
HAL Id: hal-00617460
https://hal.science/hal-00617460v2

Submitted on 12 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LAD models, trees and an analog of the fundamental
theorem of arithmetic

Nadia Brauner, Sylvain Gravier, Louis-Philippe Kronek, Frédéric Meunier

To cite this version:
Nadia Brauner, Sylvain Gravier, Louis-Philippe Kronek, Frédéric Meunier. LAD models, trees
and an analog of the fundamental theorem of arithmetic. Discrete Applied Mathematics, 2013,
�10.1016/j.dam.2012.12.004�. �hal-00617460v2�

https://hal.science/hal-00617460v2
https://hal.archives-ouvertes.fr

LAD MODELS, TREES AND AN ANALOG OF THE FUNDAMENTAL
THEOREM OF ARITHMETIC

NADIA BRAUNER, SYLVAIN GRAVIER, LOUIS-PHILIPPE KRONEK, AND FRÉDÉRIC MEUNIER

Abstract. Motivated by applications of Logical Analysis of Data (LAD) in medical con-
texts, original discrete optimization problems are proposed. When a patient arrives with
a presumption of a disease, he is submitted to a sequence of tests. From one patient to
another, the tests allowing to detect the disease may vary. A subset of tests whose results
detect the disease in a given part of the population is called a pattern, which has its own
prevalence in the population.

If there is only a limited number of tests that can be done, which ones must be selected
in order to maximize the number of spotted patients ? Or, if each test has a cost, in which
order the tests have to be done, in order to minimize the cost ? It is the kind of questions
that are investigated in this paper. For various special cases, polynomial algorithms are
proposed, especially when the hypergraph whose vertices are the tests and whose edges are
the patterns is a tree graph.

One of these questions involves a criterion which is not a number but a sequence of
numbers. The objective is then to find the best sequence for the lexicographic order. To solve
this question, a new product on finite sequences is defined, namely the maximum shuffle
product, which maps two sequences to their shuffle that is maximal for the lexicographic
order. Surprisingly, this product leads to a theorem similar to the fundamental theorem of
arithmetic: every sequence can be written uniquely as the product of prime sequences, with
the suitable definition of prime sequences.

1. Introduction

1.1. Context. Discrete mathematics and medicine see their interactions growing these last
years. This is particularly true for the area of classification models, which help practitioners
to make diagnosis on the basis of patterns (rules). Formalizing questions arising when one
implements a set of patterns (a model), we get nice combinatorial optimization problems.
This paper aims to present a series of such problems, to focus on their relationships to
issues already addressed in former papers and to extract nice combinatorial questions and
properties.

Logical Analysis of Data (LAD) aims at helping practitioners for decision making when
a new patient arrives with a presumption of a disease. It is a rule based method where a
classification model is composed of a set of patterns [5]. Assume that we are given possible
tests (e.g. age, headache...). From one patient to another, the tests allowing to confirm the
disease may vary. A pattern is a boolean conjunction on the results of tests. If a patient
can be classified by these results, a positive (resp. negative) class meaning having (resp.
not having) the disease, we say that the pattern covers the patient. We shall consider an

Date: September 9, 2011.
Key words and phrases. decomposition theorem, lexicographic order, logical analysis of data, product of

sequences, tree.
1

approximation of the global problem with the following hypothesis: every patient is covered
by exactly one pattern.

The problems we are interested in concern for instance the ordering of the tests allowing to
classify a new patient as soon as possible, or the selection of a subset of tests if all tests can
not be done. To estimate the quality of an ordering, or of a subset of the tests, a database
is used. It is composed of already classified patients, for whom there were a presumption
of the disease. The prevalences of the patterns in the database are supposed to be good
approximations of the pattern prevalences among the future patients, who will have to be
classified. Therefore, when a solution (an ordering, a subset, ...) is proposed, its quality is
measured by its results on the database.

A pattern is identified with the subset of tests whose results it takes into account. We will
often work with the pattern-test hypergraph H = (V,E), having the tests as vertex set and
the patterns as edge set. The prevalence of a pattern e ∈ E is the number p(e) of patients
of the database covered by this pattern.

Table 1 presents a LAD model where the patterns are based on 4 tests. The last column
gives the number of patients covered by the pattern in the database. In terms of the pattern-
test hypergraph, V = {1, 2, 3, 4} and E = {1, 23, 13, 14}, with p(1) = 18, p(23) = 10,
p(13) = 70 and p(14) = 38.

Pattern Test 1 Test 2 Test 3 Test 4 Class Cover
P1 > 30 positive 18
P2 negative positive positive 10
P3 < 15 negative negative 70
P4 < 15 positive negative 38

Table 1. A LAD model

Note that when the tests are done one after the other, each time a complete pattern is
contained in the tests already done, all the patients in the database covered by this pattern
can be classified. With the example of Table 1, after Test 1 it is possible to classify 18 people
as positive. If the next test is Test 3, 70 additionnal people are classified, in this case as
negative. So after Test 1 and Test 3 we get a total of 88 people classified.

If each test v has a specific cost c(v), tests with high costs have to be at the end of the
process, since we can then hope that most of the patients have already been spotted. It
suggests the following problem.

