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Introduction

As the experimental techniques evolve, the window of isotope effects in negative ions is becoming wider and wider [1,2,3,4,5,6,7]. It offers new possibilities for understanding negative ions, correlation effects and the effect of nuclear properties on the electronic structure. In order to keep to this agenda, we need accurate models.

The hyperfine interaction, as arising mainly from the non-spherical nature of the electronic wave function near the nucleus, is an operator that is particularly sensitive to both core and valence correlation effects. It is also sensitive to contributions that do not affect the energy much. When trying to calculate it, we face the difficulty of getting simultaneously a good description of the valence correlation -crucial for negative ions -, core-valence and core correlation. It is therefore a useful tool for testing new approaches.

Experimental studies of the hyperfine interaction in atomic negative ions are scarce. A pioneer study was made by Mader and Novick on the 3 He -1s2s2p 4 P o metastable state [8]. Much more recently, the hyperfine structure of the only known E1 transition between bound states of a negative ion, the Os -, was studied [9]. In between, Trainham et al [1] performed a study of the 33 S -3p 5 2 P o 3/2 hyperfine structure. The S - ion offers a good possibility for testing the methods on a middleweight system.

Recently, the isotope shift on the electron affinity of sulfur between the zero-spin isotopes 32 and 34 was measured and calculated [6]. A similar study involving the isotope 33 of sulfur, of spin I = 3/2, would require the knowledge of the hyperfine structure of the involved states [5]. However, if the 33 S -ground state hyperfine structure is known, the one of the 33 S 3p 4 3 P o J multiplet is not, to the knowledge of the authors. We present in Section 3 large scale MCHF calculations on the iso-electronic systems S -and Cl, testing the possibility of using the valence correlation orbitals [10] for describing core effects. This choice of orbital set was successfully adopted for including a core-valence contribution in the calculation of the isotope shift on the electron affinity of sulfur [6] and chlorine [7]. In Section 4, we calculate the hyperfine structure of the neutral sulfur lowest multiplet and point out a remarkable interplay of core and valence correlation in a MCHF description. We compare our theoretical results with experiment in Section 5 and conclude in Section 6 that some computational strategies provide a better definition for the core region.

Theory

The MCHF / CI approach

The multiconfiguration Hartree-Fock (MCHF) variational approach is based on the following ansatz

Ψ(γLSM L M S ) = i c i Φ(γ i LSM L M S ) ( 1 ) 
where the Φ(γ i LSM L M S ) are configuration state functions (CSF) that are built on a single orthonormal basis set [START_REF] Fischer | Computational Atomic Structure : An MCHF Approach[END_REF]. A CSF is a symmetry-adapted linear combination of Slater determinants corresponding to a given term with its own coupling tree. Energy functionals integrated on the electron angular coordinates for an ansatz of the type (1) are efficiently obtained using the Racah algebra [START_REF] Fischer | Hartree-Fock method for atoms. A numerical approach[END_REF]. Large expansions of CSFs can be automatically generated using existing programs [START_REF] Sturesson | [END_REF], allowing to reduce the considered excitations of the main configuration to classes of states. In the MCHF theory, all c i are optimized and some -if not all -orbital radial functions are varied until self-consistency. We use the ATSP2K implementation of this method [14].

In this work, we first perform MCHF calculations to determine the set of spectroscopic and virtual one-electron states in the MCHF expansion. We then do subsequent larger configuration interaction (CI) calculationsi.e. optimizing only the {c i } mixing coefficients in (1). At all stages, the variational principle is applied using the non-relativistic isotope-independent Hamiltonian. An orbital active set is defined as the set of all orbitals characterized by quantum numbers with n ≤ n max and l ≤ l max , and is denoted n max l max .

Our scheme is based on the concept of "multi-reference-interacting" (MR-I) set of CSFs detailed elsewhere [6]. It is defined as the set of all CSFs that interact to first order with at least one component of a small set of configurations, the multi-reference (MR). The LS angular momenta of the occupied sub-shells are coupled by decreasing n and l. For a given orbital basis set, a MR-I space is a subset of all single and double (SD) excitations of the MR. Even though this scheme is largely optimized for having the fastest convergence of the energy, it also allows one to efficiently obtain accurate wave functions [15]. Using this strategy, the most important components of the MCHF expansion (1) contributing to the state's hyperfine structure are included with the right mixing coefficient.

