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Abstract. We consider the long time semiclassical evolution for the linear Schrödinger
equation. We show that, in the case of chaotic underlying classical dynamics and for
times up to ~

−2+ǫ, ǫ > 0 the symbol of a propagated observable by the corresponding
von Neumann-Heisenberg equation, in a sense made precise below, is precisely obtained
by the push-forward of the symbol of the observable at time t = 0. The corresponding
definition of the symbol calls upon a kind of Toeplitz quantization framework, and the
symbol itself is an element of the noncommutative algebra of the (strong) unstable
foliation of the underlying dynamics.

1. Introduction

In this note we consider the long time semiclassical evolution through the linear Schrödinger
equation, or more precisely to the associated von Neumann equation

(1.1) i~
d

dt
Ot = [Ot, H ],

where H is a Schrödinger operator H = −~
2∆+V with smooth confining V (V (x) → +∞

as |x| → ∞)- or a more general semiclassical pseudodifferential operator of principal
symbol h, elliptic and selfadjoint on the Hilbert space L2(M), where M is a manifold of
dimension n+ 1.

It is well known [3, 4] that, for times smaller than C log 1
~
, C small enough, Ot is still a

Weyl (semiclassical) pseudodifferential operator and that its principal symbol is the push-
forward of the initial one by the Hamiltonian flow associated to the principal symbol h of
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H . It is easy to get convinced [6] that this is already not true for large values of C (greater
than 2

3 times the natural Liapunov exponent of the flow.
Through this paper we will suppose that the Hamiltonian flow generated by h is Anosov,

and moreover that there exists a smooth action of R2(n+1) on T ∗M, (µ, ν; s, p) ∈ R
2(n+1) →

Ξν ◦ Λµ ◦ T s,p, satisfying

(1.2) Ξν ◦ Λµ ◦ T s,p ◦ Φt = Φt ◦ Ξe
−tν ◦ Λe

tµ ◦ T s+tp,p.

(1.2) is obviously mimicked on the case of the geodesic flow on surface of constant curvature
(Λµ (resp. Ξν) is the (resp. anti-)horocyclic flow, T s,0 is the geodesic one and T o,p

correspond to shifting the energy), but we will not suppose we are in this case and we’ll
use only (1.2). Moreover we will restrict this note to the bidimensional situation n = 1
(the extension to any n through (1.2) is straightforward) and take M = R

n+1. The results
are local and therefore are easily adaptable to the non flat situation using the results of
[7]. Finally we could extend some of our result to the case of variable Liapunov exponents.

We will suppose that Ot=0 is a semiclassical pseudodifferential operator with smooth
symbol supported in h−1(I) for some interval I ⊂ R such that h−1(I) is compact.

We first define, associated to a ∈ D(Rn+1) and the family of so-called (Gaussian)

coherent states ϕ(p,q)(x) := (π~)−
n+1
4 e−

(x−q)2

2~ ei
px
~ , (p, q) = z ∈ R

2(n+1), the family of
Lagrangian states:

(1.3) ψaz :=

∫
ei

∫ Λµ
◦Ts,0(z)

z
ηa(µ, s)ϕΛµ◦T s,0(z)

dµds

~
,

η := ξ.dx (the symplectic potential on T ∗
R

2).
It is easy to see that, microlocally in the interior of I and for a support of a small enough,

the operator defined by
∫
h−1(I)

|ψaz 〉〈ψ
a
z |
dn+1z
~n+1 (here we denote by |ψ〉〈ψ| the orthogonal

projector on the vector ψ) is equal to the identity modulo ~
∞.

The key idea of this paper will be to write any pseudodifferential operator in the form

(1.4) O =

∫

h−1(I)

|ψOza
z 〉〈ψaz |

dn+1z

~n+1

for a suitable family of bounded pseudodifferential operators Oz with the same king of
estimate as (??).

The interest of such a formulation will be the fact that it is preserved by the evolution
through (1.2). More precisely we prove in theorem 2.1 that for any 0 ≤ t ≤ C~−2+ǫ, 2 ≥
ǫ > 0 there exists a bounded operatorOtz such that the solution O(t) of (1.2) microlocalized
on h−1(I ′) satisfies

(1.5) ‖

∫

h−1(I)

|ψ
Ot

za
z 〉〈ψaz |

dn+1z

~n+1
−O(t)h−1(I′)‖B(L2) = O(~∞)

(valid also for O =identity). This suggests to call Otz the symbol of O(t) at the point z.
In fact we will identify the symbol of O(t) as a noncommutative object related to the

space of leaves of the unstable foliation of the dynamics generated by the principal symbol
h of H . Let us give the motivation behind this identification.