Problem Testing Cost
Instance: A hypergraph H = (V,E) with n vertices, two maps p : E → R+ \ {0} and
c : V → R+

Solution: An ordering v1, . . . , vn of the vertices such that
n∑
i=1

∑
e∈E\E[v1,...,vi−1]

p(e)c(vi)

is minimum.

2

This problem was initiated when working on the diagnosis of growth hormone deficiency
[9]. During the diagnosis process many practitioners are involved successively (general prac-
titioners, biologists, endocrinologists, radiologists) and the tests (height, bone age, kary-
otype...) have different performances and costs.

Remark. In this model, any patient whose status has not been settled will be subject to
the tests. However, in many cases, the first results of the tests will be sufficient for some
patients to predict the result of the next test, and hence that this next test is not necessary
for these patients. The modelling of such features deserves future works.

Finding the k tests covering the most patients can be formalized as follows.

Problem Extraction of a sub-model
Instance: A hypergraph H = (V,E) with n vertices, a map p : E → R+ \ {0} and an
integer k.
Solution: A subset S ⊆ V of cardinality at most k maximizing p(E[S]).

This problem appeared when working on the diagnosis of pulmonary embolism. The
medical question was to identify the first tests to be implemented at the emergency room in
order to be able to make rapidly the greatest number of diagnosis for this pathology.

We may want to give a complete ordering v1, . . . , vn of the tests in such a way that if for
a reason we do not want to do all tests and we stop them say at vk, we do not regret our
choice of an ordering. We write � the lexicographic order on sequences.

Problem Non-dominated ordering
Instance: A hypergraph H = (V,E) with n vertices and a map p : E → R+ \ {0}
Solution: An ordering v1, . . . , vn of the vertices such that the sequence h1, . . . , hn, with
hi = p(E[{v1, . . . , vi}]), is maximal for the lexicographic order.

It is also interesting to compare two sequences with respect to the Pareto-order instead of
lexicographic order.

A Pareto-optimal ordering v1, . . . , vn is such that for every other ordering v′1, . . . , v
′
n, either

there is a i ∈ {1, . . . , n} with h′i < hi, or for all i ∈ {1, . . . , n} we have h′i = hi. A sequence
maximal for the lexicographic order is Pareto-optimal, but the converse is not true.

Problem Pareto-optimal ordering
Instance: A hypergraph H = (V,E) with n vertices and a map p : E → R+ \ {0}
Solution: An ordering v1, . . . , vn of the vertices such that the sequence h1, . . . , hn, with
hi = p(E[{v1, . . . , vi}]), is Pareto-optimal.

3

1.2. Main results. Testing costs, Extraction of a sub-model, and Non-dominated
ordering are checked to be NP-hard, even if the hypergraph H is a graph in the case of
the last two, but the complexity of Pareto-optimal ordering is open.

However, we prove the following

Proposition 1.1. Pareto-optimal ordering is polynomial (in O(n2 log n)) when the
hypergraph is a tree graph.

Theorem 1.2. Non-dominated ordering is polynomial (in O (n3 log n log d)) when the
hypergraph is a tree graph and d its maximal degree.

The polynomiality stated in Proposition 1.1 is a corollary of Theorem 1.2, since as we have
already noted, an ordering of the tests that is maximal for the lexicographic order is neces-
sarily Pareto-optimal. Proposition 1.1 finds its interest in a better complexity (O(n2 log n)
versus O (n3 log n log d)).

The proof of Theorem 1.2 motivates the definition of shuffles of sequences.
A sequence c = c1 . . . cn is a shuffle of s sequences ai = ai1 . . . aini

, i = 1, . . . , s if

• n =
∑s

i=1 ni.
• there are s strictly increasing functions αi : [ni] → [n] – the prints – whose images

are pairwise disjoint and such that cαi(j) = aij for all i, j.

As an example, take a = 21, 32, 2, 4 and b = 4, 1, 5; the sequence c = 21, 4, 32, 2, 1, 5, 4 is a
shuffle of them.

Denote by ms(a, b) the shuffle of two sequences of real numbers a and b that is maximal
for the lexicographic order �. With a and b as in the previous example, we get ms(a, b) =
21, 32, 4, 2, 4, 1, 5.

We discuss the way for computing ms(a, b) given two sequences a and b. Theorem 1.2 is
a consequence of the polynomiality of this operation.

On our track, we discovered a combinatorial analog of the fundamental theorem of arith-
metic, which states the uniqueness of decomposition of an integer as product of prime num-
bers. To our knowledge, this combinatorial analog is completely new. There exist other
decompositions theorems which generalize the classical one (see [11] for instance), but they
do not contain it.

We define a notion of prime sequences. A prime sequence p = p1 . . . pn is such that
pipi+1 . . . pn � p for each i ≥ 1. For instance, the sequence 2, 14, 13, 6 is prime, but not the
sequence 2, 14, 13, 6, 2 since 2 ≺ 2, 14, 13, 6, 2.

Theorem 1.3. Each sequence a of real numbers can be written as a unique maximum shuffle
(up to permutation)

a = ms
(
qδ11 , q

δ2
2 , . . . , q

δs
s

)
where the δj are positive integers and the qj are prime.

Here, qδ denotes ms(q, . . . , q︸ ︷︷ ︸
δ times

).