Hyperfine interaction

The hyperfine structure of a LSJ level is caused by the magnetic and electric interaction of the electrons with the atomic nucleus of angular momentum quantum number I [START_REF] Lindgren | Case Stud[END_REF]. The total atomic angular momentum quantum number is denoted F . To first order, the hyperfine energy correction has the form

W (J, J) = A J C 2 + B J 3C(C + 1) -4I(I + 1)J(J + 1) 8I(2I -1)J(2J -1) . ( 2 
)
where A J and B J are respectively the magnetic dipole (M1) and electric quadrupole (E2) hyperfine constants and C = F (F + 1) -J(J + 1) -I(I + 1). The theory underlying the computation of hyperfine structures using multiconfiguration wave functions can be found in references [17,18] in which the non relativistic hyperfine interaction is expressed in terms of the J-independent orbital (a l ), spin-dipole (a sd ), contact (a c ) and electric quadrupole (b) electronic hyperfine parameters

a l ≡ ΓLSM L M S | N i=1 l (1) 0 (i)r -3 i |ΓLSM L M S , (3) 
a sd ≡ ΓLSM L M S | N i=1 2C (2) 0 (i)s (1) 0 (i)r -3 i |ΓLSM L M S , (4) 
a c ≡ ΓLSM L M S | N i=1 2s (1) 
0 (i)r -2 i δ(r i )|ΓLSM L M S , (5) b 
≡ ΓLSM L M S | N i=1 2C (2) 
0 (i)r -3 i |ΓLSM L M S , (6) 
and calculated for the magnetic component M L = L and M S = S [17]. The first three parameters (3), (4), and (5) contribute to the magnetic dipole hyperfine interaction constant through

A J = A l J + A sd J + A c J , (7) 
with

A l J = G µ µ I I K l J a l , (8) 
A sd J = 1 2 G µ g s µ I I K sd J a sd , (9) 
A c J = 1 6 G µ g s µ I I K c J a c , (10) 
where the K J 's are the appropriate non-relativistic angular factors [19]. The last one (b) constitutes the electronic contribution to the electric quadrupole hyperfine interaction

B J = -G q Q K b J b . (11) 
Expressing the electronic parameters a l , a sd and a c in atomic units (units of a -3 0 ) and µ I in nuclear magnetons (units of µ N ), the magnetic dipole hyperfine structure constants A J are calculated in units of frequency (MHz) by using G µ = 95.41067. Similarly, the electric quadrupole hyperfine structure constants B J are expressed in MHz when adopting atomic units (units of a -3 0 ) for b, barns for Q and G q = 234.96475.

The distinction between core and valence electrons

When studying an atomic system, it is common to distinguish core and valence electrons based on the mono-configuration approximation. This separation can usually be made quite efficiently by choosing a rare-gas-like core. In our case, the core is neon-like (1s 2 2s 2 2p 6 ) and the valence is composed of the n = 3 electrons (3s 2 3p 5 for S -and Cl, and 3s 2 3p 4 for S). From that distinction, a lot of concepts based on a first-order picture of the correlation arise: core polarization, valence, core-valence and core-core correlation (V, CV, CC), etc. This terminology remains vague and the contributions those terms refer to, often depend on the method [10,20,[START_REF] Lindgren | Atomic Many-Body Theory[END_REF][START_REF] Migdalek | [END_REF]. In MCHF theory it is in general impossible to have a clean partition of those different contributions due to systematic rearrangements of the {c i } MCHF eigenvector and orbital shapes from one model to another. The variational procedure is not perturbative and the core-valence distinction is based on a perturbative picture of the correlation. Still, the core-valence separation has a physical background so that it should not be discarded. Hence, we need a reliable definition of the core in order to interpret the so-called "core effects". In this work, the uncorrelated core is defined as being the N c -electron core state built on the Hartree-Fock orbital set optimized for the total system. In case of multiple solutions in the HF model, we select the one satisfying the Koopmans requirement [START_REF] Fischer | Hartree-Fock method for atoms. A numerical approach[END_REF].

3. Hyperfine Structures of the 3p 5 2 P o J levels of S -and Cl

Definition of the orbital set: MCHF calculations

To explore the impact of the choice of the MCHF model defining the orbital set on the results of the open-core CI models, we use two references: the single main configuration, denoted SR, and the set of all valence single and double (SD)-excitations in the n = 3 shell, denoted MR. The latter is formally written