The classical limit of the equation (??) is the well known Liouville equation Ȯ = {O, h},
where {., .} is the Poisson bracket on T ∗M, solved by the push forward of the initial
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condition by the Hamiltonian flow Φt associated to h. Though the flow is defined for all
times t, the limit as t → −∞ doesn’t have any meaning as a flow, being nevertheless
the key ingredient of the theory of chaotic behaviour. In fact, if such a limit flow would
exist it would be natural to say that it would be constant on the strong unstable manifold
associated to any point z ∈ T ∗M which, in our case, is the set of points Λz = {Λµ ◦
T s,0(z), (µ, s) ∈ R

n+1}. Therefore the pushforward of a smooth initial condition O by
“Φ−∞ should be constant of each Λz, that is to say it should be a “function” on the space of
leaves of the unstable foliation, orbits of the action of Rn+1, (µ, s) → Λµ ◦T s,0. The leaves
Λz being usually dense on the energy shell, any (non constant) such function couldn’t have
any regularity property (trace of the shearing off of the flow for long values of the time).
The noncommutative geometry develops a topological theory for such singular spaces by,
roughly speaking, replacing the algebra of continuous functions by a noncommutative one
which, in the case of space of orbits of the action of a locally compact group, reduces to
the crossed product of the algebra of continuous functions on the ambient manifold by
the group. Let us note that this change of paradigm is invisible by the classical dynamics
which is purely local.

One of the main result of the present paper is to show that, approaching the limit
t→ −∞ on the time evolution of the classical dynamics by a correlated semiclassical limit
of the Schrödinger equation ~ → 0, 0 << t < ~

−2+ǫ, one recovers a dynamics based on
the noncommutative algebra of the strong unstable manifold, that is the “space” of the
invariants of the local classical theory.

The noncommutative algebra of the unstable foliation is the geometrical setting of the
classical limit of the long time quantum evolution.

Let us remark finally that long time quantum evolution creates oscillations even in
the symbols of observables. Therefore on expects a microlocalization of the symbol of
the observable to be necessary. At the same time these oscillations are, at each point
of T ∗M along the unstable manifold, a highly non-linear object. It is then natural to
expect that the good geometrical setting is not the cotangent bundle over T ∗M but pre-
cisely the unstable foliation, which is not a fibration in general, an object handleable by
noncommutative geometry.

2. Propagation

Let O be a pseudodifferential operator whose symbol O is smooth and compactly sup-
ported inside h−1(I).

Theorem 2.1. There exists bounded smooth and explicitly computable functions on R
2(n+1)

Ot
z ∼ O +

∑∞

j=1 O
t
j~
j such that, uniformly for 0 ≤ t ≤ ~

−2+ǫ,

‖e−i
tH
~ Oe+i

tH
~ −

∫

h−1(I)

|ψÕz
t
a

z 〉〈ψaz |
dz

~n
‖B(H) +O(~∞), where Õz

t
has total Weyl symbol

(2.1) Õt
z(ν, µ, s, p) := Ot(Ξe

λtξ ◦ Λe
−λtx ◦ T s+tp,p ◦ Φt(z)).

Sketch of the proof: the proof consist in several steps.
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• we first prove the result for t = 0. In order to do that we first show that, for a with
small enough support and microlocally on h−1(I ′) for I ′ ⊂ I,

∫
h−1(I)

|ψaz 〉〈ψ
a
z |
dz
~n =

I+O(~∞), where I is the identity. Since ψaz is a Lagrangian distribution, Oψaz =

ψa
′

z +O(~∞) where a′ is obtained by the action of differentiable operators (trans-
port equation).

• a having a frequency set included in the null section, one proves that a′ = Õ0
za+

O(~∞) where the Weyl symbol of Õ0 has the form Oz(ν, µ, p, s) ∼
∑

~
jOj(Ξ

eλtξ ◦

Λe
−λtx ◦ T s,p(z))).