For example, the sequence 18, 17, 19, 18, 17, 19, 5, 18 can be written as the product of prime
sequences ms(p1,p2,p3,p4) with p1 = 18, p2 = 17, 19, 18, p3 = 17, 19 and p4 = 5, 18.

1.3. Notations.
4

1.3.1. Hypergraphs. A hypergraph is denoted H = (V,E). The number n is usually its
number of vertices. Two vertices u and v are neighbors is there is an edge e ∈ E such that
{u, v} ⊆ e. By N(A), for A a subset of vertices, we denote the set of vertices in V \A having
at least one neighbor in A. By E[X], for a subset X ⊆ V of vertices, we mean the subset of
edges having all their vertices in X.

1.3.2. Combinatorics. Let A be an additive semi-group and w be any map from a finite set
X into A. For F a subset of X, we denote

∑
x∈F w(x) by w(F).

Given a set E endowed with a linear order ≤, we recall that the lexicographic order � on
the set of all finite sequences of elements of E is defined as follows:

• ε � a with ε being the empty sequence and a being any finite sequence,
• a1a2 . . . am � b1b2 . . . bn if a1 < b1 or if a1 = b1 and a2a3 . . . am � b2b3 . . . bn.

1.3.3. Scheduling. Along the paper, we use sometimes equivalence with scheduling problems.
We use the classical α|β|γ notation in scheduling where α denotes the properties of the
machines (or the processors), β indicates the constraints on the tasks and γ describes the
objective function. In this paper, α is equal to 1 since we consider one machine problems.
The field β contains information on the precedence graph for the tasks (where ‘prec’ means
that the precedence graph can be any acyclic graph). The objective in the field γ is

∑
wiCi

if we want to minimize the total weighed completion time where wi is the weight of task i
and Ci is its completion time. It is

∑
wiUi when we want to minimize the weighted number

of late jobs (where Ui = 1 if task i completes after its dead line, Ui = 0 otherwise).

1.4. Plan. Each of the Sections 2, 3, 4 and 5 presents various resultsfor one of the 4 problems
defined above. In particular, Theorem 1.2 is proved in Section 4 and Proposition 1.1 is proved
in Section 5. Section 6 is devoted to the proof of the analog of the fundamental theorem of
arithmetic for sequences and shuffles (Theorem 1.3).

2. Testing Cost

We show that the problem Testing Cost is equivalent to a scheduling problem on one
machine with a specific precedence graph and the total weighted completion time as the
objective function: 1|prec|

∑
wiCi in the usual scheduling notations.

We now define the tasks and the precedence graph.

• To each vertex v in the hypergraph is associated a (vertex-)task of duration tv = c(v)
and of weight wv = 0;
• To each edge e in the hypergraph is associated a (edge-)task of duration te = 0 and

of weight we = p(e);

The precedence graph naturally follows: a edge-task can be executed once all the vertex-
tasks coming from vertices in the edge are completed. Figure 1 presents the scheduling
problem associated to the model from Table 1.

Test 1 Test 2 Test 3 Test 4
Costs 1 5 15 8

Table 2. Costs for the test of Table 1

5

�
�

�
�Test 4

�
�

�
�Test 3

�
�

�
�Test 2

�
�

�
�Test 1

�
�

�
�Pattern 4

�
�

�
�Pattern 3

�
�

�
�Pattern 2

�
�

�
�Pattern 1-

A
A
A
A
A
A
A
A
AU

B
B
B
B
B
B
B
B
B
B
B
B
BBN

-

-�
�
�
���

-t = 8; w = 0

t = 15; w = 0

t = 5; w = 0

t = 1; w = 0

t = 0; w = 38

t = 0; w = 70

t = 0; w = 10

t = 0; w = 18

Figure 1. The precedence graph associated to the model of Table 1 and the
costs of Table 2

Proposition 2.1. Problem Testing Cost is equivalent to the scheduling problem 1|prec|
∑
wiCi

with the tasks and the precedence graph defined as above.

Proof. Given a solution of the problem Testing Cost, we get a feasible solution for problem
1|prec|

∑
wiCi of same cost while starting a edge-task as soon as all vertex-tasks it requires

are finished. Conversely, an optimal solution of problem 1|prec|
∑
wiCi is such that a edge-

task starts as soon as all vertex-tasks it requires are finished and the sequence of vertices
the solution induces is a solution of same cost for Testing Cost. �

The precedence graph has the following property: if there is a precedence constraint
between tasks i and j of the form i → j, then wi = 0 and tj = 0. This type of graphs is
known as red-blue bipartite graphs [7].

The scheduling problem 1|prec|
∑
wiCi is NP-hard for a general precedence graph [8]. We

consider the special case of red-blue bipartite graphs for the precedence constraints with the
restriction pi ∈ {0, 1} and wi ∈ {0, 1}. This theoretical situation corresponds to the very
special case where each pattern covers exactly one patient and each test has a unitary cost.
It has been proved in [12] that this special case has the same approximation ratio that the
general problem. Testing cost is therefore NP-hard.

3. Extraction of a sub-model

3.1. The densest subgraph. The special case of the problem Extraction of a sub-
model when H is a graph has been widely studied and is better known under the name
Densest k-subgraph problem. It is an NP-hard problem since when p(e) = 1 for all e
it becomes the problem of selecting the subset X of vertices with |X| = k such that E[X]
has maximal cardinality, which contains the maximum clique problem. It is known to be
polynomial on trees, with a complexity O(k2n) [10].

