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LAD MODELS, TREES AND AN ANALOG OF THE FUNDAMENTAL

THEOREM OF ARITHMETIC

NADIA BRAUNER, SYLVAIN GRAVIER, LOUIS-PHILIPPE KRONEK, AND FRÉDÉRIC MEUNIER

Abstract. Motivated by applications of Logical Analysis Data (LAD) in medical contexts, original
discrete optimization problems are proposed. When a patient arrives with a presumption of a
disease, he is submitted to a sequence of tests. From one patient to another, the tests allowing to
detect the disease may vary. A subset of tests whose results detect the disease in a given part of
the population is called a pattern, which has its own prevalence in the population.

If there is only a limited number of tests that can be done, which ones must be selected in order
to maximize the number of spotted patients ? Or, if each test has a cost, in which order the tests
have to be done, in order to minimize the cost ? It is the kind of questions that are investigated
in this paper. For various special cases, polynomial algorithms are proposed, especially when the
hypergraph whose vertices are the tests and whose edges are the patterns is a tree graph.

One of these questions involves a criterion which is not a number but a sequence of numbers.
The objective is then to find the best sequence for the lexicographic order. To solve this question, a
new product on finite sequences is defined, namely the maximum shuffle product, which maps two
sequences to their shuffle that is maximal for the lexicographic order. Surprisingly, this product
leads to a theorem similar to the fundamental theorem of arithmetic: every sequence can be written
uniquely as the product of prime sequences, with the suitable definition of prime sequences.

1. Introduction

1.1. Context. Discrete mathematics and medicine see their interactions growing these last years.
This is particularly true for the area of classification models, which help practitioners to make
diagnosis on the basis of patterns (rules). Formalizing questions arising when one implements a set
of patterns (a model), we get nice combinatorial optimization problems.

Logical Analysis of Data (LAD) aims at helping practitioners for decision making when a new
patient arrives with a presumption of a disease. It is a rule based method where a classification
model is composed of a set of patterns [5]. Assume that we are given possible tests (e.g. age,
headache...). From one patient to another, the tests allowing to confirm the disease may vary.
A pattern is a boolean conjunction on the results of tests. If a patient can be classified by these
results, a positive (resp. negative) class meaning having (resp. not having) the disease, we say that
the pattern covers the patient. We shall consider an approximation of the global problem with the
following hypothesis: every patient is covered by exactly one pattern.

The problems we are interested in concern for instance the ordering of the tests allowing to
classify a new patient as soon as possible, or the selection of a subset of tests if all tests can not
be done. To estimate the quality of an ordering, or of a subset, of the tests, a database is used. It
is composed of already classified patients, for whom there were a presumption of the disease. The
prevalences of the patterns in the database are supposed to be good approximations of the pattern
prevalences among the future patients, who will have to be classified. Therefore, when a solution
(an ordering, a subset, ...) is proposed, its quality is measured by its results on the database.

A pattern is identified with the subset of tests whose results it takes into account. We will often
work with the pattern-test hypergraph H = (V,E), having the tests as vertex set and the patterns
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as edge set. The prevalence of a pattern e ∈ E is the number p(e) of patients of the database
covered by this pattern.

Table 1 presents a LAD model where the patterns are based on 4 tests. The last column gives the
number of patients covered by the pattern in the database. In terms of the pattern-test hypergraph,
V = {1, 2, 3, 4} and E = {1, 23, 13, 14}, with p(1) = 18, p(23) = 10, p(13) = 70 and p(14) = 38.

Pattern Test 1 Test 2 Test 3 Test 4 class cover
P1 > 30 positive 18
P2 negative positive positive 10
P3 < 15 negative negative 70
P4 < 15 positive negative 38

Table 1. A LAD model

Note that when the tests are done one after the other, each time a complete pattern is contained
in the tests already done, all the patients in the database covered by this pattern can be classified.
If each test v has a specific cost c(v), tests with high costs have to be at the end of the process, since
we can then hope that most of the patients have already been spotted. It suggests the following
problem.

Problem Testing Cost
Instance: A hypergraph H = (V,E) with n vertices, two maps p : E → R+ and c : V → R+

Solution: An ordering v1, . . . , vn of the vertices such that
n∑
i=1

∑
e∈E\E[v1,...,vi]

p(e)c(vi)

is minimum.