MR = {1, 2} 10 {3s, 3p} 5 {3} 2 . ( 12 
)
In this notation, distinct sets of electrons are dispatched in series of shells and/or subshells. Here, all ten slots of the n = 1, 2 shells are filled, five electrons are shared between the spectroscopic orbitals 3s and 3p and the two remaining electrons occupy either the spectroscopic orbitals or the virtual 3d subshell. After having generated the CSF list, we perform HF frozen-core MCHF calculations on the SR-I and MR-I sets obtained by activating all the electrons in orbital basis sets ranging from 4f to 13h and 10h for SR and MR, respectively. The so-obtained one-electron radial functions are denoted SR-I-C and MR-I-C. In addition, we perform valence MCHF calculations on the MR-I nl , n = 4 -13, l ≤ 5 (h orbitals). The resulting basis set is denoted MR-I-V. In all calculations, the [Ne] core is frozen to its HF shape. Tables 1 and2 display, respectively for Cl and S -, the weights of the first configurations in the various MCHF calculations with n max l max = 10h. The weight of a configuration is defined as

w = i c 2 i 1/2 , ( 13 
)
where the sum runs over the CSFs belonging to the configuration. We observe that the order of the few most important configurations is very similar in all cases. Still, some differences appear mainly due to the fact that some radial functions P nl (r) become inner orbitals in the MR-I-C and SR-I-C models. This is illustrated in the first four columns of Table 3 in which we compare the mean radius of the spectroscopic and correlation orbitals of the MR-I-C model with the ones of the MR-I-V model for both Cl and S -. In open-core calculations, most of the n = 5 orbitals become inner orbitals and P 4d , P 4f contract significantly. The SR-I-C orbitals do not differ strongly from the MR-I-C ones and are therefore not presented here. 0.1137 2p 6 3s 1 3p 4 3d 1 4p 1 0.0557 2p 6 3s 1 3p 4 3d 1 4p 1 0.0550 3s 1 3p 4 3d 1 4p 1 0.0755 2p 6 3s 1 3p 4 4s 1 4p 1 0.0496 2p 6 3s 1 3p 4 4s 1 4p 1 0.0500 3s 1 3p 4 4s 1 4p 1 0.0703 2p 6 3s 1 3p 4 3d 1 4f 1 0.0431 2p 6 3s 1 3p 4 3d 1 4f 1 0.0441 3s 1 3p 4 3d 1 4f 1 0.0624 2p 6 3s 1 3p 4 3d 1 5f 1 0.0424 2p 6 3s 1 3p 4 3d 1 5f 1 0.0436 3s 2 3p 4 4p 1 0.0606 2p 6 3p 5 3d 2 0.0342 2p 6 3p 5 3d 2 0.0420 3s 2 3p 4 4f 1 0.0494 2p 6 3s 1 3p 4 4p 1 5s 1 0.0328 2p 6 3s 1 3p 4 4p 1 5s 1 0.0328 3s 2 3p 4 5p 1 0.0463 2p 4 3s 2 3p 5 5p 2 0.0309 2p 4 3s 2 3p 5 5p 2 0.0305 3p 5 3d 2 0.0418 2p 4 3s 2 3p 5 4d 1 5d 1 0.0296 2p 4 3s 2 3p 5 4d 1 5d 1 0.0295 3s 2 3p 3 4f 2 0.0355 2p 6 3s 2 3p 3 3d 1 5g 1 0.0276 2p 6 3s 2 3p 3 3d 1 5g 1 0.0281 3s 

Fully correlated CI calculations

The results of Tables 1 and2 indicate that, even if the variational contents of openand closed-core calculations are a priori very different [START_REF] M R Godefroid | Atomic structure variational calculations in spectroscopy[END_REF], it is here possible to find extensions of the models developed above that remain comparable. Indeed, if we choose as multi-references the five or nine first configurations in the sorted lists

MR 5 = {3s 2 3p 5 , 3s 2 3p 3 3d 2 , 3s 1 3p 5 3d 1 , 3s 2 3p 3 4p 2 , 3s 1 3p 4 3d 1 4f 1 } (14) 
MR 9 = MR 5 ∪ {3s 1 3p 4 4s 1 4p 1 , 3s 1 3p 4 3d 1 4p 1 , 3p 5 3d 2 , 3s 2 3p 4 4f 1 } (15) 
for both systems, the selected MRs account for approximately the same correlation effects in all S -and Cl orbital sets. It allows a significant comparison between the CI calculations performed on the MR 5 -and MR 9 -I-C multi-reference-interacting sets performed with the orbital sets arising from either the SR-I-C, MR-I-C or MR-I-V MCHF calculations. Figure 1 and the two top plots of Figure 2 present the convergence of the a l , a sd , a c and b hyperfine parameters (3-6) calculated with the MR 5 -I-C model in the three orbital basis sets (SR-I-C, MR-I-C and MR-I-V). All parameters are given in atomic units (a -3 0 ). In all cases the MR-I-V 13h and SR-I-C 13h results differ by about 2 10 -2 a -3 0 , the final A J constants themselves differing by less than half a percent. The convergence of the calculations with the orbital sets obtained from the MR-I-V model is slow compared to the one of the calculations based on the SR-and MR-I-C orbital sets. It is remarkable to note that, to the contrary of the magnetic dipole parameters (a), the electric quadrupole parameter (b) converges as rapidly in the SR-I-C and MR-I-V basis sets.