6

3.2. As a scheduling problem. The problem Extraction of a sub-model can also
be linked to a scheduling problem similar to the one of Section 2. There is still one machine
and the precedence graph is the same. The tasks are defined as follows :

• To each vertex v is associated a (vertex-)task of duration tv = 1 and of weight wv = 0
with no deadline dv = +∞;
• To each edge e is associated a (edge-)task of duration te = 0 and of weight we = p(e)

and of deadline de = k.

The objective function is now the minimization of the number of weighted tasks that finish
late,

∑
wiUi where Ui indicates whether task i finishes after its deadline. The edge-tasks

that are not late compose the submodel S.
We have therefore the following proposition. The proof is omitted since it is very similar

to the one of Proposition 2.1.

Proposition 3.1. Problem Extraction of a sub-model is equivalent to the scheduling
problem 1|prec|

∑
wiUi with the tasks and the precedence graph defined as above.

This problem has been widely studied under different forms, see e.g. [2]. For instance,
Extraction of a sub-model is equivalent to the tool magazine problem where the tests
are the tools, the patterns are the parts to be produced and the prevalence is the demand for
the parts. The part-tools matrix indicating for each part the tools needed for its production
is then the incidence matrix of the hypergraph H. The value k defines the capacity of the tool
magazine and the objective is to select k tools for the magazine that allow the satisfaction of
the largest demand. This problem of the tool magazine is known to be NP-hard even if the
number of tools for each part is less than 2 [4]. Crama [2] has given linear and non-linear
formulations of the problem, proposed solutions methods and listed other applications of this
model like repair kit selection or allocation of memory space in a database. It is mentioned
in this paper that those practical problems are solved with ad-hoc heuristics. In [3], the
authors present a worst case analysis of the greedy heuristics usually developed for this
problem. They also conjecture that there is no polynomial time algorithm with a constant
performance ratio.

4. Non-dominated ordering

4.1. First properties. Defining p(e) to be 1 for all e ∈ E, a maximal ordering for the lexi-
cographic order necessarily starts with the vertices of a maximum clique. We have therefore
the following complexity result.

Proposition 4.1. Non-dominated ordering is NP-hard even if the hypergraph H is a
graph.

As a preliminary remark on the problem, we can notice that

Lemma 4.2. Let v1, . . . , vn be a solution of Non-dominated ordering. For all i < n, if
N(v1, . . . , vi) 6= ∅, then vi+1 ∈ N(v1, . . . , vi).

Proof. Assume that we have i such that N(v1, . . . , vi) 6= ∅. Choosing vi+1 not in N(v1, . . . , vi)
leads to hi+1 = hi whereas choosing it in N(v1, . . . , vi) leads hi+1 > hi, without changing the
values of hj for j < i. �

7

4.2. A greedy algorithm. We propose now a greedy approach.
At each step, add the minimal number of vertices such that the induced subhypergraph

contains a new edge. If several new edges can be obtained in this way, select the one with
maximal value p. At the end of each iteration, the hypergraph is updated by merging the
edges with the same sets of missing vertices. The new p is the sum of the values of p of the
merged edges.

Greedy algorithm (a hypergraph H)
// Create an order with a greedy method

Ordering ← ∅ and ActiveEdges← ∅
While Ordering does not contain all the vertices do

ActiveEdges ← edges from hypergraph H that have the smallest

number of vertices not in Ordering
Add to Ordering the vertices completing an edge in ActiveEdges
with the maximal p.
Merge the edges with identical sets of vertices not in Ordering
and update the values of p.

end While

Return Ordering

Unfortunately, this greedy algorithm does not always lead to an ordering maximal for the
lexicographic order �. Consider, for example, the model presented in Table 3. The order
Test 1, Test 2, Test 3, Test 4, Test 5 can be obtained by the greedy algorithm. It is dominated
by the order Test 4, Test 3, Test 5, Test 2, and Test 1. The following proposition gives a
sufficient condition for the order produced by the greedy algorithm to be non-dominated.

Patterns Test 1 Test 2 Test 3 Test 4 Test 5 Cover
P1 1 1 0 0 0 1
P2 0 0 1 1 0 1
P3 0 0 0 1 1 1

Table 3. A model for which the greedy algorithm does not give a non-
dominated order

Proposition 4.3. If, at each iteration, there is only one active edge of maximum prevalence,
then the result of the greedy algorithm is an optimal solution of Non-dominated ordering.

Proof. The proof is achieved by induction on the iterations of the algorithm. At each step,
we can not do better than selecting the vertices of this active edge. �

The sufficient condition presented in Proposition 4.3 is realistic in practice. The probability
is low that there exist, at some time in the execution of the algorithm, two distinct updated
edges that have the same prevalence and that need the realization of a minimal number of
tests. Indeed, each of such updated edges comes from a distinct set of edges of the original
hypergraph and, generically, these two sets of edges do not have the same total prevalence
or, in other words, generically, the hyperplane

∑
e∈E p(e)xe = 0 does not contain any vertex

of the hypercube [−1, 1]|E|. An interesting question could be to characterize the models that
satisfy the condition of Proposition 4.3.