This problem was initiated when working on the diagnosis of growth hormone deficiency [9].
During the diagnosis process many practitioners are involved successively (general practitioners,
biologists, endocrinologists, radiologists) and the tests (height, bone age, karyotype...) have differ-
ent performances and costs.

Remark. In this model, any patient whose status has not been settled will be subject to the tests.
However, in many cases, the first results of the tests will be sufficient for some patients to predict
the result of the next test, and hence that this next test is not necessary for these patients. The
modelling of such features deserves future works.

Finding the k tests covering the most patients can be formalized as follows.

Problem Extraction of a sub-model
Instance: A hypergraph H = (V,E) with n vertices, a map p : E → R+ and an integer k.
Solution: A subset S ⊆ V of cardinality at most k maximizing p(E[S]).

This problem appeared when working on the diagnosis of pulmonary embolism. The medical
question was to identify the first tests to be implemented at the emergency room in order to be
able to make rapidly the greatest number of diagnosis for this pathology.
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We may want to give a complete ordering v1, . . . , vn of the tests in such a way that if for a reason
we do not want to do all tests and we stop them say at vk, we do not regret our choice of an
ordering. We write � the lexicographic order on sequences.

Problem Non-dominated ordering
Instance: A hypergraph H = (V,E) with n vertices and a map p : E → R+

Solution: An ordering v1, . . . , vn of the vertices such that the sequence h1, . . . , hn, with hi =
p(E[{v1, . . . , vi}]), is maximal for the lexicographic order.

It is also interesting to compare two sequences with respect to the Pareto-order instead of lexi-
cographic order.

A Pareto-optimal ordering v1, . . . , vn is such that for all other ordering v′1, . . . , v
′
n, there is a

i ∈ {1, . . . , n} with h′i < hi. A sequence maximal for the lexicographic order is Pareto-optimal, but
the converse is not true.

Problem Pareto-optimal ordering
Instance: A hypergraph H = (V,E) with n vertices and a map p : E → R+

Solution: An ordering v1, . . . , vn of the vertices such that the sequence h1, . . . , hn, with hi =
p(E[{v1, . . . , vi}]), is Pareto-optimal.

1.2. Main results. Testing costs, Extraction of a sub-model, and Non-dominated or-
dering are checked to be NP-hard, even if the hypergraph H is a graph in the case of the two
laters, but the complexity of Pareto-optimal ordering is open.

However, we prove

Proposition 1.1. Pareto-optimal ordering is polynomial (in O(n2 log n)) when the hyper-
graph is a tree graph.

Theorem 1.2. Non-dominated ordering is polynomial (in O
(
n3 log n log d

)
) when the hyper-

graph is a tree graph and d its maximal degree.

The polynomiality stated in Proposition 1.1 is a corollary of Theorem 1.2, since as we have
already noted, an ordering of the tests that is maximal for the lexicographic order is necessar-
ily Pareto-optimal. Proposition 1.1 finds its interest in a better complexity (O(n2 log n) versus
O
(
n3 log n log d

)
).

The proof of Theorem 1.2 motivates the definition of shuffles of sequences.
A sequence c = c1 . . . cn is a shuffle of s sequences ai = ai1 . . . aini , i = 1, . . . , s if

• n =
∑s

i=1 ni.
• there are s strictly increasing functions αi : [ni]→ [n] (the prints) whose images are pairwise

disjoint and such that cαi(j) = aij for all i, j.

Denote by ms(a, b) the shuffle of a and b that is maximal for the lexicographic order �. We discuss
the way for computing ms(a, b) given two sequences a and b. Theorem 1.2 is a consequence of the
polynomiality of this operation.

On our track, we discovered a combinatorial analog of the fundamental theorem of arithmetic,
which states the uniqueness of decomposition of an integer as product of prime numbers. To our
knowledge, this combinatorial analog is completely new. There exist other decompositions theorems
which generalize the classical one (see [11] for instance), but they do not contain it.

We define a notion of prime sequences. A prime sequence p = p1 . . . pn is such that pipi+1 . . . pn �
p for each i ≥ 1.

3



Theorem 1.3. Each sequence a can be written as a unique maximum shuffle (up to permutation)

a = ms
(
qδ11 , q

δ2
2 , . . . , q

δs
s

)
where the δj are positive integers and the qj are prime.

