in magnetic reconnection
is to identify the appropriate generalized Ohm’s law and the physical mech-
anisms which cause the diffusion of the magnetic field through the plasma.
In weakly collisional plasmas, such as the high temperature ones in Toka-
maks, the inverse of the electron-ion collision frequency is larger than the
relaxation time of internal sawtooth oscillations. This consideration made
collisionless reconnection to become a frontier subject in the early ’90 [3, 4].
In this regime the typical length scale of the reconnection process is given
by the collisionless skin depth, de. Although a kinetic approach should be
invoked in order to treat such collisionless regimes, in the presence of a strong
guide field, fluid models, which offer a computational advantage, are often
used. Many studies have been done in the framework of two-fluid models. In
this context a description of the plasma behavior can be made considering a
simpler two-field description [5] or a more sophisticated four-field description
[6]. In particular, the two-field model in [5] has been extensively analyzed
in the last decade both in two-dimensional and three-dimensional configu-
rations [7, 8, 9, 10]. In this model the evolution of the magnetic flux and
plasma stream function is followed assuming that variations of the magnetic
field and of the plasma velocity, along the direction parallel to the guide field,
are negligible. The fingerprint of this approach is the coupling between the
evolution of the current density and vorticity fields, which evolve in ordered
or turbulent structures depending on the value of the electron temperature,
which enters the equation through the the ion sound Larmor radius ̺s [7, 9],
which is a further characteristic scale length of the phenomenon. For values
of ̺s ≥ de the velocity layers,advecting the current density and vorticity,
evolve in ordered coherent structures aligned with the separatrix of the mag-
netic island. On the other hand, for ̺s << de the velocity layers tend to
be aligned with the neutral line giving rise to strong shears that lead to the
onset of secondary Kelvin-Helmholtz instabilities. This twofold picture has
been also confirmed in three-dimensional configurations [10, 11]. When we
allow the system to develop also magnetic and plasma velocity perturbations
along the direction parallel to the guide field, by considering the four-field
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model in [6], the picture becomes richer and a new scenario appears, where
the evolutions of the current density and vorticity fields are no longer cou-
pled. The crucial role in this change is played by the β parameter, expressing
the ratio between the plasma and the magnetic field pressures. Indeed, when
the low β limit is abandoned, the effects of the strong velocity shears that
develop in the reconnection region, on one hand lead to a turbulent vorticity,
but on the other hand they get suppressed in the evolution of the current
density [11, 12].

Recently, an extension of this four-field model to three dimensions has
also been derived [13]. The model belongs to the class of fluid models for
plasma physics, for which a noncanonical Hamiltonian formulation is known.
The origin of this class can be traced back to the seminal work of Morrison
and Greene [14] on ideal magnetohydrodynamics. The class was subsequently
enlarged to a great extent by Phil Morrison and co-workers over the years,
with the discovery of Hamiltonian structures for several reduced fluid models.

In this article we analyze this model by performing numerical simulations
with the aim of investigating the evolution, and its dependence on β, of
velocity and current density fields in a full 3D setting. In particular we
address the question of understanding in what fields the secondary Kelvin-
Helmholtz instability dominates and in what fields it is suppressed, and how
such instability extends along the z direction. We also recall that the absence
of an ignorable coordinate raises the problem of interpreting a dynamics
which is much less constrained than the two-dimensional one[15, 10, 11]. In
particular, the system no longer possesses the infinity of Casimir invariants
which constrain the 2D case and in terms of which it is possible to explain
the different structures observed in the current density and vorticity fields
[5, 8, 16, 12]. Such explanation was indeed possible, due to the presence
of advected scalar fields whose existence was related to the presence of an
infinite number of Casimirs. The paper is organized as follows: in Sec. 2 we
present the model equations; in Sec. 3 the simulation results are shown and
discussed; in Sec. 4 we focus on the energy partition; conclusions are drawn
in Sec. 5.