8

4.3. Tree. The purpose of this subsection is to prove Theorem 1.2. As a by-product, we get
some properties of the shuffle and the ms operation (defined in the introduction). In Section
6, it will lead to the analog of the fundamental theorem of arithmetic we have mentioned.

4.3.1. Preliminary discussion.

Lemma 4.4. Let a1 . . . an and b1 . . . bn be two sequences of real numbers (of same length).
a1 . . . an � b1 . . . bn if and only if a1(a2 − a1)(a3 − a2) . . . (an − an−1) � b1(b2 − b1)(b3 −
b2) . . . (bn − bn−1).

Proof. Let i∗ be the first index i such that bi 6= ai. We have bi∗ > ai∗ if and only if
bi∗ − bi∗−1 > ai∗ − ai∗−1. �

Lemma 4.4 combined with Lemma 4.2 shows that finding a maximal ordering for the
lexicographic order when the hypergraph H is a tree T reduces to the following problem.
Given r a special vertex in T , and a weight function w : V (T)→ R+ \ {0} (the weight of a
vertex v being the original weight of the unique edge emanating from v toward r), compute
an ordering r = v1, . . . , vn of the vertices such that vi+1 ∈ N(v1, . . . , vi) for all i and such that
w(v2), . . . , w(vn) is maximal for the lexicographic order. Doing the same computation for
each vertex r of T , and keeping the maximal one gives the solution of the original problem.

Note that the question of finding such an ordering starting from vertex r is easy if all
weights in the tree are distinct. Indeed, at each time, selecting the edge with maximal
weight among the edges leaving the set of vertices already reached clearly provides the
maximal ordering (Proposition 4.3). The difficulty arises precisely when there are many
weights that are equal. Choosing then an edge with maximal weight could eventually lead
to lower weights later than those that would have been obtained by choosing another edge
of the same maximal weight.

Deleting r from T gives raise to say s subtrees T1, T2, . . . , Ts. As we will prove below,
once we have a maximal ordering of the vertices for each Ti, it is quite easy to “mix” these
orderings to get the optimal one for T itself. This motivates the following study of sequences
and the definition of the shuffle.

4.3.2. Sequences, lexicographic order and shuffles. We work with sequence of real numbers.
For A ⊆ {1, 2, . . . , n}, we denote by c|A the subsequence (ci)i∈A. Given two sequences
a = a1 . . . am and b = b1 . . . bn, we denote by a •b the sequence a1 . . . amb1 . . . bn. The empty
sequence is denoted ε.

We endow the set of sequences with the lexicographic order �.
We have the following proposition, which seems to be interesting for its own sake.

Proposition 4.5. Given s sequences ai, i = 1, . . . , s, of real numbers, it is possible to
compute ms(a1, . . . ,as) in O(n2 log s), where n is the sum of the lengths of the ai.

Before proving it, we will study some properties of ms. We will use the properties stated
in the following lemma without explicit mention. Indeed, there are all more or less obvious.

Lemma 4.6. We have the following properties.

(1)
ms(a, b) = ms(b,a).

(2) For a fixed sequence a, the map x 7→ ms(a,x) is an increasing map.
9

(3) ms(a, b) •ms(c,d) � ms(a • c, b • d).
(4) if a � b then for any sequence c we have

c • a � c • b.
(5)

ms(a,ms(b, c)) = ms(a, b, c).

Proof. Except maybe Points (3) and (5), the other points are straightforward.
Point (3): it is a consequence of the following fact: a shuffle of a and b followed by a

shuffle of c and d is a shuffle of a • c and b • d.
Point (5): We obviously have

ms(a,ms(b, c)) � ms(a, b, c).

Hence, we want to prove the reverse inequality. Let d = ms(a, b, c) and s = ms(b, c). Define
β and γ to be respectively the prints of b and c in d. Denote B the image of β and C the
image of γ. Then d|B∪C � s. Since, d = ms(a,d|B∪C), we conclude with the help of Point
(2). �

Lemma 4.6 shows that the set of sequences endowed with ms as a product is a monoid.

Lemma 4.7. Let a and b be two sequences such that a � b. Let c be another sequence.
Then

ms(a, c • b) � ms(c • a, b).

Proof. Write a = a1 . . . am, b = b1 . . . bn and c = c1 . . . cr.
The proof works by induction on m+ n. If m+ n = 1, the statement is straightforward.
Let a′ = a1 . . . ak and a′′ = ak+1 . . . am be two sequences such that

ms(a, c • b) = ms(a′, c) •ms(a′′, b).

If a′′ = ε, we define k to be m.
Now, define b′ := b1 . . . bmin(k,n) and b′′ such that b = b′ • b′′. If k or n equals 0, we define

b′ := ε. If b′ � a′, then we have

ms(a′, c) •ms(a′′, b) � ms(b′, c) � ms(c, b′) •ms(a, b′′) � ms(c • a, b).

Hence, we can assume that b′ = a′. Thus, b′′ � a′′. By induction

ms(b′ • a′′, b′′) � ms(a′′, b′ • b′′).

Using the equality b′ = a′ and Point (3) of Lemma 4.6, we get finally

ms(a, c • b) = ms(a′, c) •ms(a′′, b′ • b′′)
� ms(b′, c) •ms(b′ • a′′, b′′)
= ms(b′, c) •ms(a′ • a′′, b′′)
= ms(c, b′) •ms(a, b′′)
� ms(c • a, b).