• the next step is the heart of the proof. We want to show that e−i
tH
~ Oe+i

tH
~ ψaz =

ψa
t

z for some at satisfying an equation that we derive, thanks to the main hypoth-

esis. In fact at = Õtza where :

(2.2)
˙̃
Otz = [Õtz, H2 +H3]

, H2 with a quadratic symbol and H3 differential operator of third order.
(2.2) can be solved at any order, H2 being a quadratic operator (therefore

giving an explicit solution) and H3 being treated by perturbation methods, after
microlocalizing near the zeroth section.

• thanks to this inoffensive microlocalization, we show that the preceding solution
is valid for with an error term of the form

(2.3) e−i
tH
~ Oe+i

tH
~ ψaz = ψ

atk
z +O((t~−2)k+1‖a‖Hk(Rn)).

• taking k > n and t ≤ ~
−2+ǫ, ǫ > 0 we get, since h−1(I) is compact, that i~∂tO

t
k =

[Otk, H ]+OB(L2)(~
kǫ) where Otk :=

∫
h−1(I) |ψ

ãt
k
z 〉〈ψaz |

dz
~n , from which we deduce, by

unitary of the propagator, Ot = Otk+O(t~
kǫ−1) and, taking k arbitrary, the result

(2.1).

Remark 2.2. As a Corollary of the proof of Theorem 2.1 it is easy to prove that a similar
result is still valid when we replace the functions a by a ~-dependant ones of the form

a~()̇ = ~
−nǫ′/2a(~−ǫ

′

)̇ for ǫ′ ≥ 0 small enough (see (2.3)). More precisely, taking ǫ′ < ǫ

(2.1) is still valid, and (??) is valid by replacing ǫ by ǫ− ǫ′.

Let us mention another Corollary of the proof of Theorem 2.1.

Proposition 2.3. There exist at ∼
∑∞

j=0 a
t
j~
j such that for 0 ≤ t ≤ ~

−2+ǫ, ǫ > 0,

e+i
tH
~ ψaz = ei

∫
t

0
pdqψã

t

Φt(z) +O(~∞) with ãt(µ, s) = e−it~∂
2
sat(eλtµ, s). In particular

e+i
tH
~ ψaz = ei

∫
t

0
pdqψâ

t

Φt(z) +O(~ǫ) with ât(µ, s) = e−it~∂
2
s a(eλtµ, s)

3. Noncommutative geometry interpretation

We first prove the following Lemma.
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Lemma 3.1. Let z and z′ = Λµ ◦ T t(z) , and let define

(3.1) σOt(z, z′) := F (z1, x, x
′)

where z = Λx(z1), z
′ = Λx

′

(z1) and F (z1, ., .) is the integral symbol of an operator of Weyl
symbol given by (2.1). Then σOt(z, z′) doesn’t depend on z1.

The Lemma is easily proven by the translation invariance properties of the Weyl quan-
tization procedure.

We want to identify σOt as an element of the crossed product A of the algebra CI of
continuous functions on h−1(I) by the group R

n+1 under the action (1.2). A function
σ(z, z′), z′ ∈ Λz cam be seen as a continuous function from G to A by

(3.2) f(µ, t)(z) = σ(z, z′), z′ = Λµ ◦ T t(z).

Moreover we get an action of G on CI by, ∀g ∈ G,

(3.3) α(µ,t)h(z) = h(Λµ ◦ T t(z)).

The algebra structure on CI ⋊α G is given by the ⋆-product

(f1 ⋆ f2)(g) =

∫
f1(g1)αg1(f2(g

−1
1 g))dg1.

An easy computation, using Theorem 2.1 and the symbolic property of Weyl quantiza-
tion shows easily that, at leading order and for all 0 ≤ t1, t2 ≤ ~

−2+ǫ,

(3.4) σOt1Ot2 ∼ σOt1 ⋆ σOt2 .

Moreover the norm ‖|.‖| on A is equal to the supremum over z of the operator norm on
L2(Rn+1) of the operator of integral kernel σ(z, z′) (more preciselyA⋊αG is the completion
of the algebra of compactly supported kernels σ(z, z′) with respect to the norm ‖|.‖|.