Comparing the S -and Cl trends, it is the similarities that first strike. However, the y-axis scales being the same between the left (S -) and corresponding right (Cl) plots, we observe easily that (i) the S -hyperfine parameters are shifted to smaller values compared to the Cl parameters, and (ii) the S -hyperfine structure calculations converge slightly faster that the Cl ones. These two observations can be easily understood by the mere diffuseness of the negative ion electron charge distribution. Indeed, when an electron attaches to a neutral atom, the valence shells spread and the core-valence separation becomes larger. Then, even though the negative ion have more electrons, the core-valence overlap is only slightly larger in the negative ion than in the neutral, even if there are more valence electrons in the former than in the latter [7,[START_REF] Carette | Isotope effects in atomic spectroscopy of negative ions and neutral atoms: a theoretical contribution[END_REF]. Hence, the negative ion core is more spherical and the hyperfine constants tend to be smaller than in comparable systems. Consequently, even if negative ions are highly correlated systems, they are characterized by a comparatively smaller core-valence correlation. In particular, the hyperfine structure of negative ions is slightly less sensitive to correlation effects than one would first expect.

Even though the MR 5 and MR 9 sets do not account for exactly the same correlation effects depending on the active set, the approach based on the orbitals obtained at the SR-I-C 13h level are superior. Tables 4 and5 show the total energies and a l , a sd , a c and b parameters deduced from the MR 5 -, MR 9 -I-C 12h and MR 5 -I-C 13h models using the SR-I-C orbitals. The final results are obtained by reporting the impact of the 13 th shell on the MR 5 -I-C model on the MR 9 based values.

Hyperfine Structures of the 3p 4 3 P J levels of S

Definition of the orbital set: MCHF calculations

For the 3p 4 3 P state of neutral sulfur, we first select the references from which the MCHF expansions are generated. Similarly to Cl and S -, we use the mono-reference (SR) and 0.0394 2s 2 2p 6 3s 1 3p 3 3d 1 4f 1 0.0436 3s 1 3p 3 4s 1 4p 1 0.0580 2s 2 2p 6 3s 1 3p 3 3d 1 5p 1 0.0394 2s 2 2p 6 3s 1 3p 3 3d 1 5p 1 0.0393 3s 1 3p 3 3d 1 4f 1 0.0562 2s 2 2p 6 3p 4 3d 2 0.0389 2s 2 2p 4 3s 2 3p 4 4p 2 0.0389 3s 1 3p 3 3d 1 4p 1 0.0547 2s 2 2p 6 3s 2 3p 2 5p 2 0.0386 2s 2 2p 6 3s 2 3p 2 5p 2 0.0387 3p 4 3d 2 0.0498 2s 2 2p 6 3s 1 3p 3 5s 1 5p 1 0.0338 2s 2 2p 6 3s 1 3p 3 5s 1 5p 1 0.0339 3s 2 3p 3 4f 1 0.0489 2s 2 2p 6 3s 2 3p 2 4p 1 5p 1 0.0324 2s 2 2p 6 3s 1 3p 3 3d 1 6f 1 0.0328 3s 2 3p 3 4p 1 0.0486 2s 2 2p 6 3s 1 3p 3 3d 1 6f 1 0.0312 2s 2 2p 6 3s 2 3p 2 4p 1 5p 1 0.0324 3s 1 3p 3 3d 1 5f 1 0.0356 2s 2 2p 4 3s 2 3p 4 4d 1 5d 1 0.0289 2s 