�
10

Proof of Proposition 4.5. Lemma 4.7 implies that if d = d1 . . . dm and e = e1 . . . em′ are two
sequences such that e � d, then

(1) ms(e,d) = e1 •ms(d, e2 . . . em′).

Indeed, if e1 > d1, it is obvious, and if not, Lemma 4.7 with c := e1, a := d2 . . . dm and
b := e2 . . . em implies it.

Assume now that a1 � . . . � as. Note than necessarily ms(as−1,as) � ai for all i /∈
{s− 1, s}. Combining Point (5) of Lemma 4.6 and the fact summarized by Equation (1), we
get by an induction on s that

ms(a1, . . . ,as) = as1 •ms(a1, . . . ,as−1, as2 . . . asns).

This leads directly to an algorithm whose time complexity is O(n2 log s):

• sort all sequences: O(sn log s),
• let m = ε,
• repeat n times the following operations: append to m the first term of the maximal

sequence a in the list, delete this first term from a and put the new a at the right
place in the list (this last operation takes O(n log s)).
• return m.

�

4.3.3. Proof of Theorem 1.2.

Proof. According to the previous discussion, it remains to prove that the optimal ordering
starting at r can be obtained by doing ms on the optimal orderings of the subtrees Ti of T .
It is straightforward.

Let ri be the root of Ti for each i. The optimal ordering for T is a shuffle of the orderings of
the Ti. According to the preliminary discussion in Subsection 4.3.1, each of these orderings
starts with ri.

For each i, consider now an ordering of the vertices of Ti starting with ri, and denote by
mi the corresponding sequence of weights. The best shuffle we can get as an ordering of the
vertices of T is the one obtained by doing the maximum shuffle product

ms(w(r1) •m1, . . . , w(rs) •ms).

For each Ti, the best is to choose the ordering that maximizes mi with respect to the
lexicographic order (ms is increasing).

The whole complexity is computed as follows: for a fixed root r, using the inequalities

n2 log n ≥ log n
∑
i

n2
i ≥

∑
i

n2
i log ni when

∑
i ni = n− 1 and ni ≥ 0 for all i,

we get by induction O(n2 log n log d) where d is the maximum degree of the tree. Doing the
computation for each possible root provides the solution. �

5. Pareto-optimal ordering

Finding a Pareto-optimal ordering seems to be a difficult task. It is even unclear whether
it is possible to check in polynomial time that a given ordering is Pareto-optimal.

In some cases, the following criterion will be used for q = 1.
11

Lemma 5.1. Let f : Rn → Rq be a strictly increasing map (ie x 6= x′ are such that xi ≤ x′i
for all i, then f(x) 6= f(x′) and f(x)k ≤ f(x′)k for all k = 1, . . . , q). Let S be a subset of
Rn. If f(x∗) is Pareto-optimal on f(S), then x∗ is Pareto-optimal on S.

Proof. Let y ∈ Rn distinct from x∗. We have f(y)k ≤ f(x∗)k for a certain k. Since f is
strictly increasing, we cannot have x∗i ≤ yi for all i. Therefore, x∗ is Pareto-optimal. �

In the following proposition, the search for a Pareto-optimal ordering is related to the
testing cost problem.

Proposition 5.2. Any optimal solution of Testing Cost with c(v) = 1 for all v ∈ V is a
Pareto-optimal solution of Pareto-optimal ordering.

Proof. Given an ordering v1, . . . , vn, we have the following equality
n∑
i=1

∑
e∈E\E[v1,...,vi−1]

p(e) = (|E|+ 1)p(E)−
n∑
i=1

hi.

Using the map f(x1, . . . , xn) =
∑n

i=1 xi in Lemma 5.1, we get the required conclusion. �

1

2 3 4

5 6 7

5
5 5

1

8 10

Figure 2. A rooted tree

5.1. Pareto-optimality in trees. Proposition 1.1 claims that when H is a tree, finding a
Pareto-optimal ordering can be done in polynomial time. We prove now this proposition.
The proof uses Lemma 5.1 and builds a special function f to transform the search of Pareto-
optimality into a classical optimization problem.

Proof of Proposition 1.1. Denote by T = (V,E) the tree and assume that there is a weight
function w : E → R+.

Fix a root r. Define w′ : V → R+ to be such that w′(v) := w(uv) where u is the neighbor
of v on the path linking r and v and w′(r) = 0. Consider the problem – which we call P –
of finding an ordering v1, . . . , vn of the vertices of T , starting at a fixed vertex v1 = r, such
that

(1) vi+1 ∈ N(v1, . . . , vi) for all i = 1, . . . , n
(2) the quantity

∑n
i=1(i− 1)w′(vi) is minimal.