Here, qδ denotes ms(q, . . . , q︸ ︷︷ ︸
δ times

).

1.3. Notations.

1.3.1. Hypergraphs. A hypergraph is denoted H = (V,E). Again, the number n is usually its
number of vertices. Two vertices u and v are neighbors is there is an edge e ∈ E such that
{u, v} ⊆ e. By N(A), for A a subset of vertices, we denote the set of vertices in V \ A having at
least one neighbor in A. By E[X], for a subset X ⊆ V of vertices, we mean the subset of edges
having all their vertices in X.

1.3.2. Combinatorics. Let A be an additive semi-group and w be any map from a finite set X into
A. For F a subset of X, we denote

∑
x∈F w(x) by w(F ).

1.3.3. Scheduling. We use the classical α|β|γ notation in scheduling where α denotes the properties
of the machines (or the processors), β indicates the constraints on the tasks and γ describes the
objective function. In this paper, α will be equal to 1 since we consider one machine problems. The
field β contains information on the precedence graph for the tasks (where ’prec’ means that the
precedence graph can be any acyclic graph). The objective in the field γ is

∑
wiCi if we want to

minimize the total weighed completion time where wi is the weight of task i and Ci is its completion
time. It is

∑
wiUi when we want to minimize the weighted number of late jobs (where Ui = 1 if

and only if task i completes after its dead line).

1.4. Plan. Notations that have not been defined in the introduction are fixed in Section 1.3. We
have then four sections (Sections 2, 3, 4 and 5), one for each of these problems, which contain
among other things the proofs of Proposition 1.1 and of Theorem 1.2. Section 6 is devoted to the
proof of the analog of the fundamental theorem of arithmetic for sequences and shuffles (Theorem
1.3).

2. Testing Cost

We show that the problem Testing Cost is equivalent to a scheduling problem on one machine
with a specific precedence graph and the total weighted completion time as the objective function:
1|prec|

∑
wiCi in the usual scheduling notations.

We now define the tasks and the precedence graph.

• To each vertex v in the hypergraph is associated a (vertex-)task of duration tv = c(v) and
of weight wv = 0;
• To each edge e in the hypergraph is associated a (edge-)task of duration te = 0 and of

weight we = p(e);

The precedence graph naturally follows: a edge-task can be executed once all the vertex-tasks
coming from vertices in the edge are completed. Figure 1 presents the scheduling problem associated
to the model from Table 1.

Test 1 Test 2 Test 3 Test 4
Costs 1 5 15 8

Table 2. Costs for the test of Table 1
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Figure 1. The precedence graph associated to the model of Table 1 and the costs of Table 2

Proposition 2.1. Problem Testing Cost is equivalent to the scheduling problem 1|prec|
∑
wiCi

with the tasks and the precedence graph defined as above.

Proof. Given a solution of the problem Testing Cost, we get a feasible solution for problem
1|prec|

∑
wiCi of same cost while starting a edge-task as soon as all vertex-tasks it requires are

finished. Conversely, an optimal solution of problem 1|prec|
∑
wiCi is such that a edge-task starts

as soon as all vertex-task it requires are finished and the sequence of vertices the solution induces
is a solution of same cost for Testing Cost. �

The precedence graph has the following property: if there is a precedence constraint between
tasks i and j of the form i→ j, then wi = 0 and tj = 0. This type of graphs is known as red-blue
bipartite graphs [7].

The scheduling problem 1|prec|
∑
wiCi is NP-hard for a general precedence graph [8]. We con-

sider the special case of red-blue bipartite graphs for the precedence constraints with the restriction
pi ∈ {0, 1} and wi ∈ {0, 1}. This theoretical situations corresponds to the very special case where
each pattern covers exactly one patient and each test has a unitary cost. It has been proved in [12]
that this special case has the same approximation ratio that the general problem. Testing cost
is therefore NP-hard.

3. Extraction of a sub-model

3.1. The densest subgraph. The special case of the problem Extraction of a sub-model
when H is a graph has been widely studied and is better known under the name densest k-
subgraph problem. It is an NP-hard problem since when p(e) = 1 for all e it becomes the
problem of selecting the subset X of vertices with |X| = k such that E[X] has maximal cardinality,
which contains the maximum clique problem. It is known to be polynomial on trees, with a
complexity O(k2n) [10].