0.0252 2s 1 2p 5 3s 2 3p 4 4s 1 4p 1 0.0253 2s 1 2p 5 3s 2 3p 4 4s 1 4p 1 0.0250 3s 1 3p 3 4p 1 4d 1 0.0247 a multireference MR = {1, 2} 10 {3s, 3p} 4 {3} 2 . ( 16 
)
The weights of the most important configurations in the SR-I-C, MR-I-C and MR-I-V calculations using the active set 10h are presented in Table 6. The corresponding mean radius of the orbitals are shown in the fifth and sixth columns of Table 3. We observe that the eigenvector composition differences between the open-core and valence calculations are much more pronounced than in the S -and Cl cases. For instance, the 1s 2 2s 2 2p 4 3s 2 3p 4 4p 2 configuration gains a significant weight in both opencore calculations (SR-and MR-I-C), the 4p orbital being localized in the inner region of the atom. This important core reorganization is accompanied by the extinction of the closed-core configuration 3s 2 3p 2 4p 2 in comparison with the MR-I-V eigenvector composition, counterbalanced by the turning on of another closed-core configuration, 3s 2 3p 2 5p 2 . In the open-core models, the cumulative weight of these two configurations 2p 4 3s 2 3p 4 4p 2 and 2p 6 3s 2 3p 2 5p 2 reaches 0.055, which is comparable to the weight of the 3s 2 3p 2 4p 2 in the closed core model (= 0.068). It indicates that the correlation of the 3p 4 and 2p 6 electrons is similar so that, even if we fix the core to its HF shape, high-order correlation effects mix the core and valence electrons through the 2p 4 3p 4 4p 2 configuration, (3p, 4p) being variational. Similar observations are made in the context of the calculation of the electron affinity of Chlorine [7], in which case the negative ion neon-like core can strongly mix with the valence 3p 6 electrons compared to the neutral MCHF solution. 

Fully correlated CI calculations

The large differences between the roles played by each correlation orbital in the opencore and valence calculations prevent us from comparing the two models as in the cases of S -and Cl. Although the results of the different open-core CI models are coherent, we limit our discussion to the SR-and MR-I-C results.

Driven by the eigenvector composition analysis presented in Table 6, we choose the multi-reference

MR 5 = {3s 2 3p 4 , 3s 2 3p 2 3d 2 , 3s 1 3p 4 3d 1 , 3s 1 3p 3 3d 1 4f 1 , 3p 4 3d 2 }. (17) 
Then, for evaluating the impact of the addition of a core-polarization configuration in the reference, we build the MR

MR 6 = MR 5 ∪ {2s 1 2p 5 3s 2 3p 4 4s 1 4p 1 } , (18) 
and finally we define

MR 8 = MR 6 ∪ {2s 2 2p 4 3s 2 3p 4 4p 2 , 2s 2 2p 6 3s 1 3p 3 3d 1 5p 1 }. (19) 
We show in Table 7 the hyperfine parameters for the sulfur 3p 4 3 P ground state using these MR p -I-C models (p = 5, 6, 8) for the largest possible active set and using the SR-I-C radial functions. The final results are obtained by reporting the impacts of the 13 th correlation shell on the MR 5 -I-C model and the impacts of the extension of the MR 6 reference to the MR 8 reference using the active set 9h , on the hyperfine parameter values obtained in the MR 6 -I-C 12h calculation.

Comparison with experiment

The three considered isotopes, 33 S, 35 Cl and 37 Cl, have a spin I = 3/2 and respectively a magnetic dipole moment of +0.6438212 (14) µ N , +0.8218743(4) µ N and +0.6841236(4) µ N [START_REF] Stone | [END_REF]. Their nuclear quadrupole moments are still best determined using theoretical inputs [26], as we will see below. The non-relativistic A J constants computed using the final set of hyperfine parameters of Tables 4 , 5 and 7 are shown in Table 8. We estimate the relativistic corrections by running mono-reference non-relativistic and corresponding relativistic CI calculations using the Pauli approximation with the SR-I-C 9h orbital set, as described in references [15,19].

At the non-relativistic level, the neutral sulfur A 1 ( 3 P ) hyperfine constant is characterized by a strong cancellation between the spin-dipole (A sd ) and orbit (A l ) contributions. Indeed, in the MR 6 -I-C 12h CI calculation performed with the SR-I-C orbitals, we find 

We realize from Table 4, 5 and 7 that the contact term (A c ) is by far the less converged contribution, bringing the largest source of uncertainty (∼ 1 MHz). It is unclear to which extent the 33 S -theory-experiment excellent agreement is accidental. As far as the B J constants are concerned, it is more relevant to tabulate the electric quadrupole moments (Q) obtained for S -and Cl from the formula [17] 

Q = - (B 3/2 ) exp (b) th G q ( 21 
)
where G q = 234.96475 for obtaining Q in barns when b is in a -3 0 and B J in MHz. The available experimental data are: 

We compare our Q values with previous works in Table 9. Since, to our knowledge, there is no measurement of the neutral sulfur hyperfine structure, we use our value for the b(S 3 P ) parameter for estimating the B J constants of 33 S with each Q( 33 S) value. a Reference [2] for 33 S and [28] for the chlorine isotopes b Reference [29] c Reference [30]

Conclusion

We perform MCHF-CI and RCI calculations of the hyperfine constants of the 3p 5 2 P o J multiplet of 33 S -and 35,37 Cl and the 3p 4 3 P J multiplet of 33 S. We obtain good agreement with previous theoretical works [2,28] for the nuclear electric quadrupole moments of 33 S and 37,35 Cl, and with the A(3p 5 2 P o 3/2 ) experimental values [1,27]. It appears that the contact contribution, the main source of uncertainty in our non-relativistic calculations, is ten times smaller in S -than in Cl. We interpret this as an effect of an increased separation of the core and valence regions in negative ions.