2. Model equations

Our investigation is based on the 3D four-field model for collisionless re-
connection, described in Ref.[13]. Considering a Cartesian coordinate system
(x, y, z), with the constant magnetic guide field directed along z, the model
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equations are given by

∂(ψ − d2

e∇
2

⊥
ψ)

∂t
+ [ϕ, ψ − d2

e∇
2

⊥
ψ] − dβ[ψ,Z] +

∂ϕ

∂z
+ dβ

∂Z

∂z
= 0, (1)

∂Z

∂t
+ [ϕ,Z] − cβ[v, ψ] − dβ[∇2

⊥
ψ, ψ] − cβ

∂v

∂z
− dβ

∂∇2

⊥
ψ

∂z
= 0, (2)

∂∇2

⊥
ϕ

∂t
+ [ϕ,∇2

⊥
ϕ] + [∇2

⊥
ψ, ψ] +

∂∇2

⊥
ψ

∂z
= 0, (3)

∂v

∂t
+ [ϕ, v] − cβ[Z, ψ] − cβ

∂Z

∂z
= 0, (4)

where ψ is the poloidal magnetic flux function, ϕ is the E×B stream func-
tion, Z is proportional to the parallel magnetic perturbation and v is the par-
allel plasma velocity. The parameter de represents the electron skin depth,
whereas the other two parameters cβ and dβ are defined by cβ ≡

√

β/(1 + β),
with β indicating the ratio between the plasma pressure and the toroidal mag-
netic pressure, and by dβ ≡ dicβ, where di is the ion skin depth. The Poisson

bracket is defined by [f, g] = ẑ · (∇f×∇g) for generic fields f and g, whereas
the symbol ∇⊥ refers to the gradient perpendicular to ẑ. Equations (1)-(4)
are written in a dimensionless form, according to which, the time is normal-
ized with respect to a characteristic Alfvèn time tA, lengths are normalized
with respect to a characteristic scale L and magnetic fields with respect to a
characteristic value B. If such value is taken to be the amplitude B0 of the
toroidal guide field, then the following ordering applies:

ψ ∼ ϕ ∼ Z ∼ v ∼
∂

∂t
∼

∂

∂z
∼ ǫ ≡

Bp

B0

≪ 1, (5)

∂

∂x
∼

∂

∂y
∼ 1, (6)

where Bp indicates a characteristic value for the poloidal magnetic field (re-
mark that this ordering differs from that of Ref. [13], in which a normalization
based on Bp, instead of B0, was adopted).
Note that the Eqs. (1)-(4) are exact only at the order ǫ2. Indeed, in their
derivation, only the contributions up to order ǫ of the normalized magnetic
field

B = ẑ + ∇ψ × ẑ + cβZẑ + O(ǫ2), (7)

have been used. A term −cβ
∫ x

0
dx′∂Z/∂zx̂ , which is of order ǫ2, is required

in order to have a divergence-free magnetic field, but it produces only higher
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order corrections to (1)-(4).
By construction, the system (1)-(4) is Hamiltonian and conserves the total
energy

H =
1

2

∫

D

d3x (d2

eJ
2 + |∇⊥ϕ|

2 + v2 + |∇⊥ψ|
2 + Z2), (8)

where J = −∇2

⊥
ψ is the parallel current density and D is the domain of

interest. The corresponding Poisson bracket has been provided in Ref. [13].

3. Numerical results

The equations (1)-(4) are integrated numerically by splitting all the fields
in two parts: an equilibrium, independent on time, and an evolving pertur-
bation. The perturbed component is advanced in time by an explicit, fourth
order Adam-Bashforth scheme. The equations are solved in a three dimen-
sional slab, with periodic boundary conditions along the y and z directions.
Dirichlet conditions are applied at the edges of the x axis, imposing that all
the perturbed fields go to zero. A compact finite difference [17] algorithm,
suitable for non-equispaced grid, is used for the spatial operations along the
x direction, while pseudo-spectral methods are adopted for the periodic di-
rections. Numerical filters are introduced in order to control the numerical
error propagation, which is a relevant issue in the absence of any dissipative
effect, as in the problem we are considering. As described in [17], these fil-
ters smooth out the small spatial scales below a chosen cutoff, while leaving
unchanged the large scale dynamics on all the time evolution of the process.
Finally, in order to address the three-dimensional problem, the code has been
parallelized adopting the MPI libraries. We set up a numerical experiment
of spontaneous, 3D, collisionless reconnection process in a static equilibrium
configuration with

ψeq = − log cosh(x) and ϕeq = veq = Zeq = 0. (9)