Note that minimizing
∑n

i=1(i−1)w′(vi) is equivalent to maximizing
∑n

i=1(n− i+1)w′(vi),

which is equal to
∑n

i=1 hi with hi =
∑i

`=1w
′(v`). The sequence (hi) is the one that has to

be Pareto-optimal. Since choosing vi+1 /∈ N(v1, . . . , vi) for a certain i provides hi+1 = hi,
12

i 1 2 3 4 5 6 7
vi 1 2 3 4 5 6 7
hi 0 5 10 15 16 24 34

Table 4. Evaluation vector of an ordering for the graph of Figure 2

i 1 2 3 4 5 6 7
vi 1 5 6 7 2 3 4
hi 0 1 9 19 24 29 34

Table 5. Evaluation vector of an ordering for the graph of Figure 2

we can restrict our search for a Pareto-optimal sequence to the sequences satisfying vi+1 ∈
N(v1, . . . , vi) for all i = 1, . . . , n.

If the ordering v1, v2, . . . , vn is a solution of problem P , Lemma 5.1 with f(x2, . . . , xn) =∑n
i=2(n− i+ 1)xi ensures that the ordering is Pareto-optimal.
Horn [6] proved that P can be solved in polynomial time (see [1] for a fast algorithm, in

O(n log n)).
Doing it for each possible root r ∈ V eventually leads to the Pareto-optimal ordering. �

Note that the ordering obtained with this method is not necessarily a maximal one for the
lexicographic order. Indeed, consider the tree of Figure 2 and the orderings from Tables 4
and 5. The ordering in Table 4 is obtained by applying the greedy algorithm presented
earlier. Moreover, since the sufficient condition of Proposition 4.3 is satisfied, this ordering
is maximal for the lexicographic order. The value of the objective function

∑n
i=1 hi for

this ordering is 104. For the ordering presented in Table 5 the value is 116. The ordering
obtained by the method described in the proof is therefore not necessarily maximal for the
lexicographic order.

6. A combinatorial analog of the fundamental theorem of arithmetic

We prove now the combinatorial analog of the fundamental theorem of arithmetic (The-
orem 1.3). As in Subsection 4.3.2, we forget the initial motivation and deal only with
sequences. Recall that a sequence p = p1 . . . pn is prime if pipi+1 . . . pn � p for each i ≥ 1,
where � is the lexicographic order on the sequences.

We have an easy lemma

Lemma 6.1. Let p and p′ be two prime sequences such that p � p′. Then ms(p,p′) = p′•p.

Proof. It is a consequence of the algorithm described in the proof of Proposition 4.5. �

Proof of Theorem 1.3. Let us write a = a1 . . . an. Define i1 := 1 and a1 := a. Then define
i2 to be the first index i > i1 such that aiai+1 . . . an ≺ a1, let a2 := ai2ai2+1 . . . an. Define i3
to be the first index i > i2 such that aiai+1 . . . an ≺ a2 and let a3 := ai3ai3+1 . . . an. And so
on. Let r be the index of the last aj defined (and by convention ir+1 := n+ 1).

Defining pj to be aijaij+1 . . . aij+1−1, we get

a = p1 • p2 • . . . • pr.
Now, we have the following claim.

13

CLAIM. The pj are all prime and we have

p1 � p2 � . . . � pr.

Let us first prove that pj is prime for any j. Actually, we will prove it for p1, the proof
being exactly the same for the other indices.

Let us suppose that p1 is not prime. Then there is an i ∈ {2, . . . , i2 − 1} such that

(2) aiai+1 . . . ai2−1 ≺ a1a2 . . . ai2−1.

By definition of i2, we have also

(3) aiai+1 . . . ai2−1ai2ai2+1 . . . an � a1a2 . . . ai2−1ai2ai2+1 . . . an.

Equation (2) implies that ai ≤ a1. Equation (3) implies that ai ≥ a1. Together, they imply
that ai = a1. We can therefore delete a1 and ai from their first places. Again, Equation (2)
implies that ai+1 ≤ a2 and Equation (3) implies that ai+1 ≥ a2, which in turn leads to
ai+1 = a2. Going on in the same way, we get eventually:

ai = a1, ai+1 = a2, . . . , ai2−1 = ai2−i.

Using these equalities in Equation (3), we get that

ai2ai2+1 . . . an � ai2−i+1ai2−i+2 . . . an.

But, by definition of i2, we have a � ai2ai2+1 . . . an and a � ai2−i+1ai2−i+2 . . . an. A contra-
diction.

Let us now prove the chain of inequalities. Again we will only prove that p1 � p2, since
the proof of the other inequalities is strictly the same.

Denote p1 = p11p12 . . . p1n1 and p2 = p21p22 . . . p2n2 .
Assume for a contradiction that p1 ≺ p2. By construction, we have

p1 • p2 • . . . • pr � p2 • . . . • pr.
Thus, if n2 ≤ n1, we would have p11 = p21, p12 = p22, ..., p1n2 = p2n2 , which contradicts

p1 ≺ p2. Thus n2 > n1. But then we have p11 = p21, p12 = p22, ..., p1n1 = p2n1 and

p2 • . . . • pr � p2n1+1p2n1+2 . . . p2n2 • p3 • . . . • pr,
which is in contradiction with the definition of i3.

The claim is proved.

Thus, we have according to Lemma 6.1, a = ms(p1, . . . ,pr). The existence claimed by
the theorem is proved. It remains to prove the uniqueness of the decomposition.

Assume for a contradiction that there are also r′ prime sequences

p′1 � p′2 � . . . � p′r′
such that a = p′1 • p′2 • . . . • p′r′ . Without loss of generality, we can assume that the length
of p′1 is different from the length of p1.