3.2. As a scheduling problem. The problem Extraction of a sub-model can also be linked
to a scheduling problem similar to the one of Section 2. There is still one machine and the precedence
graph is the same. The tasks are defined as follows :

• To each vertex v is associated a (vertex-)task of duration tv = 1 and of weight wv = 0 with
no deadline dv = +∞;
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• To each edge e is associated a (edge-)task of duration te = 0 and of weight we = p(e) and
of deadline de = k.

The objective function is now the minimization of the number of weighted tasks that finish late,∑
wiUi where Ui indicates whether task i finishes after its deadline. The edge-tasks that are not

late compose the submodel S.
This problem has been widely studied under different forms, see e.g. [2]. For instance, it is

equivalent to the tool magazine problem where the tests are the tools, the patterns are the parts
to be produced and the prevalence is the demand for the parts. The part-tools matrix indicating
for each part the tools needed for its production is then the incidence matrix of the hypergraph
H. The value k defines the capacity of the tool magazine and the objective is to select k tools for
the magazine that allow the satisfaction of the largest demand. This problem of the tool magazine
is known to be NP-hard even if the number of tools for each part is less than 2 [4]. Crama [2]
has given linear and non-linear formulations of the problem, proposed solutions methods and listed
other applications of this model like repair kit selection or allocation of memory space in a database.
It is mentioned in this paper that, those practical problems are solved with ad-hoc heuristics. In [3],
the authors present a worst case analysis of the greedy heuristics usually developed for this problem.
They also conjecture that there is no polynomial time algorithm with a constant performance ratio.

4. Non-dominated ordering

4.1. First properties. Defining p(e) to be 1 for all e ∈ E, a maximal ordering for the lexicographic
order necessarily starts with the vertices of a maximum clique. We have therefore the following
complexity result.

Proposition 4.1. Non-dominated ordering is NP-hard even if the hypergraph H is a graph.

As a preliminary remark on the problem, we can notice that

Lemma 4.2. Let v1, . . . , vn be a solution of Non-dominated ordering. For all i < n, if
N(v1, . . . , vi) 6= ∅, then vi+1 ∈ N(v1, . . . , vi).

Proof. Assume that we have i such that N(v1, . . . , vi) 6= ∅. Choosing vi+1 not in N(v1, . . . , vi) leads
to hi+1 = hi whereas choosing it in N(v1, . . . , vi) leads hi+1 > hi, without changing the values of
hj for j < i. �

4.2. A greedy algorithm. We propose now a greedy approach.
At each step, add the minimal number of vertices such that the induced subhypergraph contains

a new edge. If several new edges can be obtained in this way, select the one with maximal value p.
At the end of each iteration, the hypergraph is updated by merging the edges with the same sets
of missing vertices. The new p is the sum of the values of p of the merged edges.

Greedy algorithm (a hypergraph H)
// Create an order with a greedy method

Ordering ← ∅ and ActiveEdges← ∅
While Ordering does not contain all the vertices do

ActiveEdges ← edges from hypergraph H that have the smallest number

of vertices not in Ordering
Add to Ordering the vertices completing an edge in ActiveEdges with

the maximal p.
Merge the edges with identical sets of vertices not in Ordering and

update the values of p.
end While

Return Ordering
6



Unfortunately, this greedy algorithm does not always lead to an ordering maximal for the lexi-
cographic order �. Consider, for example, the model presented in Table 3. The order Test 1, Test
2, Test 3, Test 4, Test 5 can be obtained by the greedy algorithm. It is dominated by the order
Test 4, Test 3, Test 5, Test 2, and Test 1. The following proposition gives a sufficient condition for
the order produced by the greedy algorithm to be non-dominated.

Patterns Test 1 Test 2 Test 3 Test 4 Test 5 Cover
P1 1 1 0 0 0 1
P2 0 0 1 1 0 1
P3 0 0 0 1 1 1

Table 3. A model for which the greedy algorithm does not give a non-dominated order

Proposition 4.3. If, at each iteration, there is only one active pattern of maximum prevalence,
then the result of the greedy algorithm is an optimal solution of Non-dominated ordering.