We show that, for sufficiently large active sets, orbitals optimized in closed-core MCHF calculations reproduce the results of proper open-core MCHF calculations. This approach has a significant advantage: the core-valence distinction in frozen and closedcore MCHF calculations is much cleaner. It allows to minimize the high-order core and valence mixing and hence get a better comparison between calculations performed on different systems (e.g. S and S -).

Figure 1 .

 1 Figure 1. For both S -(left plots) and Cl (right plots), values of non-relativistic magnetic dipole hyperfine interaction parameters a l , a sd and a c obtained by CI calculations in the MR 5 -I-C model, in atomic units (a -3 0 ), with the three explored orbital basis sets SR-I-C, MR-I-C and MR-I-V, as a function of the active space nl , l ≤ 5.

Figure 2 .

 2 Figure 2. For both S -(left plots) and Cl (right plots), values of non-relativistic electric quadrupole hyperfine interaction parameter b (in a -3 0 ) and energy E (in E h ) obtained by CI calculations in the MR 5 -I-C model with the three explored orbital basis sets SR-I-C, MR-I-C and MR-I-V, as a function of the active space nl , l ≤ 5.

A

  l = 105.04 MHz A sd = -110.74 MHz A c = 6.28 MHz .

B 3 / 2 (B 3 / 2 (

 3232 33 S -) = 26.2437 Cl) = 43.245 245(55) MHz[27] 

Table 1 .

 1 Sorted weights of the first configurations in the MR-I-V, MR-I-C and SR-I-C wave functions of Cl. The active set is 10h . The 1s and 2s sub-shells are closed in all those configurations. 3s 1 3p 4 3d 1 4f 1 0.0527 2p 6 3s 1 3p 4 3d 1 4f 1 0.0538 3s 1 3p 4 3d 1 4f 1 0.0691 2p 6 3s 1 3p 4 3d 1 4p 1 0.0411 2p 6 3p 5 3d 2 0.0416 3s 1 3p 4 4s 1 4p 1 0.0584 2p 6 3s 1 3p 4 4s 1 4p 1 0.0403 2p 6 3s 1 3p 4 3d 1 4p 1 0.0407 3s 1 3p 4 3d 1 4p 1 0.0537 2p 6 3p 5 3d 2 0.0346 2p 6 3s 1 3p 4 4s 1 4p 1 0.0407 3s 2 3p 4 4f 1 3s 1 3p 4 4p 1 5s 1 0.0310 2p 6 3s 1 3p 4 4p 1 5s 1 0.0311 3s 2 3p 3 4f 2 0.0370 2p 6 3s 2 3p 3 3d 1 5g 1 0.0269 2p 6 3s 2 3p 3 3d 1 5g 1 0.0273 3s 2 3p 4 4p 1 0.0322 2p 4 3s 2 3p 5 4d 1 5d 1 0.0268 2p 4 3s 2 3p 5 4d 1 5d 1 0.0267 3s 2 3p 3 3d 1 5g 1 0.0306 2p 4 3s 2 3p 5 5d 2

	SR-I-C		MR-I-C		MR-I-V	
	config.	w	config.	w	config.	w
	2p 6 3s 2 3p 5	0.9712	2p 6 3s 2 3p 5	0.9584	3s 2 3p 5	0.9567
	2p 6 3s 2 3p 3 3d 2	0.1413	2p 6 3s 2 3p 3 3d 2	0.1877	3s 2 3p 3 3d 2	0.1905
	2p 6 3s 1 3p 5 3d 1	0.0806	2p 6 3s 1 3p 5 3d 1	0.1121	3s 1 3p 5 3d 1	0.1145
	2p 6 3s 2 3p 3 4p 2	0.0649	2p 6 3s 2 3p 3 4p 2	0.0653	3s 2 3p 3 4p 2	0.0786
	2p 6 0.0475
	2p 6 3s 2 3p 4 4f 1	0.0311	2p 6 3s 2 3p 4 4f 1	0.0323	3p 5 3d 2	0.0417
	2p 6 0.0257	2p 4 3s 2 3p 5 5d 2	0.0253	3s 2 3p 4 5p 1	0.0292
	2p 6 3s 2 3p 3 4f 2	0.0252	2p 6 3s 2 3p 3 4f 2	0.0248 3s 1 3p 4 4p 1 4d 1 0.0271
	2p 4 3s 2 3p 5 5p 2	0.0249	2p 4 3s 2 3p 5 5p 2	0.0245 3s 2 3p 3 4s 1 4d 1 0.0257

Table 2 .