If the length of p′1 is strictly smaller than the length of p1, then let k be such that p′k
contains ai2−1 (the last term of p1). Since p1 is prime, we have p′k � p1, which contradicts
the fact that p′1 ≺ p1.

If the length of p′1 is strictly larger than the length of p1, we can write

p′1 = p1 • ai2ai2+1 . . . ai,
14

for some index i ≥ i2. Since p′1 is prime, we have

ai2ai2+1 . . . ai � p1 • ai2ai2+1 . . . ai,

and since the length of the sequence on the left side is smaller than the length of the right’s
one, we have

ai2ai2+1 . . . aiai+1 . . . an � p1 • ai2ai2+1 . . . aiai+1 . . . an,

which contradicts the definition of i2. �

Remark. We can extend the definition of prime sequences to infinite sequences. However,
if we define an infinite sequence p to be prime if all its suffixes q are such that q � p,
we loose the uniqueness of the decomposition: for instance, the sequence 1, 2, 1, 2, 1, 2, . . . is
prime according to this definition, but can also be written as (1, 2)∞, where 1, 2 is a prime
sequence.

The right way to extend the definition consists in defining a sequence p = p1p2 . . . to
be prime if all its strict suffixes q are such that q � p, a strict suffix being obtained by
deleting at least p1. Note that for finite sequences, it does not change anything, while it
settles the problem for infinite sequences: Theorem 1.3 remains true for infinite sequences
a. The proof is almost the same and shows moreover that only two situations may arise:
either s (the number of distinct prime factors) is infinite and then all prime sequences in the
decomposition are finite, or s is finite and then only one prime sequence in the decomposition
is infinite and its exponent is equal to 1.

7. Conclusion and open questions

Starting from a practical motivation, we have defined several challenging problems, which
mix several features: scheduling, special orders, graphs... Polynomial algorithms have been
proposed in some special cases. One of these algorithms has motivated the notion of a new
product – the maximum shuffle product – defined on the set of sequences of real numbers.
It appeared that this product has a nice property, namely an analog of the fundamental
theorem of arithmetic.

Open questions have already been outlined in the paper. But other questions remain
open. For instance, there is the question of larger special cases for which the problems
remain polynomial. Polynomial algorithms have been proposed when the hypergraph is a
tree graph, but there may exist larger classes of hypergraphs for which these problems are
polynomial.

It would also be interesting to find a suitable framework for the maximum shuffle product
ms, in which we would have more than a monoid. For instance, if ms is the product, what
is the addition ?

References

[1] D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM Journal on Applied Mathematics, 25(3):403–
423, 1973.

[2] Y. Crama. Combinatorial optimization models for production scheduling in automated manufacturing
systems. European Journal of Operational Research, 99(1):136 – 153, 1997.

[3] Y. Crama and J. van de Klundert. Worst-case performance of approximation algorithms for tool man-
agement problems. Naval Research Logistics, 46(5):445–462, 1999.

[4] G. Gallo, P. Hammer, and B. Simeone. Quadratic knapsack problems. Mathematical Programming Study,
12:132–149, 1980.

15

[5] P. Hammer and T. Bonates. Logical analysis of data – an overview: From combinatorial optimization
to medical applications. Annals of Operations Research, 148:203–225, 2006. 10.1007/s10479-006-0075-y.

[6] W. A. Horn. Single-machine job sequencing with treelike precedence ordering and linear delay penalties.
SIAM Journal on Applied Mathematics, 23(2):189–202, 1972.

[7] S. G. Kolliopoulos and G. Steiner. Partially ordered knapsack and applications to scheduling. Discrete
Applied Mathematics, 155(8):889 – 897, 2007.

[8] E. L. Lawler. Sequencing jobs to minimize total weighted completion time subject to precedence con-
straints. Annals of Discrete Mathematics, 2:75–90, 1978.

[9] P. Lemaire, N. Brauner, P. Hammer, C. Trivin, J.-C. Souberbielle, and R. Brauner. Improved screening
for growth hormone deficiency using logical analysis data. Medical Science Monitor, 15(1):MT5–10, 02
2009.

[10] D.J. Rader and G. J. Woeginger. The quadratic 0–1 knapsack problem with series-parallel support.
Operations Research Letters, 30:159–166, 2002.

[11] V. A. Testov. An analog of the fundamental theorem of arithmetic in ordered groupoids. Mathematical
notes, 62:762–766, 1997.

[12] G. J. Woeginger. On the approximability of average completion time scheduling under precedence con-
straints. Discrete Applied Mathematics, 131(1):237 – 252, 2003.

(GSCOP) G-SCOP, INPGrenoble, UJF, CNRS, 46 avenue Félix Viallet 38031 Grenoble
cedex, France

E-mail address: nadia.brauner@grenoble-inp.fr

(IF) Institut Fourier 100, rue des Maths, BP 74, 38402 St Martin d’Hères cedex, France
E-mail address: sylvain.gravier@ujf-grenoble.fr

(ARTELYS) Artelys SA, 12 rue du Quatre Septembre, 75002 Paris, France
E-mail address: louisphilippe.kronek@gmail.com

(ENPC) Université Paris Est, CERMICS, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée
cedex, France

E-mail address: frederic.meunier@cermics.enpc.fr

16