Proof. The proof is achieved by induction on the iterations of the algorithm. At each step, we can
not do better than selecting the tests of this active pattern. �

The sufficient condition presented in Proposition 4.3 is realistic in practice. The probability is
low that there exists at some time in the execution of the algorithm, two sets of distinct patterns
that have the same prevalence ant that need the realization of a minimal number of tests. In-
deed, generically, the hyperplane

∑
e∈E p(e)xe = 0 does not contain the vertices of the hypercube

[−1, 1]n. An interesting question could be to characterize the models that verify the condition of
Proposition 4.3.

4.3. Tree. The purpose of this subsection is to prove Theorem 1.2. As a by-product, we get some
properties of the shuffle and the ms operation (defined in the introduction). In Section 6, it will
lead to the analog of the fundamental theorem in arithmetic we have mentioned.

4.3.1. Preliminary discussion.

Lemma 4.4. Let a1 . . . an and b1 . . . bn be two sequences of real numbers (of same length). a1 . . . an �
b1 . . . bn if and only if a1(a2 − a1)(a3 − a2) . . . (an − an−1) � b1(b2 − b1)(b3 − b2) . . . (bn − bn−1).

Proof. Let i∗ be the first index i such that bi 6= ai. We have bi∗ > ai∗ if and only if bi∗ − bi∗−1 >
ai∗ − ai∗−1. �

Lemma 4.4 combined with Lemma 4.2 shows that finding a maximal ordering for the lexicographic
order when the hypergraph H is a tree T reduces to the following problem. Given r a special
vertex in T , and a weight function w : V (T )→ R+ \ {0}, compute an ordering r = v1, . . . , vn of the
vertices such that vi+1 ∈ N(v1, . . . , vi) for all i and such that w(v2), . . . , w(vn) is maximal for the
lexicographic order. Doing the same computation for each vertex r of T , and keeping the maximal
one gives the solution of the original problem.

Note that the question of finding such an ordering starting from vertex r is easy if all weights
in the tree are distinct. Indeed, at each time, selecting the edge with maximal weight among the
edges leaving the set of vertices already reached clearly provides the maximal ordering (Proposition
4.3). The difficulty arises precisely when there are many weights that are equal. Choosing then an
edge with maximal weight could eventually lead to lower weight later that those that would have
been obtained by choosing another edge of the same maximal weight.

Deleting r from T gives raise to say s subtrees T1, T2, . . . , Ts. As we will prove below, once we
have a maximal ordering of the vertices for each Ti, it is quite easy to “mix” these orderings to get
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the optimal one for T itself. This motivates the following study of sequences and the definition of
the shuffle.

4.3.2. Sequences, lexicographic order and shuffles. For A ⊆ {1, 2, . . . , n}, we denote by c|A the
subsequence (ci)i∈A. Given two sequences a = a1 . . . am and b = b1 . . . bn, we denote by a • b the
sequence a1 . . . amb1 . . . bn. The empty sequence is denoted ε.

We have the following proposition, which seems to be interesting for its own sake.

Proposition 4.5. Given r sequences ai, i = 1, . . . , r, of real numbers, it is possible to compute
ms(a1, . . . ,ar) in O(n2 log r), where n is the sum of the lengths of the ai.

Before proving it, we will study some properties of ms. We endow the set of sequences with the
lexicographic order �.

We will use the properties stated in the following lemma without explicit mention. Indeed, there
are all more or less obvious.

Lemma 4.6. We have the following properties.

(1)

ms(a, b) = ms(b,a).

(2) For a fixed sequence a, the map x 7→ ms(a,x) is an increasing map.
(3) ms(a, b) •ms(c,d) � ms(a • c, b • d).
(4) if a � b then for any sequence c we have

c • a � c • b.
(5)

ms(a,ms(b, c)) = ms(a, b, c).

Proof. Except maybe Points (3) and (5), the other points are straightforward.
Point (3): it is a consequence of the following fact: a shuffle of a and b followed by a shuffle of

c and d is a shuffle of a • c and b • d.
Point (5): We obviously have

ms(a,ms(b, c)) � ms(a, b, c).

