Semiclassical approximation and noncommutative geometry - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Semiclassical approximation and noncommutative geometry

Thierry Paul
  • Fonction : Auteur
  • PersonId : 878449
  • IdRef : 158973372

Résumé

We consider the long time semiclassical evolution for the linear Schrödinger equation. We show that, in the case of chaotic underlying classical dynamics and for times up to $\hbar^{-2+\epsilon},\ \epsilon>0$, the symbol of a propagated observable by the corresponding von Neumann-Heisenberg equation is, in a sense made precise below, precisely obtained by the push-forward of the symbol of the observable at time $t=0$. The corresponding definition of the symbol calls upon a kind of Toeplitz quantization framework, and the symbol itself is an element of the noncommutative algebra of the (strong) unstable foliation of the underlying dynamics.
Fichier principal
Vignette du fichier
nonc.pdf (133.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00617372 , version 1 (28-08-2011)
hal-00617372 , version 2 (01-09-2011)
hal-00617372 , version 3 (02-09-2011)
hal-00617372 , version 4 (17-03-2012)
hal-00617372 , version 5 (18-03-2012)
hal-00617372 , version 6 (18-03-2012)

Identifiants

Citer

Thierry Paul. Semiclassical approximation and noncommutative geometry. 2011. ⟨hal-00617372v5⟩
251 Consultations
152 Téléchargements

Altmetric

Partager

More