 2 Sorted

	SR-I-C		MR-I-C		MR-I-V	
	config.	w	config.	w	config.	w
	2p 6 3s 2 3p 5	0.9675	2p 6 3s 2 3p 5	0.9522	3s 2 3p 5	0.9448
	2p 6 3s 2 3p 3 3d 2	0.1372	2p 6 3s 2 3p 3 3d 2	0.1931	3s 2 3p 3 3d 2	0.1935
	2p 6 3s 2 3p 3 4p 2	0.0843	2p 6 3s 1 3p 5 3d 1	0.1124	3s 1 3p 5 3d 1	0.1140
	2p 6 3s 1 3p 5 3d 1	0.0765	2p 6 3s 2 3p 3 4p 2	0.0848	3s 2 3p 3 4p 2	

weights of the first configurations in the SR-I-C, MR-I-C and MR-I-V wave functions of S -. The active set is 10h . The 1s and 2s sub-shells are closed in all those configurations.

Table 3 .

 3 2 3p 3 4s 1 4d 1 0.0343 2p 4 3s 2 3p 5 5d 2 0.0263 2p 6 3s 2 3p 4 5f 1 0.0272 3s 1 3p 4 4p 1 4d 1 0.0342 2p 6 3s 2 3p 4 5f 1 0.0260 2p 4 3s 2 3p 5 5d 2 0.0259 3s 1 3p 4 3d 1 5f 1 0.0335 Mean radius (in a 0 ) of the n = 1 to 5 orbitals of Cl, S -and S in the MR-I-V 10h (valence) and MR-I-C 10h (open-core) models. 1s, 2s, 2p are Hartree-Fock orbitals.

	Cl		S -		S	
	nl valence open-core	valence open-core	valence open-core
	1s 0.09130	0.09130	0.09715	0.09715	0.09715	0.09715
	2s 0.44171	0.44171	0.47585	0.47585	0.47577	0.47577
	2p 0.40572	0.40572	0.44106	0.44106	0.44104	0.44104
	3s 1.54735	1.55045	1.76214	1.76836	1.71095	1.71268
	3p 1.82220	1.82778	2.28135	2.29572	2.02884	2.03898
	3d 1.76250	1.75997	2.15941	2.16075	1.95878	1.96343
	4s 2.03477	1.92840	2.44030	2.39304	2.40713	0.71754
	4p 2.41053	2.13745	3.34104	2.80812	2.81064	0.70561
	4d 2.23120	1.35932	2.86818	1.64193	2.45573	1.42118
	4f 1.82616	1.30900	3.03237	1.17530	2.98537	1.20579
	5s 2.14697	0.69456	2.71559	0.74676	2.28372	2.13212
	5p 2.16166	0.68502	2.88173	0.75013	2.42314	2.38464
	5d 2.08468	0.54938	2.04493	0.76611	1.70728	0.60688
	5f 2.06913	0.65051	2.31986	1.55795	2.31174	0.63876
	5g 1.85751	1.78797	3.40818	2.12699	3.83176	1.94307

Table 4 .

 4 Best estimates of the energy (in E h ) and hyperfine parameters (in a -3 0 ) of Cl (see text). The final values are the results of the MR 9 -I-C 12h in which the impact of the 13 th correlation shell on the MR 5 -I-C model is reported.

		MR 5		MR 9	
		12h	13h	12h	final
	E	-460.12061 -460.12145 -460.12315	
	a l	7.15768	7.15724	7.14014	7.13971
	a sd	-1.50471	-1.50541	-1.50369 -1.50439
	a c	0.49079	0.48733	0.52870	0.52525
	b	2.84768	2.84738	2.83912	2.83882

Table 5 .

 5 Best estimates of the energy (in E h ) and hyperfine parameters (in a -3 0 ) of S - (see text). The final values are the results of the MR 9 -I-C 12h in which the impact of the 13 th correlation shell on the MR 5 -I-C model is reported.

		MR 5		MR 9	
		12h	13h	12h	final
	E	-398.15235 -398.15324 -398.15553	
	a l	4.30388	4.30366	4.28953	4.28931
	a sd	-0.91284	-0.91324	-0.91211 -0.91251
	a c	-0.00209	-0.00306	0.03581	0.03484
	b	1.71294	1.71293	1.70529	1.70528

Table 6 .