Hence, we want to prove the reverse inequality. Let d = ms(a, b, c) and s = ms(b, c). Define β
and γ to be respectively the prints of b and c in d. Denote B the image of β and C the image of
γ. Then d|B∪C � s. Since, d = ms(a,d|B∪C), we conclude with the help of Point (2). �

Lemma 4.6 shows that the set of sequences endowed with ms as a product is a monoid.

Lemma 4.7. Let a and b be two sequences such that a � b. Let c be another sequence.
Then

ms(a, c • b) � ms(c • a, b).

Proof. Write a = a1 . . . am, b = b1 . . . bn and c = c1 . . . cr.
The proof works by induction on m+ n. If m+ n = 1, the statement is straightforward.
Let a′ = a1 . . . ak and a′′ = ak+1 . . . am be two sequences such that

ms(a, c • b) = ms(a′, c) •ms(a′′, b).

If a′′ = ε, we define k to be m.
Now, define b′ := b1 . . . bmin(k,n) and b′′ such that b = b′ •b′′. If k or n equals 0, we define b′ := ε.

If b′ � a′, then we have

ms(a′, c) •ms(a′′, b) � ms(b′, c) � ms(c, b′) •ms(a, b′′) � ms(c • a, b).
8



Hence, we can assume that b′ = a′. Thus, b′′ � a′′. By induction

ms(b′ • a′′, b′′) � ms(a′′, b′ • b′′).
Using the equality b′ = a′ and Point (3) of Lemma 4.6, we get finally

ms(a, c • b) = ms(a′, c) •ms(a′′, b′ • b′′)
� ms(b′, c) •ms(b′ • a′′, b′′)
= ms(b′, c) •ms(a′ • a′′, b′′)
= ms(c, b′) •ms(a, b′′)
� ms(c • a, b).

�

Proof of Proposition 4.5. Lemma 4.7 implies that if d = d1 . . . dm and e = e1 . . . em′ are two se-
quences such that e � d, then

ms(e,d) = e1ms(d, e2 . . . em′).

Indeed, if e1 > d1, it is obvious, and if not, Lemma 4.7 with c := e1, a := d2 . . . dm and b := e2 . . . em
implies it.

Combining Point (5) of Lemma 4.6 and this fact, we get that if as � ai for all i 6= s, then

ms(a1, . . . ,as) = as1 •ms(a1, . . . ,as−1, as2 . . . asns).

This leads directly to an algorithm whose time complexity is O(n2 log s):

• sort all sequences: O(sn log s),
• let s = ε,
• repeat n times the following operations: append to s the first term of the maximal sequence
a in the list, delete this first term from a and put the new a at the right place in the list
(this last operation takes O(n log s)).
• return s.

�

4.3.3. Proof of Theorem 1.2.

Proof. According to the previous discussion, it remains to prove that the optimal ordering starting
at r can be obtained by doing ms on the optimal orderings of the subtrees Ti of T . But it is
straightforward: the optimal ordering for T is a shuffle of the orderings of the Ti; given s orderings
on the subtrees Ti, the best shuffle we can get is ms by definition; for each of these orderings, the
best is to maximize it with respect to the lexicographic order (ms is increasing).

The whole complexity is computed as follows: for a fixed root r, using the inequalities

n2 log n ≥ log n
∑
i

n2i ≥
∑
i

n2i log ni when
∑

i ni = n− 1 and ni ≥ 0 for all i,

we get by induction O(n2 log n log d) where d is the maximum degree of the tree. Doing the
computation for each possible root provides the solution. �

5. Pareto-optimal ordering

Finding a Pareto-optimal ordering seems to be a difficult task. It is even unclear whether it is
possible to check in polynomial time that a given ordering is Pareto-optimal.

In some cases, the following criterion will be used for q = 1.

Lemma 5.1. Let f : Rn → Rq be a strictly increasing map (ie x 6= x′ are such that xi ≤ x′i for all
i, then f(x) 6= f(x′) and f(x)k ≤ f(x′)k for all k = 1, . . . , q). Let S be a subset of Rn. If f(x∗) is
Pareto-optimal on f(S), then x∗ is Pareto-optimal on S.
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i 1 2 3 4 5 6 7
vi 1 2 3 4 5 6 7
hi 0 5 10 15 16 24 34

Table 4. Evaluation vector of an ordering for the graph of Figure 2

Proof. Let y ∈ Rn distinct from x∗. We have f(y)k < f(x∗)k for a certain k. Since f is strictly
increasing, we cannot have x∗i ≤ yi for all i. Therefore, x∗ is Pareto-optimal. �

In the following proposition, the search for a Pareto-optimal ordering is related to the testing
cost problem.