The integration domain is defined by −Lx < x < Lx, −Ly < y < Ly and
−Lz < z < Lz, where Lx = 11.32, Ly = 4π, Lz = 64π. The choice of Lx

avoids any influence of boundary conditions imposed along the x direction on
the reconnection dynamics. The value of Ly allow to consider the magnetic
reconnection instability induced by highly unstable modes, that in the two-
dimensional limit fall in the so-called large ∆′ regime. It is accepted [3, 4, 18]
that in this regime magnetic reconnection can develop on a relatively fast
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time scale. Finally, the choice of Lz >> Ly guarantees that kz = 2πn/Lz <
ky = 2πm/Ly for all the pairs of mode numbers (m,n) that develop during
the nonlinear evolution of the process, as imposed by the conditions (5)-(6).
In order to take into account the 3D effects on the magnetic reconnection we
perturbed the equilibrium (9) by introducing the following double helicity
perturbation on the current density field

δJ(x, y, z) = Ĵ1(x) exp(iky1y + ikz1z) + Ĵ2(x) exp(iky2y − ikz2z). (10)

Here we considered the pairs of wave numbers (1, 1) and (1,−1), that corre-
spond to the wave vectors components ky1 = 1/4, kz1 = 1/64 and ky2 = 1/4,
kz2 = −1/64. These two helicities, that are both linearly unstable, have
resonant surfaces at xs1 = 0.06258 and xs2 = −0.06258. Ĵ1(x) and Ĵ2(x)
are functions localized within a width of the order de, around xs1 and xs2,
respectively. Their typical amplitude is of order 10−4. In order to properly
treat the small scale structures that typically generate in the collisionless
regimes a mesh of nx = 801, ny = nz = 512 grid points has been adopted.
In this paper we analyzed the influence of the 3D effects on the dynamics of
the magnetic reconnection instability by considering two sets of the physical
parameters appearing in eqs. (1)-(4). In both cases we have used de = 0.24
and dβ = 0.96, while cβ is varied, assuming the values cβ = 0.4 and cβ = 0.8.
This choice allows to address two regimes with different values of the ion skin
depth di and of the ratio, β, between the plasma and the magnetic field pres-
sure. In particular, when cβ = 0.4, β = 0.19, while cβ = 0.8 gives β = 1.78,
which we refer to as a small and a high β regimes.

3.1. Qualitative aspects of the dynamics along the z direction

As shown in the framework of a 3D, two-field, dissipationless model
([15],[10], [11]), the nonlinear interaction between two initially imposed lin-
early unstable helicities strongly affects the spatial distribution of the small
scale structures where current density and vorticity fields are located. The
shape of these patterns is the consequence of the interaction between the
current layers associated to the island chains corresponding to the imposed
helicities. According to the 2D results [7], in the collisionless cases when
̺s 6= 0 the current density field exhibits a cross-shape structure distributed
along the separatrices of the magnetic islands, and is strongly peaked at the
corresponding X points. For a single helicity with (ky, kz) wave vector, the
value of the y coordinate of the magnetic island chain X points, varies along

6



z following the lines with slope kz/ky, while the value of the x coordinate
does not depend on z. This remains valid also in presence of more than
one helicity, at least at the very early stages of the nonlinear evolution. In
the early phase, indeed, each helicity is characterized by a given number,
depending on ky, of thin current density channels with a characteristic spa-
tial orientation. Similarly to electric wires, the current density channels of
various helicities interact among each other by means of attracting forces
whose strength depends on their geometry. In particular, the maximum of
the attraction is localized on the z = const sections where the centers of
the current density channels, localized at the X-points of the corresponding
magnetic islands, have the same y coordinates. On these sections the inter-
action leads to the merging of the current channels. An opposite scenario
characterizes the z = const planes where the X and O-points of the magnetic
islands with different helicities face each other. Due to the fact that negative
minimum current density values lie on the O points, very small attracting or
even repulsive interactions act on the maximum current density peaks, as it is
the case when two electric wires with currents flowing in opposite directions,
face each other. Fig. 1 sketches this behavior for a double helicity case with
poloidal and toroidal mode number m = 1, n = 1 and m = 1, n = −1. The
figure shows the current density distribution on four z = const sections at
the times t1 and t2, that correspond to the very beginning and the advanced
phases of the nonlinear evolution of the process. In the planes z = −Lz and
z = 0, where the X points of the structures have the same y coordinate,
the current layers experience the maximum attraction and merge by gener-
ating a single X point pattern at t = t2. On such planes, the dynamics is
quite similar to that observed in the single-helicity case. On the contrary,
on the planes z = Lz/2 and z = −Lz/2, where the maximum current den-
sity of an island chain faces the minimum of the second chain, current layers
merge by generating a new spatial distribution where two X-points are still
present. The above described situations refer to the two extreme cases that
can take place. Through the z = const planes, lying between those described
above, the dynamics varies continuously with z, with a force between the
current layers, which depends on the relative shift between the positions of
the X-points along the y direction.