 6 Sorted weights of the first configurations in the SR-I-C, MR-I-C and MR-I-V wave functions of S. The active set is 10h . The 1s shell is closed in all those configurations.

	SR-I-C		MR-I-C		MR-I-V	
	config.	w	config.	w	config.	w
	2s 2 2p 6 3s 2 3p 4	0.9726	2s 2 2p 6 3s 2 3p 4	0.9587	3s 2 3p 4	0.9566
	2s 2 2p 6 3s 2 3p 2 3d 2	0.1139	2s 2 2p 6 3s 1 3p 4 3d 1	0.1574	3s 1 3p 4 3d 1	0.1607
	2s 2 2p 6 3s 1 3p 4 3d 1	0.1106	2s 2 2p 6 3s 2 3p 2 3d 2	0.1547	3s 2 3p 2 3d 2	0.1569
	2s 2 2p 6 3s 1 3p 3 3d 1 4f 1 0.0419	2s 2 2p 6 3p 4 3d 2	0.0497	3s 2 3p 2 4p 2	0.0677
	2s 2 2p 4 3s 2 3p 4 4p 2					

  2 2p 4 3s 2 3p 4 4d 1 5d 1 0.0285 3s 2 3p 3 5p 1 0.0313 2s 2 2p 6 3s 2 3p 3 4f 1

		0.0271	2s 2 2p 6 3s 2 3p 3 4f 1	0.0281	3p 5 4p 1	0.0292
	2s 2 2p 4 3s 2 3p 4 5d 2	0.0260	2s 2 2p 4 3s 2 3p 4 5d 2	0.0256	3s 1 3p 2 3d 3	0.0282
	2s 2 2p 4 3s 2 3p 4 4d 2	0.0260	2s 2 2p 4 3s 2 3p 4 4d 2	0.0256	3s 2 3p 2 4f 2	

Table 7 .

 7 Best estimates of the energy (in E h ) and hyperfine parameters (in a -3 0 ) of the neutral sulfur 3 P state. The final results are obtained by reporting the impacts of the 13 th correlation shell on the MR 5 -I-C model and the impacts of the extension of the MR 6 reference to the MR 8 reference using the active set 9h , on the values of hyperfine parameters obtained in the MR 6 -I-C 12h calculation.

			MR 5		MR 6		MR 8	
		9h	12h	13h	9h	12h	9h	final
	E	-398.07547 -398.08254 -398.08329 -398.07655 -398.08363 -398.07952	
	a l	5.13968	5.12937	5.12869	5.14143	5.13020	5.13748	5.12557
	a sd	1.08020	1.07860	1.07918	1.08205	1.08039	1.08447	1.08339
	a c	0.74528	0.85674	0.85825	0.80130	0.91908	0.82046	0.93976
	b	-2.05860	-2.05035	-2.04957	-2.05942	-2.05064	-2.05571 -2.04615

Table 8 .

 8 Comparison of theoretical and experimental A J hyperfine constants (in MHz) for the lowest multiplet of 33 S, 33 S -, 35 Cl and 37 Cl. Non-relativistic estimations (NR) computed from the final results of Tables 4, 5 and 7. Relativistic corrections estimated with a CI-RCI approach[15,19].

		33 S		33 S -	35 Cl		37 Cl
		A 2	A 1	A 3/2	A 1/2	A 3/2	A 1/2	A 3/2	A 1/2
	Non-relativistic	133.58	0.33 92.48 483.30 168.52 846.09 202.45 1016.46
	+rel. corrections 130.09 -4.62 91.43 496.28 167.52 872.05 201.25 1113.22
	Experiment			91.49(9) a	170.69 b		205.05 b
	a Reference [1].							

b Reference

[27]

.

Table 9 .

 9 Nuclear electric quadrupole moments (Q, in barns) estimated with equation (21) for 33 S -, 35 Cl and 37 Cl. From those Q, we calculate the B J constants of 33 S lower multiplet with our value of b(S 3 P ). Non-relativistic estimations (NR) computed from the final values of Tables 4, 5 and 7. Relativistic corrections estimated with a CI-RCI approach[15,19].

			33 S		35 Cl	37 Cl
		Q	B 2 ( 33 S)	B 1 ( 33 S)	Q	Q
	Non-relativistic	-0.0655(6)	-31.49	15.74 -0.082265	-0.064833
	+rel. corrections	-0.0657(6)	-31.60	15.80 -0.081764	-0.064438
	Sundholm and Olsen a -0.0678(13)	-32.60	16.30 -0.08165(80) -0.06435(64)
	Alonso et al b				-0.0850(11)
	Yakobi et al c				-0.0811(12)