Proposition 5.2. Any optimal solution of Testing Cost with c(v) = 1 for all v ∈ V is a
Pareto-optimal solution of Pareto-optimal ordering.

Proof. Given an ordering v1, . . . , vn, we have the following equality
n∑
i=1

∑
e∈E\E[v1,...,vi]

p(e)c(vi) = |E|p(E)−
n∑
i=1

hi.

Using the map f(x1, . . . , xn) =
∑n

i=1 xi in Lemma 5.1, we get the required conclusion. �

5.1. Pareto-optimality in trees. Proposition 1.1 claims that when H is a tree, finding a Pareto-
optimal ordering can be done in polynomial time. We prove now this proposition. The proof uses
Lemma 5.1 and builds a special function f to transform the search of Pareto-optimality into a
classical optimization problem.

Proof of Proposition 1.1. Denote by T = (V,E) the tree and assume that there is a weight function
w : E → R+.

Fix a root r. Define w′ : V → R+ to be such that w′(v) := w(uv) where u is the neighbor of v
on the path linking r and v and w′(r) = 0. Consider the problem – which we call P – of finding an
ordering v1, . . . , vn of the vertices of T , starting at a fixed vertex v1 = r, such that

(1) vi+1 ∈ N(v1, . . . , vi) for all i = 1, . . . , n
(2) the quantity

∑n
i=1(i− 1)w′(vi) is minimal.

Note that minimizing
∑n

i=1(i−1)w′(vi) is equivalent to maximizing
∑n

i=1(n− i+1)w′(vi), which

is equal to
∑n

i=1 hi with hi =
∑i

`=1w
′(v`). The sequence (hi) is the one that has to be Pareto-

optimal. Since choosing vi+1 /∈ N(v1, . . . , vi) for a certain i provides hi+1 = hi, we can restrict
our search for a Pareto-optimal sequence to the sequences satisfying vi+1 ∈ N(v1, . . . , vi) for all
i = 1, . . . , n.

If the ordering v1, v2, . . . , vn is a solution of problem P , Lemma 5.1 with f(x2, . . . , xn) =
∑n

i=2(i−
1)xi ensures that the ordering is Pareto-optimal.

Horn [6] proved that P can be solved in polynomial time (see [1] for a fast algorithm, in
O(n log n)).

Doing it for each possible root r ∈ V eventually leads to the Pareto-optimal ordering. �

Note that the ordering obtained with this method is not necessarily a maximal one for the
lexicographic order. Indeed, consider the tree in Figure 2 and the orderings from Tables 4 and 5. The
ordering in Table 4 is obtained by applying the greedy algorithm presented earlier. Moreover, since
the sufficient condition of Proposition 4.3 is satisfied, this ordering is maximal for the lexicographic
order. The value of the objective function

∑n
i=1 hi for this ordering is 104. For the ordering

presented in Table 5 the value is 116. The ordering obtained by the method described in the proof
is therefore not necessarily maximal for the lexicographic order.
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Figure 2. A rooted tree

i 1 2 3 4 5 6 7
vi 1 5 6 7 2 3 4
hi 0 1 9 19 24 29 34

Table 5. Evaluation vector of an ordering for the graph of Figure 2

6. A combinatorial analog of the fundamental theorem in arithmetics

We prove now the combinatorial analog of the fundamental theorem of arithmetic (Theorem 1.3).
As in Subsection 4.3.2, we forget the initial motivation and deal only with sequences. Recall that
a sequence p = p1 . . . pn is prime if pipi+1 . . . pn � p for each i ≥ 1, where � is the lexicographic
order on the sequences.

We have an easy lemma

Lemma 6.1. Let p and p′ be two prime sequences such that p � p′. Then ms(p,p′) = p′ • p.