We can also give a corresponding interpretation of the vectors ψaz . Let us define α ∈ A

by, for z′ = Λµ ◦ T s,0(z) , α(z, z′) := a(µ, s). Then ψaz = ψα :=
∫
Λz
e

i
~

∫
z′

z
ηα(z′, z)ϕz′dz

′.

We associate to any element γ of A an operator T (γ) on L2(Rn+1) defined by

(3.5) T (γ) :=

∫

h−1(I)

|ψγ⋆α〉〈ψα|
dz

~n
.

In particular a bounded pseudodifferential operator is such an operator (with γ ∼
∑∞

j=0 γj~
j).

Moreover, by definition of the norm ‖|.‖|, T (gamma) is a bounded operator for all γ ∈
A⋊αG and it is easy to see, using arguments of the proof of theorem 2.1, that T (gamma)
is bounded uniformly with ~ ∈ [0, 1] for γ compactly supported. Noting that (3.5) is a way
of writing (1.4) we get:

Theorem 3.2. For 0 ≤ t ≤ ~
−2+ǫ there exist Γt of symbol γt ∼

∑∞

j=0 γ
t
j~
j ∈ A such that

(3.6) T (γ)t := e−i
tH
~ T (γ)e+i

tH
~ = T (γt) +O(~∞) with γt0 = Φt#γ0 +O(~ǫ).

Moreover the leading order symbol of T (γ)t1T (γ)t2 is γt1 ⋆ γt2 .

Sketch of the proof:

• the fact that Theorem 2.1 is valid also for operators defined by (3.5) is contained
in the proof of Theorem 2.1 itself.
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• the fact that the symbol of T (γt) is in the completion by the norm |‖.‖| is obtained

by the Calderon-Vaillancourt theorem, since O(Ξe
λtξ ◦ Λe

−λtx ◦ T s+tp+t,p(z)) is
bounded and smooth, therefore defines a bounded (non semiclassical) pseudodif-
ferential operator.

• the product formula of principal symbols is nothing but (3.4).

Let us remark also that an extension on the lines of Remark 2.2 is also valid in this
framework.

4. Semiclassical measures

In the same way that one associates to a vector ψ (or density matrix) the quantity
〈ψ, ϕz〉|

2 considered as a measure by the formula 〈ψ,Oψ〉 =
∫
OT (z, z̄)〈ψ, ϕz〉|

2dz, where

OT is the Toeplitz symbol of O, on can associate to ψ (or a density matrix) a sort of
“off-diagonal” version by the quantity Rψ(z, z̄′) := 〈ϕz , ψ〉〈ψ, ϕz′ 〉 for z

′ ∈ Λz.
Rψ can be considered as an element of the dual of a (dense) subalgebra of A and

will have better properties of semiclassical propagation. For sake of shortness we express
the result in the case of eigenvectors of the Hamiltonian H , leaving the straightforward
derivation for Rei tH

~

ψ in the same topology.

Theorem 4.1. Let us define for I compact interval of R, DI ∼ D(h−1(I) × R
n) the

subalgebra of smooth compactly supported elements of A. Let ψ be an eigenfunction of H.
Then, restricted to z ∈ h−1(I), Rψ(zz̄′) considered as a function on h−1(I)×R

n, belongs
to D′

I . Moreover, in the weak-* topology and, ∀ǫ > 0, uniformly for 0 ≤ t ≤ ~
−2+ǫ

(4.1) Φt#R(z, z̄′) = R(z, z̄′) +O(~ǫ).

The proof consists in using Γ, a quantization using a~ as in Remark 2.2 of a symbol
γ(z, z′) compactly supported in z′. Writing the formula for 〈ϕz |Γ|ϕz′〉 we get that Rψ ∈
D′
I , and it is easy to see that Theorem 2.1 applies to Γ, out of which we derive (4.1).

5. Perspectives

Other situations with a noncommutative semiclassical limit can be treated, e.g. the
integrable cases.

In this paper we presented only preliminary results concerning the quantization of
algebra of the unstable foliation. In particular more symbolic results can be obtained in
full generality.

The construction of Section 4 is of course possible for t → −∞ verbatim by replacing
the unstable by the stable foliation, and the flow Λµ by Ξν . We believe that it is possi-
ble to construct operators whose (noncommutative) symbols will be concentrated on the
intersection of the two foliation, and to derive a result similar to Theorem 4.1 by some
invariance property along homoclinic trajectories. All these works are in progress.
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