3.2. Interpretation of the numerical simulations

Due to the high value of dβ, the early stages of the nonlinear evolution of
the reconnection process are similar in both the cases cβ = 0.4 and cβ = 0.8.
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We define here the end of the linear phase by the time in which the growth
of the two initially imposed modes, deviates from the exponential one, which
they would have when considered separately. In this early nonlinear phase
of the evolution, the contribution of the terms proportional to cβ is almost
negligible with respect to the Poisson brackets involving dβ. Since, in this
limit, the parallel magnetic field perturbation Z becomes proportional to the
vorticity U , the equations for F = ψ − d2

e∇
2

⊥
ψ and for U decouple from the

equations for Z and v and reduce to the two field limit of the model (1)-
(4), described in [15], where ρs = dβ [16]. According to the two field model
results [11], also in this case the current density and vorticity field concen-
trate in analogous structures characterized by thin and sharp layers on all
the z = const sections. Due to the proportionality with U , similar patterns
develop also in Z, while the parallel velocity component v is characterized
by large scale cell structures similarly to v⊥ = |∇⊥ϕ|, the field which it is
mainly transported by. This behavior is illustrated in figure 2, where the
contour plots of U , Z, J and v are plotted on the particular plane z = 0 at
t = 90τA for the cβ = 0.8 case.
When the influence of cβ effects becomes important, at the later stages of
the process, the vorticity layers tend to broaden, starting from the z = const
sections where the X points of the linear magnetic islands associated with
the different helicities have similar y coordinate. This leads to the formation
of new vorticity structures, localized around the x=0 axis for the particular
choice of symmetric initial conditions we assumed, and, as a consequence, of
highly localized, bar shaped, perpendicular velocity layers similar to jets as
shown in figure 3. As already pointed out in Ref. [13], when the influence of
a finite β is not negligible, the structures of U and Z eventually differ. On
the other hand, from Eqs. (2) and (3), one sees that in the limit cβ → 0
(but with finite dβ) the relation Z = dβU satisfies the system, if the initial
conditions on Z and U are the same, which is the case here. This explains
the similarity in the structures of Z and U for negligible β.
The amplitude of the perpendicular velocity tends to become stronger as the
magnetic reconnection develops. In the advanced nonlinear phase it provides
the dominant contribution both in the equations of the vorticity and the par-
allel velocity fields. U and v are simply transported along the perpendicular
velocity and as a consequence they assume the same spatial distribution of
v⊥. On the other hand, due to the value of dβ we considered, the time evolu-
tion of J and Z continues to be dominated by the nonlinear terms involving
the perpendicular component of the magnetic field, dβ[ψ,Z] and dβ[∇2

⊥
ψ, ψ]
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respectively. In figure 4 the intense jets appearing on the z = 0 section for
the perpendicular and parallel velocities are shown together with the more
ordered structures characterizing Z and J .
The fronts of both the parallel and perpendicular velocity jets tend to move
towards the center of the computational box starting from the boundary sur-
faces y = ±4π. Approaching the y = 0 plane, the tops of the jets roll up
and assume a “mushroom cap” shape which makes the velocity layers very
similar to the “finger” like structures typical of the hydrodynamic Rayleigh-
Taylor instability. This suggests the fluid like behavior of the system in these
structures. Despite the magnetic field line stochasticity which characterizes
the 3D settings we treat here, in fact, magnetic field components parallel
to the jets are practically zero, which makes the contribution of the Poisson
brackets [∇2