Proof. It is a consequence of the algorithm described in the proof of Proposition 4.5. �

Proof of Theorem 1.3. Let us write a = a1 . . . an. Define i1 := 1 and a1 := a. Then define i2 to
be the first index i > i1 such that aiai+1 . . . an ≺ a, let a2 := ai2ai2+1 . . . an. Define i3 to be the
first index i > i2 such that aiai+1 . . . an ≺ a2 and let a3 := ai3ai3+1 . . . an. And so on. Let r be the
index of the last aj defined (and by convention ir+1 := n+ 1).

Defining pj to be aijaij+1 . . . aij+1−1, we get

a = p1 • p2 • . . . • pr.

Now, we have the following claim.

CLAIM. The pj are all prime and we have

p1 � p2 � . . . � pr.

Let us first prove that pj is prime for any j. Actually, we will prove it for p1, the proof being
exactly the same for the other indices.

Let us suppose that p1 is not prime. Then there is an i ∈ {2, . . . , i2 − 1} such that

aiai+1 . . . ai2−1 ≺ a1a2 . . . ai2−1. (1)

By definition of i2, we have also

aiai+1 . . . ai2−1ai2ai2+1 . . . an � a1a2 . . . ai2−1ai2ai2+1 . . . an. (2)
11



Equation (1) implies that ai ≤ a1. Equation (2) implies that ai ≥ a1. Together, they imply that
ai = a1. We can therefore delete a1 and ai from their first places. Again, Equation (1) implies that
ai+1 ≤ a2 and Equation (2) implies that ai+1 ≥ a2, which in turn leads to ai+1 = a2. Going on in
the same way, we get eventually:

ai = a1, ai+1 = a2, . . . , ai2−1 = ai2−i.

Using these equalities in Equation (2), we get that

ai2ai2+1 . . . an � ai2−i+1ai2−i+2 . . . an.

But, by definition of i2, we have a � ai2ai2+1 . . . an and a � ai2−i+1ai2−i+2 . . . an. A contradiction.
Let us now prove the chain of inequalities. Again we will only prove that p1 � p2, since the

proof of the other inequalities is strictly the same.
Denote p1 = p11p12 . . . p1n1 and p2 = p21p22 . . . p2n2 .
Assume for a contradiction that p1 ≺ p2. By construction, we have

p1 • p2 • . . . • pr � p2 • . . . • pr.
Thus, if n2 ≤ n1, we would have p11 = p21, p12 = p22, ..., p1n2 = p2n2 , which contradicts p1 ≺ p2.

Thus n2 > n1. But then we have p11 = p21, p12 = p22, ..., p1n1 = p2n1 and

p2 • . . . • pr � p2n1+1p2n1+2 . . . p2n2 • p3 • . . . • pr,
which is in contradiction with the definition of i3.

The claim is proved.

Thus, we have according to Lemma 6.1, a = ms(p1, . . . ,pr). The existence claimed by the
theorem is proved. It remains to prove the uniqueness of the decomposition.

Assume for a contradiction that there are also r′ prime sequences

p′1 � p′2 � . . . � p′r′
such that a = p′1 • p′2 • . . . • p′r′ and such that w.l.o.g. the length of p′1 is strictly larger that the
length of p1. We can then write

p′1 = p1 • ai2ai2+1 . . . ai,

for some index i ≥ i2. Since p′1 is prime, we have

ai2ai2+1 . . . ai � p1 • ai2ai2+1 . . . ai,

and since the length of the sequence on the left side is smaller than the length of the right’s one,
we have

ai2ai2+1 . . . aiai+1 . . . an � p1 • ai2ai2+1 . . . aiai+1 . . . an,

which contradicts the definition of i2. �

7. Conclusion and open questions

Starting from a practical motivation, we have defined several challenging problems, which mix
several features: scheduling, special order. Polynomial algorithms have been proposed in some
special cases. One of these algorithms has motivated the notion of a new product – the maximum
shuffle product – defined on the set of sequences of real numbers. It appeared that this product
has a nice property, namely an analog of the fundamental theorem in arithmetic.

Open questions have already been outlined in the paper. But other questions remain open. For
instance, there is the question of larger special cases for which the problems remain polynomial.
Polynomial algorithms have been proposed when the hypergraph is a tree graph, but there may
exist larger classes of hypergraphs for which these problems are polynomial.

It would also be interesting to find a suitable framework for the maximum shuffle product ms, in
which we would have more than a monoid. For instance, if ms is the product, what is the addition ?
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