⊥
ψ, ψ] and [Z, ψ] locally negligible and reduces the U and v equa-

tions to purely fluid advection equations. This justifies the occurrence, at
later times, when the width of the jets is of the order of de and the velocity
is comparable to vA, of a Kelvin-Helmholtz like secondary instability which
is responsible for the break of the velocity patterns.
At this stage cβ effects appear also on J and Z fields producing a turbu-
lent redistribution of the patterns in the regions where v⊥ and v are picked,
which coexists with the laminar filaments concentrated at the boundaries of
the reconnection area. This behavior is clearly illustrated in fig. 5, where the
perpendicular velocity and current density are shown on the z = 8π section
at the latest stage of the process for the case cβ = 0.8.
On the x− y planes with a larger distance between the y coordinates of the
linear magnetic island X-points the contribution of cβ remains rather small
all along the reconnection process. On these sections, in fact, the nonlinear
coupling between the current density structures do not allow the formation
of the intense and extremely localized velocity layers described above, as il-
lustrated in fig. 6. Here a comparison of the merging of the current density
layers is shown on two different planes. On the left is the contour plot as it
appears at z = −64π and on the right as it appears at z = 32π plane. These
planes correspond to the first and second sketch of fig. 1 respectively. We
can see that the current density layers tend to broaden and their intensity
is reduced as far as we consider z-planes where the distance between the y
coordinates of the X-points, corresponding to the two initially imposed he-
licities, increases. Because of the dominant terms depending on dβ, the U , J
and Z fields exhibit analogous patterns, while v⊥ and v are characterized by
spatial structures larger than de and amplitude much smaller than vA.
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It is also interesting to comment on the difference between a small and a high
β regimes, which we consider as represented by the cβ = 0.4 and cβ = 0.8
cases, respectively. In particular, in the high-β regime, one has dβ ≈ di

and this parameter measures the strength of the Hall term in the equations
governing the magnetic dynamics. In the 2D limit, the model becomes then
identical to the Hall MHD model investigated in Ref. [19], apart from the dif-
ference in the mechanism breaking the frozen-in condition. The comparison
between the cβ = 0.4 and cβ = 0.8 cases confirms that also in 3D geometry
larger values of the β parameter accelerate the formation of the fluid jets,
whose occurrence happens at earlier stages of the reconnection process. Par-
allel and perpendicular velocities inside the layers are typically smaller in the
lower β case, for comparable extensions of the reconnection region on a given
z = const section. This difference is highlighted in fig. 7, where the profiles
of the velocity fields v⊥ and v are shown on the section z = 0 for the two
different values of cβ mentioned above. In particular, on the first row v⊥ (left
frame) and v (right frame) are plotted as function of x, in the limited range
−4 < x < 4 and −2 < x < 2 respectively, at the y coordinate corresponding
to their maximum. We see that, when considered at times which correspond
to the same phase of the evolution of the reconnection process in the two
cases, the velocity fields are smaller by a factor of order two in the lower
cβ limit, drawn in red. This characteristic is seen also in the second row of
fig. 7, where the velocity fields are plotted as function of y at x = 0, where
the fluids jets are located. Here, we can also appreciate that the extension
of the fluid jets, which start at the boundaries y = ±4π for both cases, is
shorter when cβ = 0.4. In this case (red lines) the jets end at y = ±5 while
for cβ = 0.8 (black lines) they end at y = ±1 approximately. This is due to
the fact that the jets formation started earlier for the cβ = 0.8. As it will
be seen in the next section, greater outflow speeds in the parallel direction,
at high β, can be ascribed to a transfer of energy, mediated by the Lorentz
force, from the magnetic to the kinetic form. The amount of transferred
energy is indeed proportional to cβ. Therefore one can expect a greater ac-
celeration at higher β. We remark also that, because the Hamiltonian (8) is
independent on β, the total energy available in the small and high β case is
the same. Therefore, increase of the parallel kinetic energy with β is a pure
consequence of the dynamical transfer and is not influenced by differences
in the total energy of the system. Finally, we notice that, as a consequence
of having less steep velocity layers for small β, in the latter case the Kelvin-
Helmholtz destabilization of the fluid jets is delayed, making its influence on
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the density current and parallel magnetic field perturbation rather smooth.

4. Energy considerations

Because the model under consideration is a Hamiltonian system, the total
energy (8) should be preserved during the dynamics. It is therefore impor-
tant to verify that the decay of H, due to numerical dissipation, remains
negligible. From Fig. 8 it is possible to see that, at the latest time of the
simulation, the drop in the total energy for both the cases reported is less
than 4 h. We remark also that, during most of the simulations, the velocity
at which the magnetic energy decreases is much larger than that at which
the total energy dissipates. This reassures us of the fact that the magnetic
energy loss is due to a genuine reconnection (or also ideal) process and not
to numerical dissipation.
In addition to remarks concerning the reliability of the simulations, the anal-
ysis of the time evolution of the different forms of energy is also suitable
for physical considerations. Fig. 8 shows how, evidently, the perpendicu-
lar magnetic energy is converted into various forms during the reconnection
process. In order to better understand the mechanisms of transfer of energy,
it is useful to consider the following relations, which can be easily obtained
from the model equations (1)-(4):

d

dt

1

2

∫

d3x|∇⊥ϕ|
2 =

∫

d3xJ(B · ∇)ϕ+ O(ǫ4), (11)

d

dt

1

2

∫

d3xv2 = cβ

∫

d3xv(B · ∇)Z + O(ǫ4), (12)

d

dt

1

2

∫

d3x(|∇⊥ψ|
2 + d2

eJ
2) = −

∫

d3xJ(B · ∇)ϕ

−dβ

∫

d3xJ(B · ∇)Z + O(ǫ4), (13)

d

dt

1

2

∫

d3xZ2 = −cβ

∫

d3xv(B · ∇)Z

+dβ

∫

d3xJ(B · ∇)Z + O(ǫ4). (14)

In order to obtain compact and physically more meaningful expressions, we
express the right-hand sides of (11)-(14) in terms of the magnetic field B,
instead of ψ and Z. As a consequence, by virtue of what was specified
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in Sec.2, the resulting expressions are exact only at the leading order and
corrections of order ǫ4 are required. Of course, giving up B in favor of ψ
and Z, yields the relations whose sum gives the exact conservation of the
Hamiltonian H. Note also that all the leading order terms on the right-hand
sides of (11)−(14) possess the common form

∫

d3xf(B·∇)g, for generic fields
f and g. Mechanisms that produce the transfer of energy from one form to
another, can then become inefficient if some fields have a weak variation
along the magnetic field lines.
From Eqs. (11) and (13), we see that the mechanism that acts as a source
for perpendicular kinetic energy, is a sink for the energy of the poloidal
magnetic field and of the parallel current. The rise of Ekperp observed in
Fig. 8, then implies a drop in EB + Eke. The growth of the parallel kinetic
energy, on the other hand, is possible only at finite β, in which case the
parallel Lorentz accelerates the fluid. This mechanism acts also as a sink for
the parallel magnetic energy. Note that, in Fig. 8, for the smaller cβ case,
there is a competition between the conversion of magnetic energy into parallel
magnetic energy and perpendicular kinetic energy, which lasts until around
t = 125 i.e. well into the nonlinear phase, when EZ reaches its maximum
and then drops. At the same time, an increase in Ev is observed. On the
other hand, for the larger cβ case, the conversion into perpendicular plasma
kinetic energy, is dominant from the beginning of the nonlinear phase. We
notice also that the form of energies that grow the most in the last phase of
the simulations, i.e. Ev and Ekperp, are those determined by the fields, v and
|∇⊥ϕ|, respectively, which exhibit the secondary instability.

5. Conclusions

In this paper we analyzed a three-dimensional model for collisionless re-
connection, which takes into account magnetic and velocity perturbations
along the guide field direction. On the basis of previous two-dimensional
studies we were interested in exploring in a 3D context the different behavior
of the current density and vorticity structures. To this aim, we carried out
a detailed analysis of the plasma velocity fields, which play a key role in the
current density and vorticity dynamics. In the presence of high values of
the dβ parameter, we found that, during the early stages of the nonlinear
phase, the perpendicular and parallel velocities on the z = const sections
are characterized by large scale cell structures. The other fields J , U and
Z, on the other hand, develop thinner spatial patterns similar to the case
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β = 0. Following the evolution process, we observe that the perpendicular
velocity tends to form highly localized patterns, aligned along the x = 0
line, on some peculiar z = const sections, which depend on the particular
choice of the initial perturbation. These patterns are then recaptured also in
the parallel velocity and vorticity fields, while, due to the high value of the
dβ parameter chosen for this analysis, the evolution of the current density
and of the Z field, is dominated by the contribution of the Poisson brackets
involving the magnetic flux.

At the end of the reconnection process both the perpendicular and par-
allel velocity layers have become so localized and intense that they develop
secondary instabilities of the Kelvin-Helmholtz type. In connection with this
we find that the larger cβ, the sooner these instabilities develop.

The increase of the velocities fields and the occurrence of secondary in-
stabilities influence also the energy distribution, favoring the conversion of
the perpendicular magnetic energy into perpendicular and parallel kinetic
energy rather than into parallel magnetic energy. The latter, in particular
is transferred into parallel kinetic energy through the action of the parallel
Lorentz force.
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t1 t2

Figure 1: Sketch of the dynamics of the current density structures (black solid lines)
in the nonlinear evolution of the 3D reconnection process. The two columns shows the
characteristic contour plots of the current density at an early, t1, and at a more advanced
stage, t2, of the nonlinear phase on four different z = const sections. In each plot the gray
regions represent the corresponding domains where the magnetic topology modifications
produced by the reconnection instability are located.
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Figure 2: Contour plots of the vorticity U (left top frame), the parallel magnetic field
perturbation Z (right top frame), the current density J (left bottom frame) and the
parallel velocity v (right bottom frame) on the section z = 0 at the time t = 90τA,
corresponding to the early nonlinear evolution, for the cβ = 0.8 case.
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Figure 3: Contour plots of the vorticity U (left frame) and the parallel velocity v (right
frame) on the section z = 8π at the time t = 105τA, for the cβ = 0.8 case. Early fluid jets
are located around the x = 0 line.
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Figure 4: Contour plots of the perpendicular velocity v⊥ (left top frame), the parallel
velocity v (right top frame), the parallel magnetic field perturbation Z (left bottom frame)
and the current density J (right bottom frame) on the section z = 8π at the time t = 125τA,
for the cβ = 0.8 case. Jet like patterns are present in both the velocity components,
whose maximum amplitude is of the order of the Alfvèn velocity, while Z and J exhibit a
filamentary structure distributed on a large fraction of the corresponding area where the
magnetic topology modifications are located.
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Figure 5: Contour plots of the pependicular velocity v⊥ (left frame) and the current density
J (right frame) on the section z = 8π at the time t = 145τA, for the cβ = 0.8 case. The
occurrence of a secondary Kelvin-Helmholtz instability is responsible for the break of the
v⊥ field layers. At this stage of the process, a turbulent redistribution also affects the J
structures, especially along the layers where v⊥ is concentrated.
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Figure 6: Contour plots of the current density on the z = −64π (left frame) and on the
z = −32π (right frame) at the time t = 105τA, for the cβ = 0.4 case. The current density
layers tend to broaden and their intensity is reduced as far as we consider z-planes where
the distance between the y coordinates of the X-points, corresponding to the two initially
imposed helicities, increases.
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Figure 7: Profiles on the z = 0 section of v⊥ and v as function of x (top left and right
frame respectively) at the y coordinate corresponding to their maximum, and as function
of y (bottom left and right frame respectively) at x = 0. The curves corresponding to the
cβ = 0.8 case are drawn in black, while the curves corresponding to the cβ = 0.4 case are
drawn in red.
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Figure 8: Normalized deviations, of the different energy contributions from their value
at t = 0, as a function of time for two different simulations. On the left is the plot
corresponding to the set of parameters cβ = 0.4, di = 2.4, while on the right is the
plot corresponding to the case cβ = 0.8, di = 1.2. EV refers to the parallel plasma
kinetic energy (1/2)

∫

d3xv2, EZ to the parallel magnetic energy (1/2)
∫

d3xZ2, EB to the
perpendicular magnetic energy (1/2)

∫

d3x|∇⊥ψ|
2, Eke to the kinetic energy associated

to the parallel current density (d2

e/2)
∫

d3xJ2, Ekperp to the perpendicular kinetic energy
(1/2)

∫

d3x|∇⊥φ|
2 and Etot to the total energy H.

23


